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Abstract: This paper presents a comparison between worst-case and distributional uncertainty analysis in 

a thin film deposition process. The key idea is to evaluate the effect of model parameter uncertainties on 

thin film properties employing power series expansion (PSE). The worst-case deviation in the film 

properties is obtained under bounded parameter uncertainties while the probabilistic bounds are estimated 

under distributional uncertainties. To describe the growth process on the surface of a substrate, a 

multiscale approach that integrates kinetic Monte Carlo (KMC) simulations with continuum modelling is 

employed. The uncertainty analysis in this work is applied to estimate the optimal substrate temperature 

profile for robust optimization of the thin film end-point properties. 
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1. INTRODUCTION 

Thin film deposition is a critical step in semiconductor 

manufacturing that has motivated significant research efforts 

towards process modelling, optimization and control to 

produce efficient electronic devices at low cost. Despite the 

extensive body of research, there are still many unresolved 

issues leading to a significant gap between the expected and 

the actual performance achieved by the current control 

methodologies (Christofides & Armaou, 2006). This gap is 

mainly related to the complexities associated with the 

multiscale nature of the thin film deposition process, lack of 

practical and reliable online in-situ sensors at the micro-scale 

level, and uncertainties in the mechanisms and parameters of 

the system (Vlachos, 2005; Ricardez-Sandoval, 2011). The 

disparity in length and time scales of the physicochemical 

events occurring in thin film deposition is often described 

using a continuum deterministic model coupled with discrete 

stochastic kinetic Monte Carlo (KMC) simulations describing 

the evolution of the thin film at the surface (Lam & Vlachos, 

2001). Unlike continuum models, the KMC approach does 

not provide a closed-form model needed for model-based 

control and optimization and is also computationally 

prohibitive for online applications. Approaches based on 

lattice-based KMC simulations or model reductions have 

been employed to estimate the film’s microstructure 

(Gallivan & Murray, 2004; Lou & Christofides, 2003). 

Although the recently introduced optical in-situ sensors have 

triggered research on feedback control of the thin film 

deposition process, their application is still limited in 

practice. In industry, most of the measurements are available 

at the end of the process; accordingly, optimization and 

control approaches that do not have access to online fine-

scale measurements need to be developed. The deposition 

process is a batch process where open-loop process 

optimization can be performed offline, based on certain 

product quality requirements. It has been shown that an 

optimal change in the precursor concentration reduces 

considerably the thickness non-uniformity in a GaN thin film 

(Varshney & Armaou, 2006). One key challenge in the 

implementation of model-based approaches is model-process 

mismatch. The lack of knowledge about the mechanisms and 

parameters at the fine-scale has motivated experimental 

design studies for parameter optimization (Prasad & Vlachos, 

2008). Another way to address uncertainties is to design 

robust frameworks that prevent the loss in the optimization or 

control objectives. The uncertainty effects are quantified in 

the desired outputs and an objective function is defined such 

that it produces a robust performance. In model-based control 

of semiconductor processes, power series expansion (PSE) 

has been applied for robust optimization of end-point 

properties in thin films and junctions required in 

microelectronic devices (Gunawan, et al., 2004; Nagy & 

Allgower, 2007; Rasoulian & Ricardez-Sandoval, 2014). In a 

recent work, PSEs have been applied to identify closed-form 

models that predict the outputs of the process for a nonlinear 

model predictive control approach under uncertainty 

(Rasoulian & Ricardez-Sandoval, 2015). 

A fundamental step in robust optimization, however, is the 

characterization of uncertainty in model parameters. Due to 

difficulties in determining the type of uncertainties, the 

common assumption is that the uncertainties are either 

normally distributed or bounded. The probabilistic approach 

based on normal distribution leads to optimistic estimates 

whereas the worst-case scenario via bounded uncertainties 

might include realizations in the parameters that will be very 

unlikely thus leading to overly conservative results. In this 
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work, these two approaches are compared on a thin film 

deposition process based on the PSEs. Although the methods 

employed in this work are well-known uncertainty analysis 

approaches for robust optimization, their implementation for 

the present multi-scale thin film deposition model has not 

been studied before. The required sensitivities in the 

expansions are obtained by central finite differences using 

average of multiple multiscale simulations describing the 

deposition process. To show the effectiveness of this 

approach, the uncertainty analysis has been embedded within 

an optimization framework to seek for the robust optimal 

substrate temperature profile that maximizes the end-point 

thickness of the film under surface roughness and growth rate 

constraints.   

