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Abstract: In this paper, Alberta electricity spot market or Power Pool pricing is studied and
the pool price is modeled through a hidden Markov model and multiple local ARX models. By
selecting and preprocessing the exogenous factors (e.g. the price forecast from Alberta Electric
System Operator (AESO), demand forecast and so forth), a one-hour ahead prediction model
for pool price is formulated with parameters being estimated from the real data. Validation
results show that this approach can improve the price forecasting and in particular, for high
pool prices.
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1. INTRODUCTION

In recent decades, electricity market deregulation has
become a world-wide trend. By introducing competition, it
is expected that electricity market efficiency is improved,
which provides opportunities and also presents challenges
to both the generators and the consumers. As a result,
electricity price prediction has become an important issue
in deregulated electricity market areas.

There are a number of challenges in the prediction of elec-
tricity prices due to their high volatility and erratic nature.
Based on the characteristics of electricity pricing, price
regime-switching models are proposed to model switching
between different states such as normal pricing and spike
pricing. Ethier and Mount (1998) applied Markov regime-
switching models to electricity prices in United States and
Australia markets, and they confirmed the existence of
two states with different means and variances. Huisman
and Mahieu (2003) proposed Markov regime-switching to
model price spikes in Europe electricity markets with three
states, which include normal electricity price dynamics, a
jump state describing sudden increases or decreases, and a
state describing a recovery from a jump state to a normal s-
tate. Hidden Markov model (HMM) is a common approach
to deal with electricity price model with hidden regimes,
which has been applied in many financial problems (see
Mamon and Elliott (2007)). In the system identification
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literature, a multi-linear model approach becomes popular
in approximating nonlinear systems; see Jin and Huang
(2010), Jin et al. (2011) and Jin and Huang (2012). A-
mong these literature, Jin and Huang (2012) proposed an
identification approach for switched Markov autoregres-
sive exogenous model based on expectation-maximization
(EM) algorithm, and simulations show good performance
in solving nonlinear identification problem.

In this paper, a Markov regime-switching model based
on the electricity spot price is combined with multiple
autoregressive exogenous (ARX) models to predict the
pool price in the Alberta electricity market.

2. BACKGROUND

In 1996, Alberta’s electricity market began to evolve to
a deregulated market with full deregulation established
in 2001 (Market Surveillance Administrator (2010)). All
wholesale electrical energy generated in Alberta which is
not consumed on site, must flow through a power pool
that is operated by Alberta’s independent system operator
called Alberta Electric System Operator (AESO). Thus,
the power pool is Alberta’s wholesale spot electricity
market, and the hourly electricity price for power pool is
called pool price.

Due to mechanics of electricity pricing, there are many
characteristics specific to the Alberta Power Pool, which
are summarized in Xiong (2004) and Market Surveillance
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Administrator (2010). First, there are apparent on-peak
and off-peak electricity price patterns, and the on-peak
period is often from 8:00 to 21:00 during weekdays. Also,
there are pronounced periodic effects for the pool price,
like daily, intra-daily and weekly repeating patterns, or
even the monthly repeating patterns. For example, prices
vary with demands in a day, which presents an hourly
pattern. Another characteristic of the Power Pool is price
spikes. Since shocks in demand and supply are common,
the pool prices may be quite volatile in certain periods. For
example, unplanned outages along transmission lines can
drive the pool price to a high level, such as 500 $/MWh
or more.

AESO provides a pool price forecast and a load forecast.
The two-hour ahead pool price forecast can have large
prediction errors compared to the actual pool price as
the historical data showed, especially when prices spike.
One reason for these errors is that generators are free to
modify their supply offers two hours ahead, which could
result in the dispatch level in the next two hour period
being quite different from the current dispatch level. In
this case, a prediction model for Alberta’s pool price with
better forecasting performance would benefit customers
with their decisions on electricity consumption.

3. ALGORITHM

In this section, a Markov regime-switching autoregres-
sive exogenous model is formulated. The regime-switching
mechanism is based on a feature-extracted electricity pool
price with hidden Markov models based on the work of Liu
(2013). To identify the sub-models of the Markov states
or regimes, a maximize-likelihood estimator is applied to
estimate models from the complete data log likelihood
function.

