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Abstract: With decades of successful application of model predictive control (MPC) to industrial 
processes, practitioners are now focused on ease of commissioning, monitoring, and automation of 
maintenance. Many industries do not necessarily need better algorithms, but rather improved usability of 
existing technologies to allow a limited workforce of varying expertise to easily commission, use, and 
maintain these valued applications. Continuous performance monitoring, and automated model re-
identification are being used as vendors work to deliver automated adaptive MPC. This paper examines 
industrial practice and emerging research trends towards providing sustained MPC performance. 
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1. INTRODUCTION 

Model predictive control (MPC) is an industry accepted 
technology for advanced control of many processes. Recall 
that DMC (dynamic matrix control) was introduced around 
1980 (Cutler and Ramaker, 1980); by 1997 a number of 
commercial MPC software packages were available (see, for 
example, Qin and Badgwell (1997)). Industrial expectations 
for MPC have increased from providing superior control for 
multivariable systems to doing so with minimum set-up effort 
and ease of maintenance. In today’s process industries, MPC 
is often considered a required solution for many applications. 
At the same time, resources of expert practitioners to 
commission, monitor, and maintain MPC are increasingly 
limited. For this reason, both vendors and customers are 
looking for ways to sustain MPC performance with minimum 
manual intervention. In this paper, some established and 
emerging trends in the industrial application of MPC for 
sustained performance are discussed. Section 2 gives 
considerations in commissioning MPC for long term success. 
Section 3 examines ease of operation as a contributing factor 
to successful applications. Section 4 discusses industrial 
MPC maintenance practice, with a focus on performance 
monitoring and adaptive control. Section 5 reviews emerging 
research trends for industrial MPC. 

2. COMMISSIONING AN MPC APPLICATION 

Sustained performance of an MPC depends on many 
important decisions made during commissioning. An MPC 
that is easy to configure, operate, and maintain has a good 
chance of long term success. While examples are given in the 
following subsections, the main themes of this section are: 

• MPC structure and use of features affect maintainability,  

• Difficult MPC set-up may cause less robust tuning and 
model mismatch due to software use errors. Chances of 
sustainable performance are immediately reduced. 

2.1 MPC Structure 

One benefit of MPC is that it determines the optimal actions 
to take for large multi-input, multi-output (MIMO) systems. 
MPC simultaneously adjusts all inputs to control all outputs 
while accounting for all process interactions. As a result, 
MPC often takes actions that improve plant performance 
beyond what a skilled and experienced operator can achieve. 

However, there are also drawbacks to the use of a single 
MPC to control an entire MIMO system, which may inhibit 
the success of an application. One obvious alternative to 
putting all variables into a single MPC is to break up the 
problem into a number of smaller systems which have limited 
interactions. In the following points, some of the potential 
drawbacks to including all process variables in a single MPC 
are listed, along with the comparative advantage possible if 
the MPC is broken into several smaller systems: 

• A single MPC can optimize an entire process, but it may 
also be difficult to understand and monitor performance of 
a large application due to the large number of interactions 
between variables. Splitting the MPC into smaller systems, 
may make it easier to judge the behaviour of each MPC. 

• When a large application performs poorly due to model 
mismatch, it may be difficult to determine which 
submodel(s) need updating. Often, plant experimentation 
and identification for all models is time consuming, or 
introduces unnecessary variability to the process. With 
multiple small MPCs, when one of the small MPCs is not 
performing, there are fewer models to evaluate. 

• If the controller cannot be used for some reason (a set-up 
error for example), then no controlled variables (CVs) are 
controlled. With multiple small systems, one MPC can be 
turned off independently of the other MPCs, leaving most 
CVs under control. Some commercial packages have 

Preprints of the
9th International Symposium on Advanced Control of Chemical Processes
The International Federation of Automatic Control
June 7-10, 2015, Whistler, British Columbia, Canada

TuM1.1

Copyright © 2015 IFAC 532



 
 

 
     

features to handle this issue; practitioners should 
determine how to best utilize such functionality. 

