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Abstract:

Model migration has been proved to be an effective modeling tool to adopt an existing base model
from an old process to a similar, yet non-identical process. However, if the process differences are more
complex and differ from sample to sample, then the existing model migration strategies can be non-
flexible and inadequate. Based on the concepts laid out in an earlier article (Lu and Gao (2008b)), this
paper presents an enhanced Bayesian model migration strategy for statistical models. This is achieved by
applying Bayesian adjustments to a base model developed using the Gaussian process (GP). The benefits
of the proposed method are demonstrated on a continuously stirred tank reactor.

Keywords: Process models, Gaussian processes, parameter estimation, optimal experimental design,
efficient algorithms

1. INTRODUCTION

Models which describe the physical processes under investi-
gation are essential for quality prediction, model-based pro-
cess design, control and optimization. One approach to develop
models is based on physical laws that dictate the model struc-
tures. However, developing suck kind of models commonly re-
quires considerable experience and computation. An alternative
approach to make better predictions within the processes is to
use the statistics techniques to postulate models based on the
experimental data observed from the real processes. Typical
examples include polynomial regression, artificial neural net-
works (ANNs), Gaussian process (GP) models, and so on. Since
statistical models (or empirical models in some literatures) are
advantageous to first-principle models in terms of simplicity
and being able to provide good predictions when the data points
are close to the observed training data, they are usually adopted
to processes where theatrical models are not readily available.

This paper is focused on such scenarios to develop statistical
models for certain processes. While there is often mature tech-
nique for a variety of statistical models, their development can
be quite time-consuming and expensive due to a large amount
of required data. This is particularly relevant in areas where
processes are operated over a range of conditions to produce
various products. For instance, if the production of a certain
grade is transferred to a second process, a full redevelopment
procedure is necessary for the changed process. On the other
hand, although processes fashioning products may differ in
size, configuration, or use different technology, there is evi-
dence that some of them share similar mechanisms. In this
context, by borrowing strength from an existing model for use
in the development of a similar, yet non-identical process, it
is possible to avoid those time-consuming redevelopment pro-
cedures. Some has been published on this topic. One of those
examples is calibration transfer between two or several near
infrared (NIR) instruments (Fearn (2001) and Feudale et al.
(2002)). The model is developed on a first spectrometer called

“master” instrument and is used on a second or several other
spectrometers, i.e., “slave” devices via appropriate adjustment.
Most of the calibration models are linear in terms of partial
least squares (PLS) and principal component regression (PCR).
As such, those methods may not be suitable for nonlinear pro-
grams. Another example is model migration proposed by Lu
and Gao (2008b). In their work, base model is built based on an
old process and then is migrated to the new model associated
with a similar, yet non-identical new process. According to Lu
et al. (2009), similar processes can be identified by either de-
scriptive attributes that belong to a pair or several processes, or
quantitative models. They often arise when qualitative changes
are made across processes. For example, injection molding pro-
cesses that make similar polymer products with various shapes
and materials can be considered similar processes, see Lu et al.
(2009). The benefits of model migration can be summarized as
follows. With comparable prediction accuracy, fewer data are
needed for developing new model through migration strategies
than those for creating the base model. Thus, model migration
is a collection of efficient modeling methods which incorporate
a few data points from new processes with base models.

The purpose of this paper is to provide new viewpoints on
model migration originated from Lu and Gao (2008b). Other
related work includes Lu et al. (2008) and Lu and Gao (2008a).
As noted from the work of Lu and Gao (2008b) , new model
prediction can be formulated by correcting predicted values
from base model through input-output slope and bias correction
(SBC) method:

ynew = SO f (SIxxxnew +BI)+BO, (1)
where f (·) denotes base model of any form, S and B are slope
and bias parameters,respectively, and the subscripts I and O
are shorthands for input and output, respectively. The newly
introduced slope/bias parameters can be estimated using least
squares method, together with a few training data experimented
from new process. SBC works well when the process differ-
ences are simple and systematic in all data observed from new
process; however, if the differences are more complex and differ
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from sample to sample, such migration strategy seems likely
non-flexible. In addition, the parameter estimates will pursuit
stable as training data grow (it will be demonstrated in Sec-
tion 5). As a result, the original SBC is not ideally suitable for
model enhancement when there are abundant training data. Yan
et al. (2011) extended previous SBC to functional SBC, as they
noticed that the previous parametric SBC updating rule may not
possess sufficient flexibility to model the process of interest.
Also they argued that the original SBC would ultimately result
in a linear model if the base model was developed with linear
regression methods. As a result, the parametric SBC can not
offer the flexibility to account for new processes that are nonlin-
ear. In the work of Yan et al. (2011), they proposed to applying
Gaussian process (GP) to migration, i.e., replacing slope/bias
parameters with GP functions. Their method enhanced migra-
tion by borrowing strength of the GP technique, but limited to
the correction for the processes’ output. As pointed out in Lu
et al. (2008) and Vastola et al. (2013), correction in inputs of
similar, yet non-identical processes is also necessary to account
for more complex process differences, because the correspond-
ing points for similar, yet non-identical processes may not be
identical. To this end, careful adjustments need to make to
address the defect that may arise in the literatures, and form
the primary focus of our work.

This paper looks at model migration through Bayesian adjust-
ments. The use of Bayesian adjustments for integrating multiple
sources is not a new concept. For example, Qian and Wu (2008)
introduced Bayesian hierarchical Gaussian process models to
integrate low-accuracy experiment and high-accuracy experi-
ments efficiently. Their method was based on a fully Bayesian
approach that assumed priors for all model parameters. To esti-
mate the parameters and make predictions, it required a Markov
Chain Monte Carlo (MCMC) simulation that may be computa-
tionally prohibitive in some problems. To ease the computa-
tional burden, we propose a Bayesian adjustments approach to
model migration which can provide a closed-form expression
of the predictive distributions and account for uncertainties
in the model parameters. Additional, we suggest to employ
GP models for use in the development of an old process and
model migration, since GP models have the advantage of being
able to accurately model non-linear and complex functions that
frequently occur in science and engineering (see Rasmussen
(2006)).

After a brief overview of GP models in Section 2, we dis-
cuss Bayesian adjustments for model migration in Section 3,
followed by considerations on how to plan experiments for
migration purpose in Section 4. A continuously stirred tank re-
actor (CSTR) is used to demonstrate and compare the Bayesian
adjustments against other modeling strategies in Section 5. Sec-
tion 6 discusses the remaining issues related to the current work
and summaries the conclusions.

2. DEVELOPING BASE MODELS USING GP

GP models have been extensively applied to process model-
ing in science and engineering because of their capability of
accurately representing complex and nonlinear relationships
within the processes. In general, GP is a collection of stochastic
random variables over functions, any finite number of which
have a joint Gaussian distribution ( Rasmussen (2006)). Let
xxx = (x1, . . . ,xd) denote a d-dimensional input factors, and the
matrix XXX = (xxx1, . . . ,xxxn)T , of size n ⇥ d, all n training input

vectors. For the variable outputs yyy = (y1, . . . ,yn)T , GP models
the regression function having a Gaussian prior distribution
with zero mean and certain covariance, i.e.,

yyy ⇠ N(0,CCC+s2III), (2)
where CCC is the n⇥n covariance matrix with elements defined by
a covariance function, Ci j =C(xxxi,xxx j), and s2 is the noise vari-
ance and III is the identity matrix. The choice of the covariance
function is nontrivial. Here and throughout this work, we use
the stationary square exponential covariance function, which
produces smooth functions, given by

C(xxxi,xxx j) = s2
` R(xxxi,xxx j)

= s2
` exp

⇥
� 1

2 Âd
k=1 `

�2
k (xik � x jk)

2⇤,
(3)

where s` and `̀̀ = (`1, . . . ,`d) are the hyper-parameters of the
GP model.

The hyper-parameters qqq = (s`, `̀̀,s) can be estimated by max-
imization of the marginal likelihood log p(yyy|XXX ,qqq):

�1
2

yyyT (CCC+s2III)�1yyy� 1
2

log |CCC+s2III|� 1
2

log(2p). (4)

This optimization problem can be solved using the derivative
of the log-likelihood with respect to each hyper-parameter.
Given the training data XXX and yyy, together with the resulting
hyper-parameters qqq , the conditional predictive distribution of
y⇤ ⌘ y(xxx⇤) for a new data point xxx⇤ is again Gaussian with mean
ȳ⇤ and variance V⇤:

ȳ⇤ = cccT (CCC+s2III)�1yyy (5)
V⇤ = ccc⇤ � cccT (CCC+s2III)�1ccc, (6)

where ccc = [C(xxx⇤,xxx1), . . . ,C(xxx⇤,xxxn)]T , and ccc⇤ =C(xxx⇤,xxx⇤).