3.1 Feature extraction for electricity pool price

To build a hidden Markov model for electricity pool pric-
ing, some simplifications are required. The pool price se-
quence is transformed into a symbol sequence with reduced
representation set of features (i.e., feature extraction is
used). Based on the pool price time sequence, the data are
divided into three types: peak-up, peak-down and off-peak
using data segmentation. The specific rules are as follows:

First, the pool prices are divided into five groups based
on their absolute value with group index from low to
high represented as: #1: less than 30 $/MWh, #2: from
30 $/MWh to 100 $/MWh, #3: from 100 $/MWh to
300 $/MWh, #4: from 300 $/MWh to 500 $/MWh, #5:
more than 500 $/MWh. Then, a new processed sequence
as discretized trend of price is developed by calculating
the group index differences for every two neighboring pool
price as follows:

Sk =

{

1 for dk > 2
2 for dk < −2
3 for else

(1)

where, Sk is the element of the pool price symbol sequence
at time k; dk is the group index differences between each
two neighboring electricity prices.

The peak price or spike price always occurs during the
peak hours between 9 am and 4 pm. Meanwhile, the off-

peak characteristics or low prices may also appear in these
peak hours. In the off-peak hours, the high prices and
peak characteristics may occur. Then, it is assumed that
there are some mechanisms that govern the changes of
pool price that follows the Markov chain, which is defined
as a discrete state process {Ik} with three regimes as peak-
up, peak-down and off peak. Therefore, a hidden Markov
model for the price regimes is built based on the feature-
extracted pool price sequence.

3.2 Parameter estimation and decoding for hidden Markov
model

The discrete hidden Markov model (HMM) in terms of
processes Ik and Sk is formulated (Elliott et al. (1994)):

FX(k + 1) = A · FX(k)

FY (k) = C · FX(k)
(2)

where, FX(k) is the probability vector function for hidden
state Ik at time instant k, FX(k) ∈ SX = {e1, e2, ..., eM};
FY (k) is the probability vector function for the discretized
observed symbol Sk at time instant k, FY (k) ∈ SY =
{f1, f2, ..., fN}; ei and fi are the unit vector in SX and
SY respectively with unity in the ith position and zeros
elsewhere.

FX(k) =

M
∑

i=1

P (Ik = i|Ik−1,Θm) · ei

FY (k) =

N
∑

j=1

P (Sk = j|Ik,Θm) · fj

(3)

A = [aij ]
T ∈ RM×M , aij = P (Ik+1 = j|Ik = i) is the

probability of the state j given the previous state i that
defined as the transition probability; C = [cij ]

T ∈ RN×M ,
cij = P (Sk = j|Ik = i) refers to the probability that
symbol j is seen when in state i, which is defined as the
emission probability; the hidden Markov model is assumed
to be homogeneous so that aij and cij do not depend

on time instant k, and
∑M

j=1 aij = 1,
∑M

j=1 cij = 1 are
satisfied; Θm is the parameters for hidden Markov model
denoted as Θm = {A,C}.

As only the discretized observation sequence {Sk} is
known, an expectation-maximization (EM) algorithm is
applied for the hidden Markov modelling to estimate the
parameters of transition probabilities {aij} and emission
probabilities {cij}.

The EM algorithm is an iterative approach for maximum
likelihood estimation with missing data. There are two
iterative steps: the E-step calculates a lower bound of the
likelihood function called Q function, which is based on
the old parameter estimation; the M-step maximizes the
Q function with respect to the parameters to find new
estimates of parameters. Here we use Baum-Welch algo-
rithm (Durbin (1998)) as the EM algorithm computation
for hidden Markov model.

Based on the estimated model parameters Θm and the
discretized observation sequence {Sk}, the posterior state
probability for the state sequence {Ik} can be calculated
via a forward algorithm and a backward algorithm.