• If some CVs and/or manipulated variables (MVs) are 
dropped from the controller, the likelihood of unexpected 
MV movements, as the MPC re-optimizes using the 
remaining process variables, is relatively high for a large 
system. (These different movements may be correct, but 
they also may be undesired consequences of an unusual 
operating mode. Even if correct, different MV movements 
may be questioned by an operator.) If CVs and/or MVs are 
dropped from a smaller MPC, it may be easier to anticipate 
how the MPC will re-optimize, and there will be less MVs 
to monitor for unanticipated movements.  

2.2 Process Modeling 

Success of model-based controllers, such as MPC, depends 
on having reasonably accurate process models. Often a 
designed experiment is run to generate the data containing 
sufficient process  excitation needed to accurately identify 
models. A common problem with this approach is that the 
type of plant experiments that yield the best data are also 
likely to perturb the process beyond current operating limits. 
This issue is well known, and sometimes is mitigated by 
clever experimental designs. In other cases plants accept 
some small short term deviations in production or quality in 
exchange for the long term benefits of a successful MPC 
application. However, there is another aspect of process 
modeling that can impact the long term sustainability of MPC 
performance, which may not be as widely considered: ease of 
identifying the model. 

Most industrial MPC packages include model identification 
software. This software helps the user to take plant data and 
develop the models needed for MPC. The ease with which 
the software can be used can have a big effect on how well 
MPC is maintained. Identification software can suffer from: 

• Poor workflow, requiring many steps, menu selections, 
button clicks, and so forth, to go from raw data to a final 
model. Each step is the opportunity to make an error. 

• High complexity, which allows for a great deal of 
flexibility in the model building process, but which may 
overwhelm the occasional, inexpert user, again offering 
opportunities for mistakes to be made. 

These challenges may not be a problem during the 
commissioning process where often an expert user performs 
the model identification. However, maintenance of the MPC, 
including re-identifying models, often falls to a non-expert. 
The difficulty of the identification task may then prevent 
MPC performance from being sustained because: 

• Non-intuitive identification software hinders user 
confidence and willingness to update process models as 
often as needed, 

• Incorrect use of complex identification software leads to 
poor model selection, 

• Most users will not be able to judge, by inspection, if 
higher-order model parameters are valid. 

To help overcome some of these issues, it is common (but not 
universal) for MPC practitioners to use first-order plus 
deadtime models unless there is strong evidence that a higher 
order model is required. The advantage of using these simple 
models, even at the expense of some model-plant mismatch, 
is that someone who is not a controls expert can ‘sanity 
check’ these models, and judge if the gain, time delay, and 
time constant are plausible. Additionally, if a review of the 
model predictions versus data reveals poor identification of 
model parameters, most users can manually adjust gain, time 
delay, and time constant. The use of this simple model form 
comes with the expense of providing a very good but not 
optimal process model, but reduces the risk of large model 
errors due to user unfamiliarity with higher-order models.  

Another approach to process model maintenance is to use an 
adaptive algorithm to automatically detect controller 
performance degradation due to model mismatch, generate 
data with a new plant experiment, and identify and deploy a 
new model. Adaptive control is discussed later in this paper. 

 

Fig. 1. Setpoint change for SISO MPC for different MV 
movement cost weight (q2) 

2.3 Controller Tuning 

For basic MPC there are many tuning parameters: prediction 
horizon, control horizon, setpoint tracking cost weights, and 
input movement cost weights. More advanced MPC may 
have additional tuning parameters relating to reference 
trajectories, output funnelling, blocking, etc. While there is 
often a clear explanation of what these tuning parameters are 
meant to influence in the MPC formulation, it is not always 
easy to find the parameter values that achieve a desired 
controller performance. Fig. 1 gives an example of a basic 
single-input single-output (SISO) MPC executing a step 
setpoint change for different choices of the input movement 
cost weight, q2. The five example responses each have a 
different character, but to achieve these different behaviours 
it is necessary to change the input movement cost weight by 
an order of magnitude. Even if the two most aggressive 
tunings are rejected as extreme, it is still necessary to pick a 
value for this tuning parameter from the range of 10 to 1000. 
This is a big challenge, resulting in much trial and error, for 
tuning. In the more general case where there are multiple 
input movement cost weights, plus other parameters to select, 
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even an expert user can struggle to find the right combination 
of parameters to achieve the desired MPC performance. 