2. THIN FILM DEPOSITION PROCESS 

In this work, an epitaxial thin film deposition process on a 

substrate from gas precursors in a reactor chamber is 

considered. In this process, gas enters perpendicular to the 

substrate and forms a boundary layer adjacent to the surface. 

The gas atoms diffuse the boundary layer and through 

microscopic phenomena form a solid thin film on the 

substrate. The multiscale nature of the process is modelled 

using macro-scale continuum partial differential equations 

(PDEs) embedded with micro-scale KMC simulations (Lam 

& Vlachos, 2001).  

2.1. Gas phase model 

At the macroscopic level, continuum descriptions of fluid 

flow, heat transfer and mass transfer can be employed (Song, 

et al., 1991): 
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The boundary conditions for the bulk (𝜂 → ∞) are: 

𝜕𝑓

𝜕𝜂
= 1, 𝑇 = 𝑇𝑏𝑢𝑙𝑘 , 𝑥 = 𝑥𝑏 .      (4) 

Likewise, the boundary conditions on the surface (𝜂 → 0) are: 

𝑓 = 0,
𝜕𝑓

𝜕𝜂
= 0, 𝑇 = 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒,     (5) 

𝜕𝑥

𝜕𝜂
=

Sc(𝑅𝑎−𝑅𝑑)

√2𝑎𝜇𝑏𝜌𝑏
.        (6) 

In (1)-(6), 𝑓 denotes the dimensionless stream function, 𝜂 is 

the dimensionless distance to the surface, 𝜌 is the density of 

the mixture, Pr is the Prandtl number, 𝑥 and Sc are the mole 

fraction and Schmidt number of species, respectively. The 

parameters, 𝜇𝑏, 𝜌𝑏 and 𝑥𝑏, are the viscosity, density and the 

precursor’s mole fraction of the bulk, respectively; 𝑎 is the 

hydrodynamic strain rate and 𝜏 = 2𝑎𝑡 is the dimensionless 

time. 𝑅𝑎 and 𝑅𝑑 correspond to the rates of adsorption and 

desorption, respectively.  

2.2.  Thin film surface model 

The microscopic events considered in the current model 

include adsorption, desorption and migration of the atoms on 

the surface of the thin film. To reduce the computational 

costs, the method has been implemented for a limited-size 

lattice with periodic boundary conditions. Moreover, the 

deposition follows the solid-on-solid approximation and only 

first nearest neighbours interactions are considered between 

the adsorbed atoms. The total adsorption rate is assumed to 

be site-independent and is calculated from the kinetic theory 

of the ideal gases as follows: 

𝑊𝑎 =
𝑆0𝑃𝑥𝑔𝑟𝑜𝑤𝑁

2

√2𝜋𝑚𝑅𝑇𝐶𝑡𝑜𝑡
 ,      (7) 

where 𝑆0 is the sticking coefficient, 𝑃 is the total pressure of 

gas phase, 𝑥𝑔𝑟𝑜𝑤 is the mole fraction of precursor on the 

surface, 𝐶𝑡𝑜𝑡 is the concentration of sites on the surface, 𝑚 is 

the precursor molecular weight, 𝑁 is the lattice size in KMC 

simulations, 𝑅 is the gas constant and 𝑇 is the substrate 

temperature. 

Total rates of desorption and migration on the surface follow 

Arrhenius kinetics and depend on the local configuration of 

the surface. The total rate of desorption is calculated by: 

𝑊𝑑 =∑ 𝑘𝑑0𝑀𝑖exp(−(𝑖𝐸 + 𝐸𝑑) 𝑅𝑇⁄ )
5

𝑖=1
,   (8) 

where 𝑀𝑖 is the number of surface atoms with 𝑖 nearest 

neighbours. 𝐸 is the energy associated with a single bond on 

the surface, 𝐸𝑑 is the energy associated with desorption and 

𝑘𝑑0 is an event-frequency constant. Likewise, the total rate of 

migration is estimated as follows: 

𝑊𝑚 =∑ 𝑘𝑑0𝑀𝑖exp(− (𝑖𝐸 + 𝐸𝑚) 𝑅𝑇⁄ )
5

𝑖=1
,   (9) 

where 𝐸𝑚 is the energy associated with migration. At every 

step in the KMC simulations, the rates are calculated and an 

event (i.e., adsorption, desorption or migration) is selected 

and executed randomly by using a uniform random number. 

