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Abstract: Effective monitoring of industrial processes provides many benefits. However, for
dynamic processes with strong nonlinearity many existing techniques still cannot give satisfac-
tory monitoring performance. This is evidenced by the well known Tennessee Eastman (TE)
benchmark process, where some faults, e.g. Faults 3 and 9, have not been comfortably detected
by almost all data-driven approaches published in the literature. This is because most data
driven approaches, such as the principal component analysis (PCA) are linear. In recent years,
powerful nonlinear analysis tools using kernel principles have been proposed. However, these
tools have not been successfully applied to dynamic systems due to enormous dimensionality and
complexity issues. This paper proposes nonlinear dynamic process monitoring based on kernel
canonical variate analysis (KCVA). The proposed technique performs the traditional canonical
variate analysis with KDE (CVA-KDE) in the kernel space generated from kernel PCA. The
kernel PCA accounts for the nonlinearity in the process data while the CVA captures the
process dynamics. The approach was tested on the TE benchmark problem for fault detection.
The results obtained showed that KCVA detected faults at a higher rate and much earlier than
CVA especially in the more difficult faults such as Faults 3 and 9 in the TE process which cause
very little variation in the measured variables.

Keywords: Canonical variate analysis, kernel methods, fault detection, multivariate statistics,
process monitoring.

1. INTRODUCTION

Statistical monitoring of chemical processes have gained
prominence in process control research over the last few
decades. Methods such as principal component analysis
(PCA), and partial least squares (PLS) have been used
extensively to obtain useful information from chemical
process history data for detecting and diagnosing process
faults (abnormal process deviations), (Chiang et al., 2001).
Due to the data-based nature of these methods, they
are applied with relative ease to large complex processes,
compared to other methods based on systems theory or
rigorous process models (Qin, 2003). It is also easy to
acquire, store and process large amount of data nowa-
days due to advances in automation, data mining tech-
nologies and higher computer processing power. Exam-
ples of large scale industries that have embraced their
use include: petrochemical, fertilizer and cement; metal
extraction/processing; power systems and power grids; air
traffic control and railway regulation, as well as compli-
cated instruments/equipments (Yin et al., 2015). However,
traditional statistical process monitoring techniques are
based on assumptions of static and linear process be-
haviour which may not be valid in many practical situ-
ations. This makes static and linear approaches inefficient
in monitoring many real industrial processes because they
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provide incomplete representation of such processes. This
is critical because the essence of monitoring a process is to
timely detect and accurately diagnose abnormal conditions
so that remedial actions can be taken while the system is
still running. Adopting the linear and static assumptions
in complex processes exhibiting non-linear and dynamic
characteristics will defeat this objective. This raises the
need for developing more effective monitoring approaches
for non-linear dynamic processes.

Ku et al. (1995) proposed dynamic PCA by carrying out
PCA on lagged variables to account for time correlation.
Similarly, a dynamic version of PLS was proposed by
Komulainen et al. (2004). Although dynamic PCA and
dynamic PLS performed better than PCA and PLS respec-
tively, they have limited capacity in representing system
dynamics (Odiowei and Cao, 2010a; Chiang et al., 2001).
Canonical varaiate analysis (CVA), a state-space based
method, was therefore proposed as a more effective method
for monitoring dynamic processes (Russell et al., 2000; Lu
and Liu, 2006). However, like PCA and PLS, CVA is a
linear technique.

The linear correlations employed in CVA may not be able
to adequately describe the association between variables
when nonlinear relations exist. This naturally calls for the
need for approaches that can explore and exploit nonlinear
relationships in addition to accounting for dynamic process
behaviour. To address the non-Gaussian distribution issue
associated with process nonlinearities, Odiowei and Cao
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(2010a) adopted the method of kernel density estimation
(KDE) to determine the control limits when applying the
CVA for monitoring nonlinear dynamic processes. The
results of their work showed that the CVA with KDE
approach outperformed other dynamic methods like dy-
namic PCA and dynamic PLS and significantly improved
both fault detection rate and time in a nonlinear dynamic
process. Monitoring performance was further improved
by applying the independent component analysis (ICA)
to the state-space obtained through the CVA. This led
to the so called state-space ICA (SSICA) (Odiowei and
Cao, 2010b). Nevertheless, both the CVA with KDE and
SSICA approaches do not directly address the nonlinear
issue associated with dynamic processes. Therefore, fault
detection performance based on these techniques is still
not satisfactory for some cases.