In an effort to simplify MPC tuning, many vendors provide 
tuning defaults, automated tuning, or simple variables that 
indirectly set the MPC tuning parameters. Simplified tuning 
helps expert users to easily and quickly tune the MPC during 
commissioning. For the non-expert who occasionally retunes 
the controller, a simplified or automated approach will make 
the user more confident in making changes to the system, 
avoiding confusion and possible errors in tuning. All of this 
helps to set the stage for sustained MPC performance.   

2.4 Nonlinearity Across Operating Points 

Most industrial processes exhibit some nonlinearity; while 
most industrial MPC software uses linear process models. 
Often, this mismatch between the actual process behaviour 
and the process model does not cause much degradation in 
MPC performance. In other cases, the linear MPC must be 
extended to account for different process behaviour at 
different operating points. A common and effective approach 
to applying linear MPC to nonlinear processes is to use a gain 
scheduling technique, where process operations are divided 
into a set of operating regions based on the values of one or 
more key process variables. For each region, the process 
model parameters are identified, and the controller is tuned 
appropriately. As process operations change, moving the 
process from one region to another, the MPC is updated to 
use the appropriate parameters for the new region. To balance 
the effort of maintaining this more complex controller against 
reduced need for maintenance due to poor performance, a 
judicious division of the process operating space into a 
sufficient but not excessive number of regions is needed. 
Switching seamlessly between linear controllers requires care 
in implementation. Recent research results on this topic 
include Stewart (2012) and references therein.  

Paper machine control offers a particularly tidy example of 
use of this technique (see, for example, Gheorghe et al 
(2009)). Typically a paper machine will make a number of 
grades of paper at different times. The paper grades 
sometimes vary significantly in weight (and other factors) 
leading to important differences in process behaviour. Grades 
that are close in weight can be grouped together to form 
weight-based grade groups. Process models and controller 
tunings can be made based on a representative grade within 
each group. The MPC is then updated with the appropriate 
models and tunings whenever paper machine operations 
switch between grades from different groups.  

3. OPERATING AN MPC APPLICATION 

During MPC commissioning, there may be excitement about 
the potential for a more stable process, better quality product, 
better throughput, etc. However, MPC may automate tasks 
that were previously handled by the operator. In these cases, 
the operator will scrutinize the MPC, expecting high 
performance. Issues that are not corrected early in the 
commissioning will cause operators to lose confidence in the 
MPC, with some undesirable outcomes possible: 

• The operator may turn off the MPC each time he/she does 
not understand the control actions, possibly leaving it off 
for the rest of the shift, 

• The operator may yield all responsibility to the MPC and 
blame all process problems on the MPC. 

Of course, the MPC has to work well, but even a high-
performing MPC could fall victim to the above scenarios if 
the operators do not understand and trust the application.  

 

 
Fig. 2. CV movements for single loop and MPC control. 

One characteristic of MPC operation that can cause operators 
to object to MPC is that MPC may move process inputs 
differently than the operators themselves would, or the 
previous control loops did. Consider Fig. 2 where two types 
of control of a 2-input (dryer section 4 steam pressure and 
dryer section 5 steam pressure) 2-output (size press moisture 
and reel moisture) process are shown. In one case the system 
is controlled by 2 SISO loops (dryer section 4 steam pressure 
– size press moisture, dryer section 5 steam pressure – reel 
moisture), while in the other case a full multivariable MPC is 
used. When a disturbance pushes both ouputs off target, in 
the single loops case the first loop brings the first output back 
to setpoint. The second input becomes saturated and thus the 
second output is not brought back to target. In the MPC case, 
when the second input becomes saturated, the controller 
makes a trade-off, allowing the first output to come off 
setpoint which allows for the second output to be closer to 
setpoint. Some operators will immediately understand what 
has happened, but many will not understand this outcome. In 
particular, for someone used to single loop control, it may 
appear that the controller has somehow overreacted so that 
the first output ends up below setpoint. It may not be obvious 
that having the first output below setpoint is allowing the 
controller to bring the second output closer to setpoint. This 
is just a simple 2x2 system. The challenge is much greater 
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when trying to understand or explain the actions of a larger 
system. 