3. MODEL MIGRATION

In the older version of slope/bias correction discussed by Lu
and Gao (2008b), the parameters seem likely constant for all the
input variables. Such correction appears to be insufficient if the
variable magnitudes vary significantly. Although the input data
can be normalized to the same range, the impact of slope/bias
parameters shall be independent among each other. We consider
our model migration method with the existence of a relationship
between similar processes as follows:

(1) Each input variable of old process corresponds to that of
new process through the following equation:

x̃xxi = xxxirrrX +lll X .
where x̃xx denotes the input variables of old process, and
xxx denotes input variables of new process. The matrix
rrrX = diag(rX ,1, . . . ,rX ,d) contains slope parameters in
input variables, and the vector lll X = (lX ,1, . . . ,lX ,d) con-
tains bias parameter, accordingly. In order to eliminate an
exhaustive treatment on these parameters, Vastola et al.
(2013) suggests to use rX ,k = 1,k = 1, . . . ,d, if the process
difference are simple. Note that the translation is invert-
ible.

(2) The predictive output, ỹi = f (x̃xxi), from base model will be
augmented by introducing slope/bias parameters rY and
lY to best reflect the expected result of the new model:

yi = rY · ỹi +lY + ei.
where e ⇠ N(0,s2

e ) is the measurement error.

We put the aforementioned procedures together to yield a
reformulated migration strategy:

yi = rY · f (xxxirrrX +lll X )+lY + ei. (7)
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In (7), the parameters of interest are rrrX , lll X , rY and lY , which
need to be estimated using observed data from a new process.
Given m data points, XXXm = (xxx1, . . . ,xxxm)T and yyy = (y1, . . . ,ym)T ,
where m < n, we can find rrrX , lll X , rY and lY by minimizing
the sum of squared prediction errors:

argmin
m

Â
k=1

e2
i , (8)

subject to
ei = yi � [rY · f (xxxirrrX +lll X )+lY ].

It has been argued that model migration (7) is non-flexible and
insufficient to account for nonlinear relationship that may exist
in a new process. To address this issue, slope/bias functions are
introduced to replace the constants in (7), i.e.,

y(xxxi) = rY · f (xxxirrrX +lll X )+lY (xxxi)+ ei. (9)
The bias correction function lY (xxx) is assumed to be GP taking
the form

lY (xxx) = l̄Y (xxx)+Z(xxx), (10)
where l̄Y (xxx) is the mean function, and Z(xxx) is GP having mean
zero and covariance function C defined as in (3). A commonly
choice of l̄Y (xxx) is a first-order linear regression

l̄Y (xxx) = l0 +
d

Â
k=1

lkxk, (11)

where lll = (l0, . . . ,ld) is the unknown parameters vector. The
inference of model (9) is non-trivial after adding a stochastic
term lY (xxx). One can, of course, use a numerical method, e.g.,
MCMC, to solve the nonlinear problem; however, such an
attempt is computationally unfriendly. An alternative way of
handling computation burden and of providing a close-form
analytical expression of the predictive distribution is described
as follows. In the first stage, we obtain estimate of the slope/bias
parameter in input variables, r̂rrX , l̂ll X , by optimization (8). In the
second stage, we use those estimates to replace the unknown
quantities, i.e., the migration (9) then becomes

y(xxxi) = rY · f (xxxir̂rrX + l̂ll X )+l0 +
d

Â
k=1

lkxk +Z(xxxi)+ ei. (12)

Model (12) is easier to infer compared to model (9). A Bayesian
strategy can be adopted via appropriate prior. We begin with
writing model (12) in a matrix form

yyy = HHHbbb +ZZZ + eee, (13)
where

HHH =

2

64
1 x11 · · · x1d f (xxx1r̂rrX + l̂ll X )
...

...
. . .

...
...

