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Abstract:
In this paper, we develop an economically optimizing Nonlinear Model Predictive Controller
(E-NMPC) for a complete spray drying plant with multiple stages. In the E-NMPC the initial
state is estimated by an extended Kalman Filter (EKF) with noise covariances estimated by
an autocovariance least squares method (ALS). We present a model for the spray drying plant
and use this model for simulation as well as for prediction in the E-NMPC. The open-loop
optimal control problem in the E-NMPC is solved using the single-shooting method combined
with a quasi-Newton Sequential Quadratic Programming (SQP) algorithm and the adjoint
method for computation of gradients. We evaluate the economic performance when unmeasured
disturbances are present. By simulation, we demonstrate that the E-NMPC improves the profit
of spray drying by 17% compared to conventional PI control.
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1. INTRODUCTION

Spray drying is a processing technique for drying of liquids
or slurries into a free flowing powder. Spray drying is a key
process in the dairy industry (Mujumdar, 2006), where
dairy products are dried into powders to increase the shelf
life as well as to reduce cost of transportation over long
distances. The quality of dairy powder is, among other
factors, characterized by the residual moisture content
that must be within the specification. Spray drying is by
far the most energy-intensive unit operation in the dairy
industry (IDF, 2005). Therefore, maximizing the efficiency
of the spray drying process and maintaining the correct
residual moisture level are of utmost importance.

The main challenge in controlling the spray dryer is to
use a minimum of energy (hot air) to bring the residual
moisture in the powder below the specification and to
avoid that the powder sticks to the walls of the chamber.
This is a challenge, as the operation of the spray dryer
must continuously be adjusted to variations in the feed
concentration and variations in the ambient air humidity.
Application of advanced control is potentially a cost effec-
tive way to reduce the energy consumption as well as to
increase the production capacity (Petersen et al., 2014b).

Conventional set-point based control of spray dryers keeps
the inlet and outlet temperatures constant during oper-
ation. This approach is simple, but known to be insuffi-

cient for controlling the residual moisture. Furthermore,
the powder may turn sticky inside the dryer during high
ambient air humidities. This motivates E-NMPC in the
presence of feed and ambient air variations. E-NMPC
adjusts the manipulated variables in such a way that
the residual moisture is below its maximum, fouling of
the spray dryer is avoided, and the cost of operation is
minimized.

1.1 Process Description

A Multi-Stage Dryer (MSDTM) consists of a spray cham-
ber (SD), a static fluid bed (SFB), and two vibrating fluid
bed (VFB) stages. This type of dryer is the most widely
used dryer in the production of food powders (Mujumdar
and Huang, 2007). Fig. 1 illustrates the stages of the spray
dryer as well as the hot air and the powder in- and outlets.
The dryer is designed such that the hot inlet air is fed
into the upper section of the drying chamber around the
high pressure nozzles. The nozzles disperse the liquid feed
into droplets. The heat is transferred from the hot air
to the droplets, which makes the water evaporate from
the droplets. In that process, the air temperature and
the residual moisture of the droplets decrease. The dried
product then enters the SFB where it is further dried by
hot air from below. Next, the powder is transported to
the VFBh and VFBc stages for gentle drying and cooled
to the temperature desired for handling and storage.
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Fig. 1. Diagram of the spray dryer. Sprayed droplets and
hot air are mixed in the top. The droplets dry into
powder and are dried further in the SFB and VFBh
stages and cooled in the VFBc stage.

1.2 Modeling

Dynamic models of spray drying has recently been re-
ported. Petersen et al. (2013) propose a model for a com-
plete spray dryer and Petersen et al. (2014a) presents a
model for the SD and SFB stages of the spray dryer. The
latter show good simulation accuracy. The model derived
in this paper will therefore be based on the model in
Petersen et al. (2014a) and extended to also describe the
VFB stages.