Operators need to be prepared for MPC. There are a number 
of ways to do this, including: 

• Providing predicted values to show the operator where the 
MPC will be taking the process, 

• Highlighting constraints and limits so that the reason for a 
CV staying off target will be clear,  

• Noting, sharing, and discussing simple examples, such as 
the one above, of unexpected but correct MPC behaviour. 

These types of practices help build operator understanding 
and trust of the MPC. An operator who has confidence and 
intuition for how MPC acts is likely to keep it running, and 
can identify situations where the MPC is underperforming. 

Human factor considerations are sometimes overlooked by 
MPC experts, but are highly important to MPC success. 
Guerlain et al (2002) give a good overview of this topic; with 
an example effort in interface redesign to support operator 
understanding and use of MPC.  

4. MAINTAINING MPC PERFORMANCE  

4.1  Monitoring 

MPC technology is widely accepted by industry practitioners 
as a necessary profitability enhancement tool. Paradoxically, 
MPC performance deterioration is of growing concern among 
end-users. For instance, changes in feedstock rates and 
quality, degradation of instrumentation and process 
equipment and changes in operating strategies impede 
sustainable MPC performance. Without reliable monitoring 
of MPC technology, a significant portion of the initial 
benefits is at risk; consequently, there is remarkable interest 
in performance monitoring solutions among practitioners. 
Canney (2003) considered monitoring as an active area of 
MPC technology progression over a decade ago. Systematic 
monitoring is a necessary pre-requisite for MPC application 
reliability. While MPC performance monitoring is an area of 
increasing interest from researchers, the successful 
application of these techniques in industry is far from 
complete. Kano et al (2010) reported that 33% of surveyed 
MPC users in Japan identified response to performance 
deterioration as a major problem. This is a complex and 
multi-layered undertaking. The large number of control loops 
and associated MPC variables leads to “big” data that makes 
monitoring cumbersome and necessitate organized, structured 
and methodical approach (Paulonis et al, 2003).  

MPC monitoring has evolved significantly since early 
applications. Industry practitioners report several challenges 
influencing monitoring. Firstly, what aspects of a MPC 
should be monitored? Interestingly, to this day industry has 
not seen consistent and standardized approach for MPC 
performance monitoring and benchmarking. A number of 
basic indicators are widely used by industry practitioners 
such as service factor, controller saturation, model quality, 
etc. Proper division of labour is another challenge. Roles and 
responsibilities for monitoring are vague among MPC 
technology stakeholders. Each organization has its own 

unique culture and structure which influences monitoring as a 
key function. Due to its complexity, awareness and 
understanding of MPC, let alone monitoring it, among end-
users present key challenges. Effective monitoring and 
utilization of MPC is highly influenced by technology 
complexity as well as scarcity of domain expertise.  

Practitioners generally value economic performance, which 
indicates what financial value MPC brings to the table. This 
will eventually signal and guide the need for servicing 
technology. Interest in economic performance monitoring for 
process control has been rising among academicians as well. 
For instance, Bauer and Craig (2008) point out the lack of 
theoretical basis and heavy reliance on oversimplified 
assumptions as key shortcomings in industry MPC economic 
assessments. However, incorporating industry-relevant 
economic performance monitoring indicators for MPC, such 
as profit/loss meters, has not seen as much interest despite its 
clear need. This is increasingly important for industry users, 
as it translates performance of MPC into monetary benefits. 
Also, the rising popularity of economic MPC formulations 
(Section 5) further underpins such need. Furthermore, 
servicing MPC to improve performance is another 
contemporaneous challenge. This will be more thoroughly 
addressed in the following section. Consistency among end-
users within the same organization is another challenge. 
Corporations with considerable MPC install-base face the 
challenge of inconsistency arising from both software 
functionality and usability. Different MPC technologies and 
versions have different configurations which subsequently 
affects their monitoring. Different users of the same software 
in the same organization may monitor applications with 
different conventions. This is especially apparent in large 
corporations with large numbers of MPCs in separate 
facilities. The challenge of software connectivity and data 
accessibility is exacerbated by rising cyber-security risks. 
Network architectures are becoming increasingly complex 
with reduced accessibility. This affects usability of both 
embedded and stand-alone monitoring technologies. Base-
layer control monitoring is a paramount pre-requisite for 
MPC monitoring. PID control monitoring is widely 
implemented in industry; however its influence on MPC 
performance is underestimated and poorly acknowledged.  