The forward probability is defined as:
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Fig. 1. Actual pool price and AESO’s pool price forecast
(Dec 2013)
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Fig. 2. Actual pool price and AESO’s system demand
forecast (Dec 2013)

fi(k) = P (S1:k, Ik = i|Θm) (4)

The backward probability is defined as:

bi(k) = P (Sk+1:L|Ik = i,Θm) (5)

The procedures for calculating fi(k) and bi(k) can be
found in Durbin (1998). Given the forward probability
and backward probability, the smoothed posterior state
probability can be calculated as follows:

P (Ik = i|S1:L,Θm) =
fi(k) · bi(k)

P (S1:L)
(6)

3.3 Input variables selection and data preprocessing

Some pool price characteristics are: 1) the electricity
price in Alberta shows strong periodic behavior; 2) the
AESO’s forecast pool price reflects the fluctuation of
future electricity prices; 3) the day ahead forecast demand
by AESO affects the bidding results of the generators,
which is related to the pool price; 4) the actual demand
is correlated with the pool price at the same time instant;
however, since actual demand is unavailable at the time
of prediction, the historical data for the immediate past
can be used for prediction. Therefore, the time sequence,
the real-time forecast pool price by AESO, the history
data of actual system demand and the real-time day
ahead forecast demand by AESO are chosen as the input
variables to predict the real time pool price.

Here we choose ARX model as the local sub-model for pool
price prediction. Thus, the input variables are transformed
to build a linear relationship with the pool price. From

Fig. 1, the forecast pool price shows good correlation with
actual price; however, the relation between actual pool
price, system demands and time sequence appears to be
non-linear; see Fig. 2.

To build a linear correlation with the actual pool price, the
time sequence is preprocessed. First, the time sequence is
transformed to be periodic with respect to a 24 hour time
clock to appropriately reflect the periodic pattern of pool
price. Then the weights for on-peak and off-peak hours are
calculated based on the following weighting formula, and
preprocessed time sequence is presented in Fig. 6.

F (k) = K(k) · exp(
(k − kp)

2

2σ2
p

)

kp ∼ PMF

K(k) = f(P (Ik|S1:k−1,Θm))

(7)

where, F (k) is the preprocessed time sequence, weight-
ed by peak-price magnitude K(k) and Gaussian func-

tion exp(
(k−kp)

2

2σ2
p

), and σ2
p is a tuning parameter; kp is

the hourly time instant with the peak price in a day,
which is a random variable with a probability mass func-
tion (PMF) based on historical data; peak-price magni-
tude K(k) is function of the posterior state probability
P (Ik|S1:k−1,Θm) at time instant k to show the possibility
of the price that is governed by the on-peak or off-peak
price state. Here, P (Ik|S1:k−1,Θm) works as a predictor,
as opposed to the smoother P (Ik|S1:L,Θm), which can be
derived using Bayes’ rule as follows:

P (Ik| S1:k−1,Θm) =
∑

Ik−1

P (Ik, Ik−1|S1:k−1,Θm)

=
∑

Ik−1

P (Ik|Ik−1)P (Ik−1|S1:k−1,Θm)

=
∑

Ik−1

P (Ik|Ik−1,Θm)
P (S1:k−1, Ik−1|Θm)

P (S1:k−1)

=
∑

i

aij ·
fi(k − 1)

P (S1:k−1)

(8)

Preprocessing of system demands is based on the electric-
ity market mechanism. All of the generators in Alberta
submit their offers to the Power Pool with their available
capacity and desired prices. These offers are ranked from
lowest to highest in price to meet the system demands
with the high-price surplus capacities to be dispatched off.
The hourly supply offer curve can be drawn as a piece-wise
function as in Fig. 3 (Market Surveillance Administrator
(2010)). In most cases, when system demand is more than
9000 MW, a high pool price would be triggered, which
conforms to the piece-wise behavior of hourly supply offer
curve. Therefore, the demand time series can be processed
such that the portions over 9000 MW are emphasized,
while the low demand portions are flattened. The prepro-
cessed curves are presented in Fig. 4 and Fig. 5.