On the other hand, kernel based approaches such as the
kernel PCA (KPCA) and kernel canonical correlation anal-
ysis (KCCA) have been successfully applied to nonlinear
process monitoring which shows that kernel methods are
efficient tools to deal with nonlinearity (Lee et al., 2004;
Choi et al., 2005; Tan et al., 2010). Unfortunately, the
effort to apply kernel approaches to address nonlinearity
associated with dynamic systems is not very successful.
Although, both KCCA and CVA algorithms have been
well known for many years, directly applying the KCCA to
dynamic systems may result in a singular kernel matrix,
which requires regularization in order to avoid potential
computational instabilities (Huang et al., 2009; Scholkopf
and Smola, 2002). Furthermore, such an approach often
leads to poor detection performance.

In this work, we propose a novel kernel CVA (KCVA)
technique by performing the traditional CVA in the kernel
space generated from kernel PCA. Through the compres-
sion of KPCA, the singularity issue associated with the
KCCA approach is avoided. The new KCVA approach was
successfully tested on the Tennessee Eastman (TE) bench-
mark problem for fault detection. The results obtained
showed that KCVA detected faults at a higher rate and
much earlier than CVA with KDE especially in the more
difficult faults such as Faults 3 and 9 in the TE process
which cause very little variation in the measured variables.

The paper is organized as follows: The implementation
strategy of the proposed technique is explained in Section
2. Its application to process monitoring is illustrated
using the TE process as a case study in Section 3 while
conclusions from the study are drawn in Section 4.

2. IMPLEMENTATION STRATEGY OF KCVA

The basic idea of KCVA is to extract state variables that
also capture the nonlinearity in the process measurements.
Firstly, the observed data are nonlinearly mapped into
a high dimensional feature space. This is followed by
extracting nonlinear principal components in the feature
space using the kernel trick, and the implementation of
CVA in the kernel component space. The KPCA and CVA
algorithms are sketched in Sections 2.1 and 2.2. More
detailed derivations of these approaches can be found in
(Scholkopf et al., 1998; Lee et al., 2004; Samuel and Cao,
2014; Odiowei and Cao, 2010a).

2.1 Kernel Principal Component Analysis

Given a data set xk ∈<M , k = 1, . . . , N , where N is the
number of observations, a nonlinear mapping Φ : <M −→
H, maps x in the input space to a high dimensional feature
space H, where the data structure is more likely to be
linear (Haykin, 1999). The covariance matrix in the feature
space is given by

CH =
1

N

N∑
j=1

〈Φ (xj) ,Φ (xj)〉 (1)

where Φ (xk), for k = 1, . . . N is assumed to have a mean of
0 and a variance of 1. To diagonalize the covariance matrix,
we solve the eigenvalue problem in the feature space as

λw = CHw (2)

where λ is an eigenvalue of CH, and w is the corresponding
eigenvector satisfying the condition λ ≥ 0 and w 6= 0
respectively.

Expressing the eigenvector as a linear combination of the
mapped data points we have:

w =

N∑
i=1

αiΦ (xi) (3)

Using Φ (xk) to multiply both sides of (2) gives:

λ〈Φ (xk) ,w〉 = 〈Φ (xk) ,CHw〉 (4)

Substituting (1) and (3) in (4) we have

λ

N∑
i=1

αi〈Φ (xk) ,Φ (xi)〉

=
1

N

N∑
i=1

αi

〈
Φ (xk) ,

N∑
j=1

Φ (xj)

〉
〈Φ (xj) ,Φ (xi)〉 (5)

To avoid carrying out the nonlinear mapping and the
explicit computation of inner products in the feature space
before eigen-decomposition, principal components can be
obtained using the kernel trick by defining an N × N
matrix (Scholkopf et al., 1998; Lee et al., 2004):

[K]ij = Kij = 〈Φ (xi) ,Φ (xj)〉 = k (xi,xj) (6)

for all i, j = 1, . . . , N . The kernel matrix is centred as
follows:

Kc = K−RK−KR + RKR (7)

where R is an N×N matrix in which each element is equal
to 1

N . With the centred kernel matrix, we can re-write (5)
as

λ

N∑
i=1

αiKki =
1

N

N∑
i=1

αi

N∑
j=1

KkjKji (8)

This can be expressed as

Nλα = Kcα (9)

The N ×N centred kernel matrix, Kc is symmetric, which
has N eigenvalues λ1 ≥ λ2 ≥ . . . λN associated with N
orthogonal eigenvectors, α1,α2, . . . ,αN satisfying〈

αi,αj
〉

= δi,j , (i, j = 1, 2, . . . , N) (10)

Let S ∈ <N×r contain eigenvectors corresponding to
the first r eigenvalues. In order to avoid the singularity
problem in the CVA, the reduced kernel matrix Z is
defined as follows:

Z = STKc ∈ <r×N (11)
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We then applied CVA on Z by treating it as a collected
r×N data to extract state variables and residuals used to
compute the monitoring statistics.