Table 1. MPC monitoring for different stakeholders 

Monitoring 
Hierarchy 

Level of 
Complexity Emphasis Frequency 

Management  Low Application Use; 
Financial Impact 

Quarterly-
biannually  

Engineering  High Core Technology Monthly-
Quarterly  

Operations  Medium Service factors, 
Base-layer control 

Daily-
weekly  

 

Large corporations such as Saudi Aramco responded to the 
need for continuous monitoring and assessment of MPC 
performance via establishing a company-wide monitoring 
framework. A similar approach for monitoring is reported by 
Eastman chemical company (Paulonis et al, 2003). Such 
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frameworks ought to engage all MPC stakeholders within the 
organization with documented work processes, identified key 
performance indicators and mutually accepted roles and 
responsibilities. Stakeholders include operators, plant 
engineers, maintenance staff, plant managers, central 
engineering subject-matter experts, and technology providers.  

An effective monitoring framework addresses the 
multifaceted nature of MPC utilization in industrial settings, 
and is actionable rather than only informational. Base-layer 
control must be monitored also. Paulonis et al (2003) gives 
an Observe-Orient-Decide-Act monitoring approach aimed to 
alleviate servicing. Three key layers of MPC monitoring 
exist: managerial, engineering, and operational (Table 1): 

• Management monitoring briefs management on MPC 
utilization and economic performance, company-wide, in 
order to secure resources and communicate financial 
benefits. Corporate-wide performance benchmarking is 
illustrated by Fig. 3. 

• Engineering monitoring encompasses model and economic 
performance. It is targeted to examine core technology 
performance which requires profound knowledge of MPC 
technology in order for subject matter experts to provide 
engineering solutions. This primarily addresses quality of 
controller models and inferential property estimators. The 
frequency of such reports is typically monthly-quarterly.  

• Operational Monitoring is performed by front-line 
engineering support staff in order to probe effective 
utilization operationally. This focuses on low-level 
indicators such as service factors and variables saturation 
on more frequent basis (daily-weekly). Persisting 
anomalies are typically incorporated in engineering 
monitoring reports for higher level engineering support. 

Saudi Aramco maintains over 100 MPCs spread over 20 
operating facilities across the hydrocarbon value chain. A 
small group of experienced APC (advanced process control) 
engineers oversees management and engineering monitoring 
while site APC engineers conduct more frequent operational 
monitoring. APC engineers utilize embedded MPC 
monitoring software which accompanies MPC packages such 
as AspenWatch®. Furthermore, technology point-solutions 
such as Honeywell ® Controller Performance Monitoring, 
Yokogawa MDPro ®, are utilized. Those typically acquire 
data from MPC servers through PI (a process historian) and 
are capable of providing more comprehensive assessment and 
accessibility than embedded software. 

 
Fig. 3. Corporate APC performance benchmarking example. 

4.2  Maintaining the benefits 

MPC is complex and high maintenance technology. In an 
ideal setting, servicing is driven by operational and 
engineering monitoring as illustrated in the previous section. 
Inadequate monitoring at site presents a challenge, typically 
arising from lack of expert users. Technology monitoring is 
paramount to identify model-mismatches and to properly tune 
controllers on on-going basis.  

The increasing complexity of MPC is affecting serviceability 
and maintainability. Qin et al (2003) notes that increasing 
technology capabilities come at a cost of more complexity. 
This reinforces the need to configure MPCs with inherent 
simplicity to enhance serviceability as discussed in section 2.  