Once the event is executed, the time increment is calculated: 

𝑑𝑡 = −
ln𝜍

𝑊𝑎+𝑊𝑑+𝑊𝑚
 ,     (10) 

where 𝜍 is a uniform random number from a (0,1) interval 

and 𝑑𝑡 is the time increment in the KMC model. 

The continuum and the KMC models are linked at the solid-

gas interface in order to couple the events occurring at 

different time scales in this process. To account for the effect 

of the transport phenomena in the gas phase on the growth 

process, the parameter of the adsorption rate at the 

microscopic scale, i.e. 𝑥𝑔𝑟𝑜𝑤, is provided from the mass 

transfer balance shown in (3). The microscopic events on the 

surface, on the other hand, determine the boundary condition 

of the mass transfer equation, i.e. the adsorption and 

desorption events influence the net flux of the precursor on 

the surface. 𝑅𝑎 and 𝑅𝑑 in (6), respectively correspond to 

adsorption and desorption events; the difference between 

these values can be obtained as follows: 

𝑅𝑎 − 𝑅𝑑 =
𝑁𝑎−𝑁𝑑

2𝑎𝑁2∆𝒯
 ,      (11) 

where 𝛥𝒯 is the coupling time instance between the 

macroscopic and the microscopic simulations. 𝑁𝑎 is the 

number of adsorbed atoms during ∆𝒯 and 𝑁𝑑 is the number of 
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desorbed atoms in the same time interval. Parameters of the 

process studied in this work are shown in Table 1. 

Table 1.  Model parameters 

Parameter Value 

𝑎 5 1 s⁄  

𝐶𝑡𝑜𝑡 1.6611 × 10−5 sites.mol m2⁄  

𝐸 17000 cal mol⁄  

𝐸𝑑 17000 cal mol⁄  

𝐸𝑚 10200 cal mol⁄  

𝑘𝑑0 1 × 109 1 s⁄  

𝑚 0.028 kg mol⁄  

𝑃 1 × 105Pa 

𝑆0 0.1 

Sc 0.75 

𝑥𝑏 2 × 10−6 

𝜇𝑏𝜌𝑏 9 × 1011 

𝜌𝑏 𝜌⁄  1 

 

The quality of the thin film microstructure is mostly 

determined by the surface roughness that can be estimated 

based on the average of the broken bonds on the surface 

(Rasoulian & Ricardez-Sandoval, 2014):  

𝑟 = 1 +
∑(|ℎ𝑖+1,𝑗−ℎ𝑖,𝑗|+|ℎ𝑖−1,𝑗−ℎ𝑖,𝑗|+|ℎ𝑖,𝑗+1−ℎ𝑖,𝑗|+|ℎ𝑖,𝑗−1−ℎ𝑖,𝑗|)

2𝑁2
,  (12) 

where ℎ𝑖,𝑗 is the surface height or number of atoms at site 

(𝑖, 𝑗). Growth rate and film thickness are another important 

control objectives in order to prevent an undergrown film at 

the end of the batch process. Thickness can be represented by 

the average height on the surface as follows: 

𝐻 =
1

𝑁2
∑ ℎ𝑖,𝑗𝑖,𝑗 .      (13) 

Growth rate is determined using the difference of adsorbed 

and desorbed atoms: 

𝐺𝑟 =
∑ ∆ℎ𝑖,𝑗𝑖,𝑗

𝑁2∆𝑡
,      (14) 

where ∆ℎ𝑖,𝑗 = ℎ𝑖,𝑗(𝑡 + ∆𝑡) − ℎ𝑖,𝑗(𝑡) is the change in the surface 

height at site (𝑖, 𝑗) during ∆𝑡. ∆𝑡 is a specific time interval 

where the growth rate needs to be estimated. 