1 xm1 · · · xmd f (xxxmr̂rrX + l̂ll X )

3

75

is the regression matrix, bbb = (l0,l1, . . . ,ld ,rY )T is the col-
lection of regression parameters, ZZZ = (Z(xxx1), . . . ,Z(xxxm))T and
eee = (e1, . . . ,em)T . Note that ZZZ + eee ⇠ N(0,s2

` RRRe), where RRRe =

RRR+ tIII, t = s2
e

s2
`

and RRR is the m⇥m correlation matrix having

i j-th element R(xxxiii,xxx j). According to (13), the log likelihood
(ignoring constant terms) of the new model observations given
base model is

�m
2

log(s2
` )�

1
2

log |RRRe |�
(yyy�HHHbbb )T RRR�1

e (yyy�HHHbbb )
2s2

`

. (14)

We are interested in the predictive distribution of the new model
at a testing point xxx⇤. Instead of applying a point estimation to bbb ,

we use Bayes theorem to integrate bbb out to obtain the predictive
distribution

p(y⇤|yyy) =
Z

p(y⇤|yyy,bbb )p(bbb |yyy)dbbb , (15)

where the first term in the integral is the conditional distri-
bution of the response data given parameters bbb and training
data yyy, which is also Gaussian distributed according to Bastos
and O’Hagan (2009). The second term p(bbb |yyy) is the posterior
distribution of the regression parameters and is therefore cal-
culated via Bayes theorem: p(bbb |yyy) = p(yyy|bbb )p(bbb )/p(yyy), where
p(yyy|bbb ) is the likelihood function given data, p(bbb ) is the prior
distribution and p(yyy) is a normalized constant. Using a weak
prior for bbb , p(bbb ) µ 1, and combing with Bayes theorem, it can
be shown that

bbb |yyy ⇠ N
�
b̂bb ,s2

` (HHH
T RRR�1

e HHH)�1�, (16)

where b̂bb = (HHHT RRR�1
e HHH)�1HHHT RRR�1

e yyy. Integrating out bbb in (15), it
can be shown that

y⇤|yyy ⇠ N(ȳ⇤,V⇤) (17)
where

ȳ⇤ = hhh(xxx⇤)T b̂bb + rrre(xxx⇤)T RRR�1
e (yyy�HHHb̂bb )

V⇤ = s2
`


1� rrre(xxx⇤)T RRR�1

e rrre(xxx⇤)+
�
hhh(xxx⇤)� rrre(xxx⇤)T RRR�1

e HHH
�

·
�
HHHT RRR�1

e HHH
��1�hhh(xxx⇤)� rrre(xxx⇤)T RRR�1

e HHH
�T

�
,

with hhh(xxx) = [1,x1, . . . ,xd , f (xxxr̂rrX + l̂ll X )]T , and
rrre(xxx⇤) = [Re(xxx⇤,xxx1), . . . ,Re(xxx⇤,xxxm)]T .

The hyper-parameters include s2
e , `̀̀ and t in the covariance

function and are obtained by maximum likelihood estimation
(MLE). By setting the derivative of equation (14) w.r.t. s2

e and
solving, we find MLE of

ŝ2
e =

(yyy�HHHb̂bb )T RRR�1
e (yyy�HHHb̂bb )

m
. (18)

Substituting equation (18) into (14) yields the concentrated log
likelihood (Le Gratiet (2013))

�m
2

log(ŝ2
` )�

1
2

log |RRRe |, (19)

and `̀̀ and t are found by maximizing this equation. Numerical
method using a suitable global search routine such as genetic
algorithm (GA) is needed for this optimization program. Nev-
ertheless, a fully Bayesian analysis for finding those hyper-
parameters can also be adopted (Bastos and O’Hagan (2009)).

4. EXPERIMENTAL DESIGN

The technique of design of experiment is an important link
between experimental and modeling world. In an early stage
of process modeling when a priori knowledge is rare, de-
sign methods which embody space-filling property are sug-
gested. Kalagnanam and Diwekar (1997) proposed Hammers-
ley sequence sampling (HSS) technique to generate data points
that spread out “evenly” over the design region, and was later
adopted by Yan et al. (2011). HSS is an efficient design method
in many areas, because it requires fewer data compared to other
space-filling methods, while they achieve similar performance.
In light of its good property and easy implementation, we use
HSS to generate design points for building base model and
model migration. The HSS points can be generally obtained via
the flowing steps (Kalagnanam and Diwekar (1997)):
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(1) Any non-negative integer n can be represented as a radix
notation of a prime p as follows:

n = nmnm�1 . . .n0 = n0 +n1 p+n2 p2 + · · ·+nm pm,

with integers ni 2 [0, p� 1], and m being the integer part
of logp n.