3.4 Model identification and prediction

For each hidden state or regime {Ik}, it is assumed that
the input-output relationship follows the local linear model
as:

yk = φT
k θIk + vk, k = 1, 2, . . . , L (9)

where, φk is the regressors, expressed as:
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Fig. 3. Typical hourly offer curve
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Fig. 4. Preprocessed forecast demand(Dec 2013)
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Fig. 5. Preprocessed actual demand(Dec 2013)
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Fig. 6. Preprocessed time sequence(Dec 2013)

φk = [yk−1, yk−2, . . . , yk−na
, uT

k−1, u
T
k−2, . . . , u

T
k−nb

]T

na and nb are orders of denominator and numerator for
ARXmodel; θIk are the parameters for the local sub-model
with hidden state Ik that indicates the model identity;
vk is assumed to be Gaussian noise with zero mean and
variance σ2; Here, yk is the actual pool price at time
instant k, and {uk} is the time series vector for inputs
such as preprocessed demands, AESO’s price forecast and
preprocessed time sequence. To estimate the parameters
for the switching model, the posterior state possibilities
P (Ik|S1:L,Θm) for hidden state {I1:L} is computed based
on the discrete observed pool price symbols {S1:L} ac-
cording to section 3.2, and the parameters for the local
sub-models are calculated through following maximum-
likelihood estimation:

Θml = argmax
Θ

lnP (Z1:L|Θ) (10)

The log likelihood function can be derived using Jensen’s
inequality (ln

∑n

i=1 λixi ≥ λi

∑n

i=1 lnxi):

lnP (Z1:L|Θ) = ln
∑

I1:L

P (Z1:L, I1:L|Θ)

= ln
∑

I1:L

P (Z1:L|I1:L,Θ)P (I1:L|S1:L,Θm)

≥
∑

I1:L

P (I1:L|S1:L,Θm) lnP (Z1:L|I1:L,Θ)

=
∑

I1:L

P (I1:L|S1:L,Θm) ln

L
∏

k=1

P (Zk|Z1:k−1, Ik,Θ)

=

L
∑

k=1

M
∑

i=1

P (Ik = i|S1:L,Θm) lnP (Zk|Z1:k−1, θIk)

(11)

where Zk is the observed data at time instant k, and
Zk = {yk, uk}; for each local sub-model, the noise is
assumed to follow zero-mean Gaussian distribution.

To maximize the log-likelihood function over parameters
Θ, derivative is taken with respect to each local sub-model
parameter θi, and let it be zero. Then, we have:

θi =[

L
∑

k=1

P (Ik = i|S1:L,Θm)φkφ
T
k ]

−1·

[

L
∑

k=1

P (Ik = i|S1:L,Θm)φkyk]

(12)

The prediction for next hour’s pool price is:

E(k+1) =

M
∑

i=1

M
∑

j=1

P (Ik = i|S1:k,Θm)·aij ·E
j(k+1) (13)

where, Ej(k + 1) is the prediction from the jth local sub-
model (Ej(k + 1) = φT

k+1θj); P (Ik = j|S1:k,Θm) is the
posterior state possibility given current and history data
(filter), based on forward algorithm as follows:

P (Ik = i|S1:k,Θm) =

M
∑

i=1

P (S1:k, Ik = i|Θm)

P (S1:k)

=

M
∑

i=1

fi(k)

P (S1:k)

(14)
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4. VALIDATION STUDIES

In this section, validation studies for monthly predictions
are presented using the proposed approach, and the data
is from the AESO’s website 1 . Hourly Predictions within a
month (around 750 data points) are chosen for validation
studies as it is long enough to include some price spikes
and periodic behaviors. For training purposes, a batch of
historical data is selected in length of a month (around
750 data points) due to consideration of a balance between
computation cost and modelling accuracy.

4.1 Monthly training set selection

Parameter estimates are required to predict the pool price,
and the parameters may vary seasonally. The proposed
parameter estimation approach is applied to a batch of
historical data (i.e., training data). A monthly training
set selection rule is proposed to obtain a better monthly
prediction performance with more robust parameter esti-
mates.

To evaluate the prediction performance, the root mean
squared error (RMSE), correlation coefficient and fitting
rate are applied as monthly validation metrics.