From the modelling point of view, the evolution of the thin 

film encompasses microscopic processes that are subject to 

model parameter uncertainty. As shown in Table 1, the KMC 

model includes parameters that have to be either measured or 

inferred through fine-scale experimental data. The estimation 

of these parameters is not trivial and most of the values are 

not known with absolute certainty due to the limited and 

noisy measurements. The performance of model-based 

control and optimization approaches, on the other hand, is 

affected by the accuracy of the model, and uncertainties can 

lead to significant losses in performance. To quantify the 

influence of uncertainties, the deviations in system’s 

performance can be evaluated by performing an uncertainty 

analysis. 

3. WORST-CASE AND PROBABILISTIC BOUNDS 

USING PSE 

For uncertainty analysis, the perturbed model parameter 

vector, 𝛉 ∈ ℝ𝑛𝜃 is as follows: 

𝛉 = �̂� + 𝛿𝛉,       (15) 

where �̂� is the nominal model parameter vector and 𝛿𝛉 is the 

perturbation about �̂�. The objective is to analyse the deviation 

in the system’s output from the nominal output, i.e., 

𝛿𝑦 = 𝑦 − �̂� ,       (16) 

where �̂� is the output when the system is operated with the 

nominal model parameter �̂� and 𝑦 is the output when 

parameter vector 𝛉 is used. Analytical mathematical tools 

have been proposed to quantify the impact of parameter 

uncertainties on the system’s performance (Nagy & Braatz, 

2003). In this study, the deviation from the nominal output, 

𝛿𝑦, is computed using PSEs as follows: 

𝛿𝑦 = 𝐉(𝑡)𝛿𝛉 + 𝛿𝛉𝑇𝐇(𝑡)𝛿𝛉 +⋯,    (17) 

where 𝐉(𝑡) = (𝑑𝑦(𝑡) 𝑑𝛉⁄ )�̂� ∈ ℝ
𝑛𝜃 and 𝐇(𝑡) = (𝑑2𝑦(𝑡) 𝑑𝛉2⁄ )�̂� ∈

ℝ𝑛𝜃×𝑛𝜃 are respectively the Jacobian and Hessian evaluated 

around �̂� at a specific time, 𝑡.  

Although the order of the series expansion depends on the 

process nonlinearity and variability in the uncertain 

parameters, first or second-order expansions are usually 

sufficient for engineering applications. 

3.1. Worst-case performance under bounded uncertainties 

In the worst-case robustness analysis, the worst-case 

deviation in the system’s output is evaluated under bounded 

uncertainties in the model parameters, i.e., 

𝛉 = {𝛉|𝛉𝑙 ≤ 𝛉 ≤ 𝛉𝑢},     (18) 

where 𝛉𝑙 and 𝛉𝑢 represent the lower and upper limits. The 

effect of this parameter uncertainty on the system’s output 

can be estimated from the following optimization problem:  

max𝛉𝑙≤𝛉≤𝛉𝑢|𝛿𝑦|       (19) 

Using first-order PSE, the worst-case variability in a process 

output, 𝛿𝑦, is calculated as follows: 

𝛿𝑦𝑤.𝑐 = max𝛉𝑙≤𝛉≤𝛉𝑢|𝐉𝛿𝛉|.     (20) 

More accurate estimates of the worst-case variability can be 

obtained by adding more terms into the expansion and can be 

formulated in terms of the skewed structured singular value 

(SSV) or 𝜇 analysis (Braatz, et al., 1994). For the second-

order PSE, 𝛿𝑦𝑤.𝑐 can be obtained as follows: 

𝛿𝑦𝑤.𝑐 = max𝛉𝑙≤𝛉≤𝛉𝑢|𝐉𝛿𝛉 + 𝛿𝛉
𝑇𝐇𝛿𝛉|

=
⇔max𝜇∆(𝐌)≥𝛾 𝛾 ,  (21) 

where 
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 𝐌 = [

𝟎 𝟎 𝛾𝛚
𝛾𝐇 𝟎 𝛾𝐇𝐳

𝐳𝐓𝐇 + 𝐉 𝐖𝛉
𝑇 𝐳𝐓𝐇𝐳 + 𝐉𝐳

] .    (22) 

The 0 in 𝐌 denotes a zero matrix of consistent dimensions; 

𝛚 = 0.5(𝛉𝑢 − 𝛉𝑙) and 𝐳 = 0.5(𝛉𝑢 + 𝛉𝑙). ∆= 𝑑𝑖𝑎𝑔(∆𝑟 , ∆𝑟 , 𝛿𝑐) is 

the perturbation block in the 𝜇 analysis. 𝛿𝑐 is a complex scalar 

while ∆𝑟 consists of real scalars.  