1.3 Control and State Estimation

The combination of real-time steady-state optimization
(RTO) and set-point based model predictive control is
a standard methodology for optimizing process operation
(Naysmith and Douglas, 1995). Recent advances within
process optimization focus on optimizing the higher-level
objectives, such as economics, directly in the control layer.
This is called economically optimizing Model Predictive
Control (E-MPC). For a long time, MPC has been the
preferred advanced control methodology in the process
industries. Recently, the idea of optimizing economics
directly has gained significant renewed interest (Rawlings
et al., 2012; Bauer and Craig, 2008). Papers related
to control of spray dryers seldom consider an economic
objective. Petersen et al. (2014a) discuss a linear tracking
MPC, while Petersen et al. (2014b) discuss an E-NMPC
for the SD and SFB stages of the spray dryer. Callaghan
and Cunningham (2005) provides a thorough review on the
status and future of advanced control for spray drying.

The model of the spray dryer is used for simulation
as well as for prediction and state estimation in the
NMPC. We use the well known extended continuous-
discrete Kalman filter (EKF) for state estimation. The
performance of the filter is highly dependent on good
estimation of the noise covariances, which we will estimate
using the Autocovariance Least-Squares (ALS) method
described in Rajamani and Rawlings (2009).

1.4 Content & Organization

In this paper, we demonstrate that the profit of operation
for a spray drying process can be improved significantly
by application of E-NMPC based on an economically
optimizing controller and an EKF for state estimation.
The noise covariances in the EKF are estimated by the
ALS method.

The paper is organized as follows. In Section 2, the model
of the spray dryer is presented. Section 3 presents the esti-
mation problem and the ALS method. Section 4 presents
the control problem and its transcription to a computa-
tionally tractable optimization problem. In Section 5 we
present a simulation to show the benefit of optimizing the
operation. Conclusions are given in Section 6.

2. SPRAY DRYER MODEL

In this section, the complete spray dryer model is pre-
sented. It is derived from first engineering principles and
describes drying of maltodextrin DE-18. We use Maltodex-
trin DE-18 as a substitute to milk, because milk is difficult
to handle over longer periods due to natural deterioration.

2.1 Spray Dryer and Static Fluid Bed Model

The evolution of the temperatures, TSD and TSFB, is gov-
erned by energy balances, while mass balances determine
the evolution of the air and powder moisture, Yab and
Xab. The lumped energy and mass balances describing the
evolution of the states are

Ca
dTSD

dt
= −λRaw + Fmainhain + Fsfbhbout−

(Fmain + Fsfb + Fadd)haout+

Faddhaadd
+ Fs(h

p
f − h

p
a)−Qab −Qa

(1a)

Cb
dTSFB

dt
= Fsfb(habin − h

a
bout) + Fs(h

p
a − h

p
b)+

Qab −Qbc −Qb

(1b)

ma
dYab
dt

= (Fmain + Fsfb)(Yamb − Yab)+

Fadd(Yadd − Yab) +Raw

(1c)

mb
dXab

dt
= Fs(Xf −Xab)−Raw (1d)

where

haain
= (cda + cvYamb)Tmain, haaout

= (cda + cvYab)TSD

habin = (cda + cvYamb)Tsfb, habout = (cda + cvYamb)TSFB

haaadd
= (cda + cvYadd)Tadd, hpf = (cs + cwXf )Tf

hpa = (cs + cwXab)TSD, hpb = (cs + cwXab)TSFB

Qab = k1(TSD − TSFB) + k2Xf + k3Tf − k4

Qa = k5(TSD − Tamb), Qb = k6(TSFB − Tamb)

It is assumed that the air and the product are in equilib-
rium i.e. that the temperature of the air, TSD and TSFB,
and the temperature of the product are identical. ha{·}
and hp{·} are the specific enthalpies of the humid air and

powder inlets and outlets of the SD and the SFB stages.
Ca and Cb are the heat capacities of the hold-up of air
and powder. The heat capacities are given at the reference
temperature, T0 = 25◦C. λRaw is the heat of evaporation
and Qab describes the heat exchange between the SD and
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the SFB stages. Fmain and Fsfb are the dry base inlet air
flows. The parameters Yadd, Fadd and Tadd are used to
compensate for air leakages and un-modeled inlet air flows
such as nozzle cooling air. Qa and Qb are heat losses to
the surroundings. Fs = FfXf/(1−Xf ) is the flow of feed
solids. Xf and Tf are the dry base feed concentration and
feed temperature. ma is the mass of dry air and mb is the
mass of dry powder.