(2) The point in [0,1] is obtained by reversing the order of the
bits of n and moving the decimal point:

fp(n)= .n0n1 . . .nm = n0 p�1+n1 p�2+n2 p�3+ · · ·+nm pm�1

(3) For the first (d�1) primes p1, . . . , pd�1 , the Hammersley
points on d-th dimensional space are given:

xxxk = 111�
✓

k
n
,fp1(k), . . . ,fpd�1(k)

◆
, k = 1, . . . ,n,

with 111 being the 1⇥ d unity vector. Note that xxxk 2 [0,1]
for k = 1, . . . ,n.

Abundant data points are required for accurately developing a
base (GP) model. In this paper, a rule of thumb for the number
points that should be used in the experimental design of old
process is n = 10d (Loeppky et al. (2009)). Sometimes n can
be greater than this, allowing us to build a more accurate base
model, and if the relationship between base and new model
is simple, the required data points for migration, n, may be
somewhat fewer. We will return to this subject in Section 5.

5. EXAMPLE

A continuously stirred tank reactor (CSTR, see Kalagnanam
and Diwekar (1997) and Yan et al. (2011) for example) is inves-
tigated to demonstrate the benefits of the proposed method. The
process selected in this study consists of a first-order sequential
reaction, A ! B ! C, taking place in a nonisothermal CSTR.
The response of interest is the production rate of species B
(RB), which is mainly affected by five input variables: inlet
concentration of A (CAi), inlet concentration of B (CBi), reac-
tion temperature (T ), the reactor volume (V ), and volumetric
flow rate (F). The production of species B and the steady-
state values of other variables in the CSTR are governed by
the equations (20)-(24). The average residence time (t) of each
species in the reactor is given t =V/F :

CA =
CAi

1+ k0
A exp(�EA/RT )t

(20)

CB =
CBi + k0

A exp(�EA/RT )CA

k0
B exp(�EB/RT )t

(21)

�rA = k0
A exp(�EA/RT )CA (22)

�rB = k0
B exp(�EB/RT )CB � k0

A exp(�EA/RT )CA (23)
and

RB = rBV. (24)
According to the literatures, two reactions varying from kinetic
parameters k0 and E are selected to simulate similar, but non-
identical processes. Their parameters and input ranges are sum-
marized in Table 1.

We will now build base model using GP technique as discussed
in Section 2. For old process, 50 HSS points are designed
to produce the response variables of species B. In addition,
a Gaussian random noise with variance 10�4 is added to the
responses to simulate measurement errors. The data are before-
hand normalized to satisfy the conditions with mean zero and

variance one, and the predictive performance of the final model
is assessed by the root-mean-square-errors (RMSE):

s
Ânt

i=1[ŷ(xxxi)� y(xxxi)]2

nt
, (25)

where ŷ(xxxi) is the prediction and y(xxxi) is the real response from
experiments; nt is the number of testing points. The RMSE
for base model evaluated at 200 HSS-generated testing points
is 9.7560.

We will now exam whether the proposed method really has
the potential to enhance model performance as stated in the
introductory section. Similarly to base model, 200 HSS points
are generated from new process for testing purpose. Given the
fact that varying kinetic parameters in the reactions does not
change governing mechanisms for both processes (therefore the
process difference is simple), we set rX ,k = 1 for k = 1, . . . ,5.
In the first stage of parameter estimation, the bias parameters
lll X will be found by minimizing the sum of squared prediction
errors as stated in (8). The resulting l̂ll X is then substituted
into (12) in the second stage estimation, and the predictions of
new model will be given as posterior means through Bayesian
adjustments. Different numbers of training data are considered
(the generation of training data strictly follows HSS technique).
Figure 1 shows the results of RMSE w.r.t. to the number of
training data, where “Base” refers to the predictions made from
base model, “GP” means the new GP model developed from
new process data only, “SBC” refers to slope/bias correction
method proposed by Lu and Gao (2008b), and “Proposed” is
our method using Bayesian adjustments. From the figure, it
is clear that the base model is not ideally suitable to describ-
ing new process because of the model discrepancy, and we
also note the classical GP model is not capable of accurately
modeling the new process when there are only a few training
data. SBC method has shown improved performance when the
training data are limited; however, the RMSE does not reduce
as expected when training data grow, i.e., the RMSE values
seem nearly stable after adding 30 or more data. The benefits
of the proposed method are evident from the figure: first, it
has equal performance as compared to SBC if fewer data are
available; second, further RMSE reduction can be guaranteed if
there are sufficiently large amount of data – the advantage of the
Bayesian adjustments method. Furthermore, the behaviors of
GP and the proposed methods begin to converge when abundant
training data are available, a satisfactory performance of our
method.