3.2. Probabilistic bounds under distributional uncertainty 

In probabilistic-based approaches, the uncertainties in the 

parameters are mostly described by a multivariate normal 

distribution around the nominal parameter estimates as 

follows: 

 𝜀𝜃 = {𝛉|𝛿𝛉𝑇𝐕𝛉
−1𝛿𝛉 ≤ 𝜒𝑛𝜃

2 (𝛼)} ,    (23) 

where 𝐕𝛉 ∈ ℝ
𝑛𝜃×𝑛𝜃 denotes the positive definite covariance 

matrix, 𝜒𝑛𝜃
2  is a chi-squared distribution with 𝑛𝜃 degrees of 

freedom and 𝛼 is the confidence level. Assuming that the 

process can be accurately described using a first-order PSE, 

the normal distribution of the output can be obtained from: 

𝑓(𝑦) =
1

√2𝜋𝐉𝐕𝛉𝐉
𝑇
exp(

−(𝑦−�̂�)2

2𝐉𝐕𝛉𝐉
𝑇
)      (24) 

For second and higher order PSEs, however, the distribution 

cannot be estimated analytically. Thus, random Monte Carlo 

realizations from the distributions of the parameters are 

needed to propagate the uncertainty. Once the output 

distribution is obtained either analytically or via the Monte 

Carlo sampling method, the probabilistic upper and lower 

bounds can be estimated at a specific probability: 

𝑦𝑏 = 𝐹−1(ℙ|𝑦) = {𝑦: 𝐹(𝑦)}  ,     (25) 

where 𝑏 ∈ {𝑙𝑜𝑤, 𝑢𝑝} and 𝐹−1(ℙ|𝑦) represents the inverse of 

cumulative distribution function evaluated at a predefined 

probability, ℙ. 

4. ROBUST END-POINT OPTIMIZATION OF THIN 

FILM PROCESS 

Microelectronic market imposes stringent requirements upon 

thin film properties including specific thickness and surface 

roughness. While the thickness of the thin film needs to be 

maximized for a finite batch time, the surface roughness has 

to be minimized to assemble high-performance electronic 

devices. These are two conflicting objectives since thick 

films can be obtained at low temperatures whereas smooth 

film surfaces can only be realized at relatively high 

temperatures. In addition, uncertainties lead to product 

quality variability resulting in a potential loss in profits. 

Thus, a key objective is to optimize the process performance 

under uncertainty. In most thin film control and optimization 

studies, the desired thin film is achieved by imposing an 

optimal substrate temperature profile during the deposition 

process. In this approach, the batch time, 𝑡𝑓 is divided into K 

equally spaced time intervals while the temperature at each 

time interval, 𝑇(𝑘) is kept piecewise constant between 

successive intervals and is considered as one of the decision 

variables in the optimization problem. Thus, the optimal 

control formulation considered in this study is as follows: 

max
𝑇(𝑘)

 𝐻𝑙𝑜𝑤(𝑡𝑓) 

Subject to: 

Multiscale model, (1)-(11) 

ℎ1(𝑘) = 𝑇𝑚𝑖𝑛 − 𝑇(𝑘) ≤ 0 

ℎ2(𝑘) = 𝑇(𝑘) − 𝑇𝑚𝑎𝑥 ≤ 0 

ℎ3 = 𝑟𝑢𝑝(𝑡𝑓) − 𝑟𝑚𝑎𝑥 ≤ 0    (26) 