Fitting rate = 1−
norm(F − Y )

norm(Y −mean(Y ))
(15)

Corr =

∑n

j=1(fj −mean(F ))(yj −mean(Y ))
√
∑n

i=1(fi −mean(F ))2(yi −mean(Y ))2
(16)

where, fi, yi refer to the prediction and actual value in
time instant i respectively, and F , Y are their matrix form
over the entire validation data set; correlation coefficient
measures the linear relationship between two data sets,
and 1 means perfect positive linear correlation; fitting rate
measures the variation of the output in percentage that is
subtracted from 1.

Two case studies are presented in Table 1 and Table 2.
Considering the predictions in January 2014 and June
2014, respectively, as examples, the prediction perfor-
mance using monthly training sets are given in the Tables
and are compared to AESO’s forecast. January is a typical
month for AESO to provide good forecasts where the
new approach does slightly better, while June is a typical
month in which the new approach may provide a better
prediction than AESO’s forecast. Moreover, we found that
choosing the same month from the previous year as the
training set produces the best predictions.

An exception is April 2014; see Table 3. Compared to
January and June in 2014, April 2014 is an unusual month
since no price spike occurs. The prediction performances
using any month of the previous year cannot outperform
the AESO’s. The reason is that the spike-price character-
istic depicted in the sub-models is not applicable in April
2014. On the other hand, AESO’s price forecasts tend to
have reasonably good performance on the low pool prices.
Therefore, the proposed approach is more useful in the
relatively high-price region.

By setting the threshold for the high pool price as
100$/MWh, the prediction performance for high pool price

1 http://ets.aeso.ca/

is calculated and shown in Table 4 and Table 5. The
results also demonstrate that using the same month of the
previous year as training set leads to the best predictions.

Table 1. Validation results for January 2014

Method Month(Tr) RMSE Corr(%) Fit(%)

AESO’s N/A 32.01 90.16 53.56

Dec 2013 42.73 83.72 38.00
Nov 2013 36.91 86.44 46.45
Oct 2013 36.74 87.78 46.69
Sept 2013 35.38 85.83 48.67
Aug 2013 38.01 83.43 44.86

Proposed Jul 2013 39.45 82.22 42.77
Jun 2013 41.34 80.74 40.03
May 2013 35.96 85.63 47.84
Apr 2013 36.12 86.33 47.59
Mar 2013 38.65 84.29 43.92
Feb 2013 N/A
Jan 2013 31.32 89.34 54.55

Table 2. Validation results for June 2014

Method Month(Tr) RMSE Corr(%) Fit(%)

AESO’s N/A 53.11 83.99 34.84

May 2014 37.01 89.14 54.60
Apr 2014 N/A
Mar 2014 46.01 83.45 43.55
Feb 2014 33.57 91.49 58.82
Jan 2014 33.35 91.45 59.07

Proposed Dec 2013 41.83 91.87 48.69
Nov 2013 35.63 91.75 56.29
Oct 2013 34.76 92.29 57.36
Sept 2013 34.76 92.29 57.36
Aug 2013 33.61 91.27 58.77
Jul 2013 36.84 89.28 54.80
Jun 2013 34.72 90.79 57.40

Table 3. Validation results for April 2014

Method Month(Tr) RMSE Corr(%) Fit(%)

AESO’s N/A 3.61 97.22 75.53

Mar 2014 4.88 96.77 66.95
Dec 2013 7.06 94.72 52.20
Aug 2013 7.47 88.16 49.46

Proposed Jul 2013 6.54 90.67 55.78
Jun 2013 9.55 84.15 35.42
May 2013 6.37 94.21 56.88
Apr 2013 7.90 93.87 46.56

Table 4. Validation results on high-price region
for January 2014

Method Month(Tr) RMSE Corr(%) Fit(%)

AESO’s N/A 139.54 81.42 37.03

Dec 2013 185.86 69.44 16.12
Nov 2013 159.83 75.35 27.87
Oct 2013 159.50 78.25 28.02
Sept 2013 151.74 75.27 31.52
Aug 2013 162.28 71.71 26.76

Proposed Jul 2013 169.51 71.34 23.51
(high-price) Jun 2013 170.32 67.86 23.14

May 2013 149.87 75.07 32.37
Apr 2013 151.21 76.73 31.76
Mar 2013 148.81 76.26 32.85
Feb 2013 N/A
Jan 2013 134.40 80.76 39.34
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4.2 Robust monthly prediction on high pool price

To test the robustness of the proposed pool price predic-
tion, the training set selection method discussed in the
previous section is tested in various monthly pool price
prediction. The results are presented in Table 6. These
results confirm that the proposed approach has better
prediction performance for high pool prices than AESO’s
forecast.