Another emerging challenge in servicing MPCs is paucity of 
skilled resources. The technology complexity requires 
matching level of expertise for end-users to be able to 
maintain application reliability. Skilled APC engineers are 
becoming rare commodity for two reasons: multiple skill set 
and technology complexity. The former rises from 
fundamental need for APC engineers to be competent in two 
equally important fields: process and systems engineering. 
Often experienced engineers involved in initial 
commissioning are not available to service MPCs deeming 
them to be more susceptible to performance degradation. 
Lack of skilled resources is driving MPC users to be more 
vendor-dependent. By and large, vendors have responded to 
skill scarcity through increasing application usability with 
more emphasis on embedding process knowledge, which is 
analogous to automation technology trends reported by 
Jokinen (1996). While academicians focus on monitoring and 
servicing from algorithmic perspective (i.e., model 
performance), industry users demand ease-of-use and 
emphasis on basic factors such as software utilization, 
usability and monitoring of economic benefits. Qin et al 
(2003) argue that research on control engineering issues such 
as closed loop stability is far more relevant to practitioners 
than increasing algorithmic complexity. 

Risk of diminishing operator confidence is another issue. 
Operators are the true end-users of MPC and they need to be 
well prepared for it. They need to trust the application and 
develop intuition for how MPC acts, as stated earlier. In the 
experience of authors working at Saudi Aramco, for example, 
clearly superior MPC utilization is observed in facilities 
where operators attend basic MPC training and where 
operator-engineer communication is well-established. 
Operator feedback is vital for servicing MPCs effectively. 
MPC providers respond to this reality through developing 
more operator-friendly GUIs as stated earlier. 

4.3  Towards Adaptive MPC 

Automated step testing and modelling tools are increasingly 
available off the shelf with the mainstream MPC technology. 
Closed loop identification was first introduced by Zhu (1998) 
to industrial practice. Since then multiple applications have 
demonstrated the feasibility of doing closed loop step testing 
and modelling (Celaya et al. 2004; Kalafatis et al. 2006; Zhu 
et al. 2013). In the authors’ experience, closed loop testing 
works well and saves significant amount of engineering time 
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in addition to reducing lost benefits due to reduced MPC 
uptime. There are subtle differences in the implementation of 
the closed loop testing with the different technologies (TaiJi, 
Profit Stepper and Smart Step/Calibrate) but they work on 
similar principles. Small steps are injected at the input in 
order to excite the process. The step tests are designed to 
focus on the low and mid frequencies that are of interest for 
closed loop control. The magnitude of the perturbations is 
varied as the step test progresses to ensure sufficient 
excitation.  The signal-to-noise ratio is assessed based on the 
quality of the models developed from the closed loop data. 
The step testing technologies make every attempt to ensure 
the injected signals do not result in input/output constraint 
violations. 

 

Fig. 4. Closed loop step test data for a CCR MPC. 

Fig. 4 shows data from a closed loop step test implemented 
on a Continuous Catalytic Reformer (CCR) MPC in a Saudi 
Aramco refinery. The bottom part of the graph shows the 
steps inserted by the testing software while the top part of the 
figure shows the effect of these steps on the process outputs. 
Seven inputs were simultaneously moved during the test. The 
step test lasted for about 4 days which was a significant 
reduction from the original open loop test. The step 
testing/modelling software was run on a standalone virtual 
server that is separate from MPC server. The data 
communication between the step testing software and the 
MPC was via OPC. All of the data needed for modelling 
purposes was collected and managed by the step testing 
software. Model development was initiated after the first day 
of step testing and was conducted from the step testing 
environment.  

Models can be developed relatively quickly or even 
scheduled to be automatically estimated. Newly developed 
models are assessed by (a) the level of parameter uncertainty, 
(b) quality of predictions and (c) comparison with previous 
models. Most commercial technologies provide a single 
measure of model goodness based on (a) and/or (b). The APC 
engineers themselves engage in a sanity check for (c). At 
least one vendor (reference AspenTech manual) allows users 
to provide bounds on the parameters estimates, gain ratios to 
ensure infeasible parameters are not allowed at the outset.  