Next we focus on a typical number of training data to further
illustrate our method, for instance, 20 data points are gener-

Table 1. Parameters and their values for old and
new processes

Parameters Values Units DescriptionOld process New process
k0

A 8.4⇥105 1.0⇥106
min

�1 Physical constant
k0

B 7.6⇥104 6.0⇥104
min

�1 Physical constant
EA 3.64⇥104 3.04⇥104

J/mol Physical constant
EB 3.46⇥104 3.66⇥104

J/mol Physical constant
R 8.314 8.314 J/(mol ·K) Physical constant

CAi 1000-5000 800-4000 mol/min

3 Input variable
CBi 100-500 100-500 mol/min

3 Input variable
T 290-330 290-380 K Input variable
V .01-.09 .01-.09 m

3 Input variable
F .01-.09 .01-.09 m

3/min Input variable
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Fig. 1. Comparison of the different methods with respect to
predictive RMSE

ated from the new process, a fraction of the data requirement
for the base model training. The parameters characterizing the
Bayesian adjustments are summarized in Table 2. Figure 2
shows the plot between the predictions using Bayesian adjust-
ments and the real values, re-confirming the superiority of the
proposed methods over base model prediction, GP and SBC
methods. It is also worth noting that the Bayesian adjustments
attains similar RMSE compared to GP method (14.3596 versus
14.6688), but requires a fraction cost of that method (20 versus
41), a desirable behavior of model migration.

Table 2. Parameters for the Bayesian adjustments

l̂llY

l̂Y,1 -0.2804

b̂bb

rY 0.4109
l̂Y,2 0.0817 l̂0 0.1140
l̂Y,3 0.6568 l̂1 0.0391
l̂Y,4 -0.1703 l̂2 -0.0184
l̂Y,5 0.0494 l̂3 0.1794

ˆ̀̀̀

ˆ̀1 0.1132 l̂4 0.0021
ˆ̀2 0.0116 l̂5 1.0812
ˆ̀3 0.0043 ŝss2 ŝ2

` 4.5603
ˆ̀4 0.0128 ŝ2

e 0.0161
ˆ̀5 0.5000
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Fig. 2. Comparison of the different methods with respect to
prediction versus real values plot

6. CONCLUSION

In this paper, a Bayesian adjustments strategy is proposed to
enhance model migration, and a two-stage estimation procedure
is suggested to ensure the strategy’s feasibility and obtain a
close-form solution. Our strategy is common in, but not limited
to, similar, yet identical processes of which the differences
are simple and systematic. The efficiency of the strategy is
demonstrated on a simulated chemical reaction.

Several directions can be extended for future research. For ex-
ample, Bayesian adjustments model migration must be closely
examined under conditions in which the base model is not accu-
rate. Second, the Bayesian adjustments strategy can be applied
to process optimization. A common optimization problem may
seek for the maximum or minimum of a model-oriented ob-
jection function. Efficiency, in terms of the number of training
data that should be generated from the process, is expected by
adopting Bayesian adjustments migration.

REFERENCES
Bastos, L.S. and O’Hagan, A. (2009). Diagnostics for gaussian

process emulators. Technometrics, 51(4), 425–438.
Fearn, T. (2001). Review: Standardisation and calibration

transfer for near infrared instruments: a review. Journal of
Near Infrared Spectroscopy, 9(4), 229–244.

Feudale, R.N., Woody, N.A., Tan, H., Myles, A.J., Brown, S.D.,
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