2.2 CVA in Kernel Principal Component Space

Given zk as the kth column vector of Z, information from
the past (p) and future (f) data series are obtained from
(12),

zp,k =


zk−1
zk−2

...
zk−p

 ∈ <rp and zf,k =


zt

zk+1

...
zk+f−1

 ∈ <rf
(12)

Each component is then normalized to have a mean of 0
as follows:

ẑp,k = zp,k − z̄p,k and ẑf,k = zf,k − z̄f,k (13)

where z̄p,k and z̄f,k denote the sample means of zp,k and
zf,k respectively. To obtain the past and and future Hankel
matrices, Gp and Gf respectively, the corresponding past
and future vectors are arranged together in columns.

Gp = [ẑp,p+1, ẑp,p+2, . . . ẑp,p+B ] ∈ <rp×B (14)

Gf = [ẑf,p+1, ẑf,p+2, . . . ẑf,p+B ] ∈ <rf×B (15)
where the columns of the truncated Hankel matrices for
N observations is given by B = N −f −p+ 1. The sample
covariances and cross-covariances of the past and future
matrices are estimated as show below:

Σpp =
1

B − 1
GpG

T
p (16)

Σff =
1

B − 1
GfG

T
f (17)

Σfp =
1

B − 1
GfG

T
p (18)

To avoid the singularity of Σpp and Σff , parameters r,
p and f have to satisfy {rp, rf} < N − p − f + 1. The
canonical variates can then be obtained by performing
Singular Value Decomposition (SVD) on the scaled Hankel
matrix, Hm

Hm = Σ
−1/2
ff ΣfpΣ

−1/2
pp = U∆VT (19)

where U and V are orthogonal matrices and ∆ is a
diagonal matrix whose singular values indicate the degree
of correlation between pairs of U and V. By sorting the
singular values in descending order and reordering the
columns of the associated singular vectors, the first q
columns of V can be considered as having the top pairwise
correlation with those of U. This generates a new matrix
Vq of a smaller dimension such that (q < rp).

The transformation matrices C and D used to convert the
rp-dimensional past matrices to the q-dimensional state
variables and the residuals respectively are computed as
follows:

C = VT
q Σ−1/2pp ∈ <q×rp (20)

D =
(
I −VqV

T
q

)
Σ−1/2pp ∈ <rp×rp (21)

The state space Z∗ and residual space E are computed
using (22):

Z∗ = C ·Gp ∈ <q×B and E = D ·Gp ∈ <rp×B (22)

Similar to the traditional CVA, the Hotellings T 2 and the
Q statistic or squared prediction error (SPE) and their

control limits are used in KCVA-based process monitoring.
The Hotellings T 2 is used to monitor variations inside the
state space while the Q statistic is used to monitor the
variations in the residual space. They are computed using
(23)

T 2
k =

q∑
i=1

z∗2i,k and Qk =

rp∑
i=1

e2
i,k (23)

where q is the number of states retained, z∗i,k and ei,k are

(i, k)th elements of Z∗ and E matrices respectively.

Since measurements in a nonlinear process do not follow
the Gaussian distribution, the control limits are better
determined from the actual probability density functions
of the monitoring indices using a non-parametric tech-
nique such as kernel density estimation (Odiowei and Cao,
2010a).

Assuming a set of data points xi, i = 1, 2, . . . , N , the kernel
density estimate at point x is defined by:

ĝ (x) =
1

NH

N∑
i=1

K

(
x− xi
H

)
(24)

where K and H are the kernel function and bandwidth
respectively and xi is each of the data points. The control
limit c at a given confidence level α is given by

P (x < c) =

c∫
−∞

g (x) dx = α (25)

Hence, the control limits for T 2 and Q for a given α can be
computed such that P

(
T 2 < T 2

α

)
= α and P (Q < Qα) =

α using (26)

T 2
α∫

−∞

p(T 2) dT 2 = α and

Qα∫
−∞

p(Q) dQ = α (26)

2.3 Summary of KCVA process monitoring procedure

Off-line training

(1) Acquire normal operation condition data, construct
kernel matrix and determine reduced kernel compo-
nent data according to (11).