ℎ4 = 𝐺𝑟𝑚𝑖𝑛 − 𝐺𝑟
𝑙𝑜𝑤(𝑡𝑓) ≤ 0  

ℎ5 = 𝑑𝑟𝑢𝑝(𝑡𝑓) 𝑑𝑡⁄ − 𝜖 ≤ 0 

ℎ6 = 𝑑𝐺𝑟𝑙𝑜𝑤(𝑡𝑓) 𝑑𝑡⁄ − 𝜖 ≤ 0  

𝑡 = [0, 𝑡𝑓];∀𝑘 = 1,2,… , 𝐾 

where the constraints ℎ1 and ℎ2 ensure that the temperature 

profile remains within the feasible operating region for the 

deposition process. Constraints ℎ3 and ℎ4 specify the 

maximum allowed surface roughness, 𝑟𝑚𝑎𝑥 to satisfy market 

demands and the minimum growth rate, 𝐺𝑟𝑚𝑖𝑛 to ensure 

process productivity, respectively. Moreover, ℎ5 and ℎ6 

ensure minimum variability of these properties at the end of 

the batch. The superscripts low and up correspond to the end-

point properties evaluated via the lower and upper bounds, 

respectively. As mentioned in the previous section, the 

bounds can be obtained by either probabilistic or worst-case 

scenario approaches. 

In our previous work, an algorithm was proposed to 

propagate the time-varying uncertainties into rates of 

microscopic events and then the probabilistic bounds on the 

outputs were computed through KMC simulations (Rasoulian 

& Ricardez-Sandoval, 2014). In this work, however, these 

parameters are assumed to be constant unknown values 

during the batch but they can change randomly from batch to 

batch. Thus, uncertainties are propagated directly into 

system’s outputs using PSEs. Therefore, although the 

formulation shown in (26) is similar to that used in our 

previous work, the algorithm employed here to solve this 

optimization problem is different as described above.  

The uncertainties in the process are assumed in the energy 

associated with a single bond, and the bulk precursor mole 

fraction, i.e. 𝛉𝑇 = [𝐸, 𝑥𝑏]. Problem (26) was solved under the 

assumption of bounded parametric uncertainty and 

distributional uncertainty in 𝐸 and 𝑥𝑏, respectively. In the 

case of parametric uncertainty, the parameters 𝐸 and 𝑥𝑏 are 

described as follows: 

𝐸 = �̂�(1 + 𝜔𝐸), 𝑥𝑏 = �̂�𝑏(1 + 𝜔𝑥𝑏) ,    (27) 

where the nominal values (�̂� and �̂�𝑏) are given in Table 1 and 

the uncertainties are: 

−0.2 ≤ 𝜔𝐸 ≤ 0.2, −0.2 ≤ 𝜔𝑥𝑏 ≤ 0.2    (28) 

For a fair comparison between the worst-case scenario and 

probabilistic bounds, the covariance matrix in distributional 

uncertainty is constructed such that 99.7% of the uncertain 

parameters are within the bounded uncertainties (three 

standard deviations rule); therefore, 
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𝐕𝛉 = (
(0.2�̂� 3⁄ )

2
0

0 (0.2�̂�𝑏 3⁄ )
2
)    (29) 

A second-order PSE was employed to describe the effect of 

uncertainties on the surface roughness whereas first-order 

PSEs were sufficient to propagate uncertainties in thickness 

and growth rate. The sensitivities in the expansions were 

calculated using finite differences from the average of the 

outputs obtained through multiple multiscale models 

employing reduced-order lattices in the KMC simulations. To 

estimate upper and lower bounds, three different approaches 

were considered while solving optimization problem defined 

in (26): i) worst-case deviation in the outputs using 

description (27), ii) probabilistic bounds on outputs at 99.7% 

confidence interval, i.e. ℙ = 3𝜎 in (25), and iii) probabilistic 

bounds at 68% confidence interval (ℙ = 𝜎 in (25)) using 

description (29). In the case of the worst-case scenario, the 

roughness at the end of the batch is estimated using SSV 

analysis as shown in Section 3.1 while the worst-case 

deviations in thickness and growth rate can be calculated 

analytically since they are described using first-order PSEs. 

On the other hand, to propagate the uncertainty in surface 

roughness in the probabilistic-based approaches, Monte Carlo 

sampling is applied to the second-order PSE as explained in 

Section 3.2 whereas the bounds on thickness and growth rate 

are obtained analytically using first-order PSEs. 