4.3 Special case for monthly training set selection rule

In Table 6, September 2014 and April 2014 show no high
prices so that no high-price prediction performance is
given. Besides, the proposed approach for pool price pre-
diction in February 2014 is not applicable since February
2013 has no price spikes but all off-peak price is similar to
April 2014 and September 2014, which means no spikes for
parameter estimation of the local sub-models and hidden
Markov models. Expanding training set to the neighboring
month which includes the spikes, can fix this problem,
and corresponding high price prediction performance with

Table 5. Validation results on high-price region
for June 2014

Method Month(Tr) RMSE Corr(%) Fit(%)

AESO’s N/A 268.46 63.42 1.84

May 2014 182.93 78.24 33.11
Apr 2014 N/A
Mar 2014 229.93 62.38 15.93
Feb 2014 164.00 81.46 40.03
Jan 2014 164.98 80.88 39.68

Proposed Dec 2013 206.74 83.67 24.41
(high-price) Nov 2013 175.22 82.39 35.93

Oct 2013 170.96 84.03 37.49
Sept 2013 163.41 82.65 40.25
Aug 2013 157.83 82.76 42.29
Jul 2013 179.60 80.88 34.33
Jun 2013 159.05 82.27 41.84

Table 6. Validation results on high-price region
for different months using same month training

set selection rule

Month(Val) Method RMSE Corr(%) Fit(%)

Sept 2014 N/A N/A

Aug 2014 AESO’s 192.15 88.48 45.94
Aug 2014 Proposed 138.88 94.64 60.93

Jul 2014 AESO’s 253.45 71.53 22.35
Jul 2014 Proposed 220.86 77.88 32.33

Jun 2014 AESO’s 268.46 63.42 1.84
Jun 2014 Proposed 159.05 82.27 41.84

May 2014 AESO’s 199.93 76.84 29.47
May 2014 Proposed 150.92 84.84 46.76

Apr 2014 N/A N/A

Mar 2014 AESO’s 80.91 81.30 -5.72
Mar 2014 Proposed 58.46 73.52 23.61

Feb 2014 AESO’s 94.32 94.31 61.92
Feb 2014 Proposed N/A

Jan 2014 AESO’s 139.54 81.42 37.03
Jan 2014 Proposed 134.40 80.76 39.34

Dec 2013 AESO’s 200.04 68.53 0.98
Dec 2013 Proposed 128.06 77.56 36.61

Nov 2013 AESO’s 168.04 82.70 -24.27
Nov 2013 Proposed 84.96 80.66 37.16

Oct 2013 AESO’s 200.42 72.70 5.57
Oct 2013 Proposed 129.99 79.71 38.75

training months including January and February in 2013
outmatches AESO’s forecast; see Table 6 and Table 7.

Table 7. Validation results for February 2014

Method Month(Tr) RMSE Corr(%) Fit(%)

AESO’s N/A 40.89 96.44 69.79

Mar 2013 48.38 93.94 64.25
Feb 2013 N/A

Proposed Jan 2013 40.62 95.96 69.98
Jan+Feb 2013 39.73 96.58 70.64
Feb+Mar 2013 35.63 91.75 56.29

High-price Jan+Feb 2013 88.99 95.05 64.07

5. SUMMARY

A pool price prediction approach is developed and applied
in Alberta’s electricity market. The prediction model is a
combination of the Markov regime-switching mechanism
and a multi-model identification approach. The system
identification approach is based on the hidden Markov
model and maximum likelihood estimation. To apply this
approach on Alberta’s pool price prediction, some heuristic
strategies like feature extraction and data preprocessing
are applied to the data. In validation studies, a training
set selection strategy is proposed and applied in the predic-
tion of high pool price. Validation studies illustrate good
performance and the robustness of prediction, particularly
in high pool price regions.
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