(2) Compute past and future data series from the reduced
kernel component space using (12).

(3) Compute Hankel matrices and obtain their covari-
ances and cross-covariance from (14) to (18)

(4) Perform SVD on scaled Hankel matrix using (19) and
determine number of states to retain.

(5) Determine state variables and residuals using (22).
(6) Compute monitoring indices using (23) and their

control limits using (26) respectively.

On-line monitoring

(1) Acquire test data, construct kernel matrix and ar-
range data similar to training data.

(2) Calculate state and residual of real time test data
by multiplying the transformation matrices by the
past component space vectors, i.e. z∗ = C.ẑp,k and
e = D.ẑp,k respectively .

(3) Compute T 2 and Q of test data using (23).
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(4) Monitor process by comparing value of T 2 and Q
against their control limits. A fault is detected if both
monitoring indices exceed their control limits.

3. CASE STUDY

The newly proposed KCVA approach was compared
against the CVA with KDE approach by applying them
to the TE process.

3.1 Overview of Tennessee Eastman process

The TE process is a simulation of an actual nonlinear
dynamic industrial plant (Downs and Vogel, 1993). It is
commonly used for benchmark process monitoring and
control studies involving the evaluation and comparison
of newly developed approaches (Chiang et al., 2001).
It has five main units (separator, compressor, reactor,
stripper and condenser) and eight components (A to H).
A schematic diagram of the process is shown in Fig. 1.
The process involves a total of N = 960 observations and

Fig. 1. Schematic diagram of the TE process

52 variables which include 12 manipulated variables, 22
measured variables with a sampling interval of 3 minutes,
and 19 composition measurements. Each of the 21 pre-
programmed faults is introduced into the process at sample
number 161.

3.2 Important implementation details

The data obtained under normal operating condition were
used as the training data set while the data obtained under
each of the faulty operating conditions were used as test
data. All the 22 measured and 11 manipulated variables,
and Faults 1 to 20 (Chiang et al., 2001) were included
in this study. The agitation speed of the reactor’s stirrer
which is the 12th manipulated variable was not considered
because it is constant.

The radial basis function (RBF) kernel k(x,y) = e‖x−y‖
2/c

was used in this study. The width of the kernel function
was empirically set at 1720 after several tests to strike
a reasonable balance between detection and false alarm
rates.

Since the effective rank of a kernel matrix is much lower
than its size which give rise to an ill-conditioned optimiza-
tion problem (Huang et al., 2009), to obtain a suitable
kernel form and avoid the need for regularisation, the
dimension of the kernel component space was set to the

number of principal components whose cumulative eigen-
value sum accounted for over 99% of the total sum of
eigenvalues to ensure little loss of information. This set
the KPCA space to a dimension of r = 60 which was used
as the reduced kernel component space for applying the
CVA.

To successfully, develop the CVA and KCVA models to
characterize the variability of the off-line data requires
that the number of time lags for the past and future
measurements and the number of states to be retained
are determined. The lag order represents the number of
past measurements that are significantly correlated with
a measurement at a given time instant. In this study,
p = f = 15 lags were adopted after several trials. This
satisfies rp = rf = 900 < N − p− f + 1 = 931.

Two methods commonly suggested in the literature for
determining the number of states to retain are based on the
dominant singular values (Negiz and Cinarl, 1998) and the
Akaike Information Criterion (AIC) (Chiang et al., 2001).
Fig. 2 shows the normalized singular values obtained
from the scaled Hankel matrix. Since the singular values
decrease very slowly in this case, fixing the number of
states to retain on the basis of the dominant singular
values will give an unrealistic model (Odiowei and Cao,
2010a). Moreover, the number of states retained is not
critical in this study because the Hotelling’s T 2 and SPE
(Q) statistics were used jointly for fault detection. This
implies that abnormal deviations not captured in the
model space could be captured in the residual space and
vice versa. Hence, the 26 states reported in (Odiowei and
Cao, 2010a) was adopted for both CVA and KCVA in
this work. Control charts based on the T 2 and and SPE
were constructed for process monitoring at 99% confidence
level. All control limits were computed based on kernel
density estimation.