The batch time was divided into ten equally spaced time 

intervals. For better comparison of the results, the initial 

temperature was fixed at 800 K. Fig. 1 presents the optimal 

temperature profiles obtained from (26) using the three 

approaches considered in this work. These profiles 

correspond to specifications in 𝑟𝑚𝑎𝑥 and 𝐺𝑟𝑚𝑖𝑛 of 7 mL and 13 

mL/s, respectively. 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 were set to 600 and 1200 

K, respectively. As shown in this figure, the optimal 

temperature profile demands low temperatures at earlier 

stages of the deposition process to maximize the thickness by 

high adsorption rates. However, close to end of the batch 

process, high substrate temperatures are needed to promote 

migration on the surface and meet the constraints on surface 

roughness. The profile obtained using 99.7% confidence 

interval in probabilistic approach is slightly different from the 

profile obtained using the worst-case scenario approach. 

However, the temperature profile based on 68% confidence 

interval is the most optimistic, since this approach estimates 

less conservative bounds on surface roughness. Note that 

other reasonable product specification constraints result in 

similar conclusions to that presented here. 

Fig. 2 shows the bounds evaluated for surface roughness 

using the optimal temperature profiles shown in Fig. 1. As 

depicted in this figure, the bounds obtained by the worst-case 

scenario approach using the SSV analysis are more 

conservative compared to the bounds obtained using the 

probabilistic-based approach. The worst-case bounds are 

computed using the worst-case deviation from the nominal 

outputs. Moreover, this figure also shows 100 random open-

loop variations of the surface roughness under bounded 

uncertainty (27) using the temperature profile obtained from 

the worst-case scenario. As shown in this figure, the 

roughness during the batch is bounded within upper and 

lower bounds estimated based on the worst-case deviation 

whereas they violate the probabilistic-based bounds. The 

final film thicknesses employing these temperature profiles 

are given in Table 2. As expected, the worst-case scenario 

approach returned the most conservative film thickness at the 

end of the batch. 

 

Fig. 1. Robust optimal temperature profiles using different 

approaches 

 

Fig. 2. Upper and lower bounds on surface roughness using 

different approaches and open-loop simulations using the 

temperature profile obtained for worst-case performance  

Fig. 3 shows the final properties obtained under bounded 

parametric uncertainty using the temperature profiles 

obtained from these three approaches. As shown in this 

figure, regardless of a few violations using the temperature 

profile estimated by the probabilistic approach with 68% 

confidence interval, the three estimated optimal temperature 

profiles satisfy the constraints imposed on the optimization 

problem (26). That is, the final roughness of the thin film is 

mostly less than 7 mL in reality, even if the most optimistic 

temperature profile estimated by the probabilistic approach 

with 68% confidence interval is being used. In essence, the 

measurable benefits in using the worst-case scenario will be 

limited since it results in an overly conservative temperature 

profile that may eventually lead to economic losses. In 
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practice, the probabilistic approach with 68% confidence 

interval not only achieves an acceptable roughness, but also 

results in larger thickness and larger growth rate. This is a 

direct consequence of the optimistic temperature profile 

identified from the present approach. 

Table 2. Optimal end-point thickness 

Approach Thickness (1000 mL) 

Worst-case scenario 1.4595 

Probabilistic at 99.7% 1.4759 

Probabilistic at 68.0% 1.7293 

 

Fig. 3. Variation of final properties due to bounded parameter 

uncertainties, obtained from open-loop simulations applying 

various temperature profiles. 

5. CONCLUSIONS 

The aim of this paper is to compare the uncertainty analysis 

of the thin film deposition applying worst-case and 

probabilistic-based approaches. The sensitivities are obtained 

from average of multiple multiscale simulations employing 

reduced-order lattices in the KMC simulations. The optimal 

temperature profile that maximizes the final thickness of the 

thin film under end-point product constraints and uncertainty 

in the model parameters was identified. The results show that 

the prior assumption on type of the uncertainty affects the 

optimization results. Thus, inaccurate uncertainty description 

assumptions can lead to a loss in performance and therefore 

economic losses in the process.     
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