All of these technologies rely on direct identification to 
estimate models from closed loop data. Some use a 
combination of a high order modelling followed by model 
order reduction (Zhu, 2001; MacArthur and Zhang, 2007), to 
prevent bias due to structural mismatch while minimizing 

variance errors. Others use subspace identification based 
approaches, again avoiding the bias errors through a high 
order parameterization. All of the modelling tools have 
evolved to a point where delay estimation is automated with 
closed loop data. In the authors’ experience, the delay 
estimation is not always accurate and leads to model errors 
due to structural mismatch especially with closed loop data. 

While model uncertainties are now available as part of the 
model estimation process in almost every MPC software, the 
controller algorithms do not use uncertainty estimates in any 
explicit way. As a result, the most an APC engineer can do 
with high uncertainty models is either detune the affected 
input/outputs or discard them in favour of models which have 
a high degree of certainty. The rich body of robust MPC 
theory, developed to take advantage of uncertainty 
information, remains largely unavailable to the practitioner. 

 

Fig. 5. Models estimated from closed loop step test data. 

An important aspect of the modelling activity is the selection 
of appropriate data windows from the step test data. Presence 
of outliers can skew the modelling results. Though the model 
parameter estimation may be automated, the selection and 
slicing of data, is largely based on the engineering judgement 
of the APC engineer. As data accumulates during a closed 
loop test, care has to be taken to ensure that the data slicing is 
applied correctly prior to modelling. Some vendors offer 
automated slicing tools that recognize poor quality data and 
automatically ignore it for identification. These are not yet 
mature and results need to be vetted further by practitioners. 

Fig. 5 shows model uncertainties and ranks for a section of 
CCR APC models. These models were estimated using the 
Profit Stepper tools for closed loop modelling. Green bands 
indicate the uncertainty in the estimated step responses.  
Models are automatically ranked from 1-5 with 1 being best 
model rank and 5 being the worst. Model ranks are based on 
a combination of parameter uncertainty and prediction errors. 

While model estimation is relatively automated, 
implementation can be non-trivial. Most packages allow 
users to automatically download the new models to a running 
controller. While this is a vast improvement from past work 
practices, a significant amount of engineering work is still 
needed to get the models to a stage where they are ready to be 
downloaded. In particular, models which are likely to have a 
strong impact on the closed loop performance of the MPC 
have to be thoroughly scrutinized. An effort must be made to 
understand the underlying process changes responsible for 
the model changes. Without this understanding, the ability of 
the process control engineer to support the updated models 
and controller is limited. In summary, advances in the theory 
and practice of closed loop identification have brought the 
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vision of adaptive control closer to reality. However, the 
engineer in the loop is there for a reason, and his/her 
understanding of the key process relationships is vital to the 
overall success of the control application. Moreover most 
chemical processes do not change very quickly or frequently, 
and as such the need for fast and automated adaption, in the 
processing industry, is not as prevalent. 

To the authors’ knowledge no automatic adjustment methods 
are available to update the tuning parameters in an online 
fashion. Practitioners can change any of the myriad tuning 
knobs for MPC in real time but not automatically. Typically 
one may adjust factors such as move suppression, LP (linear 
programming)  costs, or gain multipliers on a need-to basis. 
Some degree of automation may be available at the time of 
commissioning to select best practice tuning values for the 
various parameters. While all vendors have made an attempt 
to simplify the selection of these parameters, the number of 
tuning knobs remains large and at times intractable in terms 
of their impact on real time performance of a running 
controller. One of the main reasons MPC is implemented is 
its ability to reduce variability and operate the unit at a near 
optimal position. However once an MPC application has 
been operating for few a years, the baseline conditions are 
often no longer valid due to process changes in the 
intervening time. Thus the ability to gauge the impact of the 
tuning parameters on the “before” MPC variability is 
obfuscated. 

Often a major part of an MPC is a set of inferential models 
that predict quality variables which do not have frequent 
online measurements. Secondary measurements such as 
temperatures and pressures are used to develop a steady state 
and/or dynamic model. The model predictions are corrected 
via a lab or analyser update once it becomes available 
through a bias update scheme. The power of inferential 
models is in their ability to predict the quality variable 
changes between updates. These models need to be 
periodically assessed and updated to ensure that this 
predictive power is retained. Automated modelling and 
adaptation of the inferential models would greatly aid in the 
pro-active sustainment of MPC performance. This capability 
would definitely be of great value to the practitioner. 