Fig. 2. Normalised singular values of training data

Monitoring performance was based on three indices; fault
detection rates (FDRs), false alarm rates (FARs) and
detection delay. FDR is the percentage of fault samples
identified correctly. It was computed as

FDR =
Nfc
NTf

× 100 (27)

where Nfc denotes the number of fault samples identified
correctly and NTf is the total number of fault samples.
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Table 1. FDRs (%) and Detection Delay (min)
for CVA and KCVA

CVA with KDE KCVA
Fault FDR Detection

Delay
FDR Detection

Delay

1 99.88 0 100 0

2 99.75 6 99.88 3

3 76.88 9 100 0

4 100 0 100 0

5 100 0 100 0

6 100 0 100 0

7 100 0 100 0

8 99.00 24 99.25 18

9 92.38 30 98.75 30

10 96.75 81 97.50 60

11 99.25 12 99.63 9

12 99.63 9 99.75 6

13 96.25 90 96.50 84

14 100 0 100 0

15 99.75 6 99.88 3

16 99.38 15 99.50 15

17 98.38 39 98.50 36

18 99.38 15 99.50 12

19 100 0 100 0

20 97.75 57 97.50 60

A technique with a higher FDR is acknowledged to be
better than one with a lower value. FAR was calculated as
the percentage of normal samples identified as faults (or
abnormal) during the normal operation of the plant.

FAR =
Nnf
NTn

× 100 (28)

where Nnf represents the number of normal samples
identified as faults and NTn is the total number of normal
samples.

Detection delay is the time that elapses before a fault
is detected after its introduction. In this study, fault
detection for the purpose of computing the detection delay
was based on the criterion that a fault is detected when a
monitoring index value exceeds its control limit in at least
three consecutive samples.

3.3 Results and discusion

The FARs for CVA with KDE based T 2 and SPE statistics
were 0.0068 and 0.0137 respectively while KCVA based
FARs were 0.0068 and 0 for T 2 and SPE respectively. The
FAR of KCVA based SPE had the lowest false alarm rate.

Table 1 shows the detection rates and detection delay
results for CVA with KDE and KCVA respectively for
all 20 faults studied. The results, show that KCVA has
better overall performance than CVA-KDE in terms of
both FDRs and detection delay. Faults 3 snd 9 are among
the faults that are more difficult to detect in the TE
process because they cause very little variation in the
measured process variables (Odiowei and Cao, 2010a).
Fault 3 is a step change in the D feed temperature. The
monitoring charts for this fault are shown in Figs. 3 and 4.
It can be seen that KCVA gave comparable results in both
the T 2 and SPE respectively. All the monitoring indices
are clearly above the horizontal line (the control limit),
indicating the presence of a fault. However, the CVA-based
T 2 is almost completely below the control limit. If the

fault detection criterion used for detection delay is applied
strictly, the CVA-based T 2 will completely miss detecting
Fault 3. The SPE gave a detection rate of 76.88% which is
far lower than KCVA’s 100% detection rate. Fault 9 is a

Fig. 3. CVA-based monitoring charts for Fault 3

Fig. 4. KCVA-based monitoring charts for Fault 3

random variation of the feed temperature of component D.
The monitoring charts for this fault are shown in Figs. 5
and 6. Again, though the CVA based SPE detected the
fault, the SPE performed badly. Conversely, all the KCVA
indices detected the fault very clearly.

Fig. 5. CVA-based monitoring charts for Fault 9
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Fig. 6. KCVA-based monitoring charts for Fault 9

4. CONCLUSION

The CVA was kernelized in this study to obtain the novel
kernel CVA. The proposed technique consists of two steps:
kernel PCA and CVA. The kernel PCA addresses process
nonlinearities while the CVA accounts for the dynamics
of the process. Testing the technique on the Tennessee
Eastman challenge problem for fault detection showed that
it outperformed the CVA with KDE approach in all three
indices investigated: fault detection rate, false alarms, and
detection delay, especially in faults that are more difficult
to detect, despite the latter’s reported superior monitoring
performance over other dynamic methods such as dynamic
PCA and dynamic PLS. Furthermore, placing the CVA in
a kernel generated feature space makes the implementation
of the proposed technique significantly simple. It does not
require regularization of the kernel data to avoid numerical
instability which is usually done in optimisation problems
involving covariance matrices based on kernel data.

Although, the results of this study clearly show the su-
perior performance of the proposed technique over other
nonlinear dynamic monitoring approaches, some things
require further attention. Principally, design parameters
such as the type of kernel function and the kernel win-
dow width selected, how many components are retained
in the kernel space, the number of time lags employed
and the number of states retained are likely to affect the
monitoring performance of the technique. Therefore, the
sensitivity of the technique to changes in these parameters
and more rigorous ways of selecting their optimum values
should be considered in future studies. Furthermore, it will
also be worthwhile to address the application of the tech-
nique in fault identification. Results of more monitoring
approaches also need to be captured to provide more data
for comparison.
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