5.  ACADEMIC RESEARCH AND INDUSTRIAL 
PRACTICE 

Owing to its popularity in the industry several variants of 
traditional MPCs are being actively investigated by the 
academics. However, there is significant gap between the 
state-of-the-art research and applications. The research can 
broadly be classified into two categories: research on MPC 
algorithms and that on applications of MPC to linear, 
nonlinear, time invariant, time varying, hybrid and stochastic 
models. Each of these models, their unique characteristics, 
and the challenges they present are driving the need for new 
MPC algorithms.  

The traditional industrial MPCs are linear but applied on 
large-scale systems. However, research in the last decade 
allowed extending MPC applications to nonlinear systems 
and to a certain extent to uncertain systems. While there is no 
exact solution to the nonlinear MPC problem, several 

approximations have been developed and successfully used in 
the industry (Mayne et al 1990; Chen et al 1998; Qin et al 
2000). Approximate nonlinear MPCs attempt to obtain a 
feasible solution rather than an accurate solution. This trade-
off, while not providing the optimal control performance, 
makes the nonlinear MPC tractable in practice (Lee 2011).  
Many successful industrial applications of nonlinear MPC 
have been reported in the literature (Qin et al 2000). 
However, lack of high fidelity nonlinear models remains a 
challenge to wide spread application of this technology.  

Robust Model Predictive Control is another technology that 
is studied widely in the literature. Several solutions have been 
proposed using specialized descriptions of model uncertainty. 
Uncertainty descriptions are increasingly available in 
commercial identification software; however, they are not 
currently exploited using the advances in robust MPC. 
Another barrier to quick adoption of this technology is the 
need to solve online a non-convex optimization problem. 

Large-scale applications of MPC are rather common in the 
industry. However, due to the difficulties involved in 
maintaining and operating extremely large MPCs, they are 
often split into smaller MPCs that are installed on sub-
systems of the original process. This approach where the 
MPCs act independently of each other and on the subsystems 
is called decentralized MPC and is widely used in the 
industry. However, related recent developments in distributed 
MPC with cooperating controllers, is a novel concept that is 
yet to take root in the process industry (Camponogara et al 
2002; Christofides et al 2013).  

Recently, there has been a flurry of research activity on a 
novel idea called Economic MPC (EMPC). The central idea 
in EMPC is to use a single MPC objective function to control 
and to optimize economic conditions (Ellis et al 2014). This 
approach is promising, but so far few applications have been 
reported. In the recent years, a stochastic variant of Robust 
MPC called Stochastic MPC has been formulated. As the 
name suggests, Stochastic MPC is based on the stochastic 
uncertainty of a process model. The expected value of the 
MPC objective is minimized and the constraints are assumed 
to be soft (Mesbah et al 2014). This approach has the 
potential of maintaining the controller performance while 
satisfying the robustness conditions for the controller on 
“most” occasions. However, it is still a nascent idea that has 
not yet been tried on commercial applications.  These 
emerging areas offer exciting new opportunities to improve 
performance, robustness and reliability of industrial MPCs. 

6. CONCLUSIONS 

Industrial appreciation of model predictive control has 
reached the point where it is simply expected that MPC will 
be used for many applications. Concerns have shifted away 
from whether MPC will deliver expected performance to how 
easily it can be installed, how intuitively operators can 
interact with it, and how long term performance can be 
monitored and maintained with limited resources. In this 
paper some approaches of industrial practitioners (vendors 
and industrial process control engineers) towards meeting 
these current industrial MPC challenges have been shared. 
Technology providers are attempting to provide tools to 
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simplify and automate commissioning and maintenance 
tasks; however, they have yet to satisfy fully the needs of 
industry. At the same time, academic research continues to 
develop new techniques that may eventually help industrial 
applications achieve higher levels of sustained performance. 
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