We assume that the evaporation takes place in the SD
stage only with the drying rate determined from conditions
in the SFB. The product drying rate is governed by the
thin layer equation, describing evaporation due to diffusion
(Lewis, 1921)

Raw = k7
k8

k8 + Fs

(
Tf
T0

)k9

(Xab −Xeq(TSFB, Yab))mb

The equilibrium moisture content, Xeq(T, Y ), is a nonlin-
ear product dependent function that describes the mois-
ture content at which the water is bounded within the
powder particles.

2.2 Vibrating Fluid Bed Model

The evolution of the temperatures, TVFBh and TVFBc, is
governed by energy balances, while mass balances govern
the evolution of the air humidity, Ycd, and the moisture
content, Xcd, in the powder.

Ccd
dTVFBh

dt
= −λRcw + Fvfbh(hacin − h

a
cout

)+

Fs(h
p
b − h

p
c) +Qbc −Qc

(2a)

Ccd
dTVFBc

dt
= Fvfbc(hadin

− hadout
)+

Fs(h
p
c − h

p
d)−Qd

(2b)

mc
dYcd
dt

= (Fvfbh + Fvfbc)(Yamb − Ycd) +Rcw (2c)

md
dXcd

dt
= Fs(Xab −Xcd)−Rcw (2d)

where

hacin = (cda + cvYamb)Tvfbh, hacout
= (cda + cvYcd)TVFBh

hadin
= (cda + cvYamb)Tvfbc, hadout

= (cda + cvYcd)TVFBc

hpc = (cs + cwXcd)TVFBh, hpd = (cs + cwXcd)TVFBc

Qc = k11(TVFBh − Tamb), Qd = k12(TVFBc − Tamb)

Qbc = k10(TSFB − TVFBh)

ha{·} and hp{·} are the specific enthalpies of humid air and

powder in and out of the VFBh and the VFBc stages. Ccd

is the heat capacity of the hold-up of air and powder in
each stage. mc is the mass of dry air and md is the dry
mass of powder. Fvfbh and Fvfbc are the dry base inlet and
outlet air flows. Qbc is the exchange of heat between the
SFB and VFBh stage. Qc and Qd are heat losses to the
surroundings. λRcw is the heat of evaporation assumed to
take place in the VFBh stage only. The product drying rate
is governed from the thin layer equation and a constant
term

Rcw = k13(Xcd −Xeq(TVFBh, Ycd))md − k14md

2.3 Stickiness

Stickiness of the produced particles is an important lim-
itation to the achievable performance of the spray dryer.

Sticky particles form depositions on the walls of the spray
dryer. Stickiness can be predicted by the glass transition
temperature given by Boonyai et al. (2004)

Tg =
Tgp + kZTgw

1 + kZ
(3)

in which Tgp = 144.8◦C (maltodextrin) and Tgw =
−137◦C (water). The value k = 6.296 is estimated from
adsorption isotherm data. The obtained glass transition
temperatures, TSD

g and TSFB
g , are the upper limiting

temperatures of which deposits form on the chamber walls
of the spray dryer. The moisture content of the powder is

Z =


(Ap +Bp TSD)eCp RH(TSD,Yab) for SD

Xab for SFB

Xcd for VFBh

Xcd for VFBc

in which Ap = 0.193, Bp = −0.000435 and Cp = 4.51.
RH(TSD, Yab) is the relative air humidity. The moisture
content of the powder in the SD stage is difficult to
estimate. Therefore, it is common practice to use an
experimentally determined approximation related to the
equilibrium moisture, Xeq(T, Y ).

2.4 Model

The model (1)-(3) of the dryer is a deterministic system
of differential equations. In reality, the state and mea-
surement equation of the dryer are corrupted by noise.
Consequently, the deterministic system is augmented by
two stochastic terms and we have a system of the form

xk+1 = F (xk, uk + wu,k, dk + wd,k, θ) (4a)

yk = h(xk) + vk (4b)

The state and measurement noise covariances are wu,k =
Niid(0, TsRu), wd,k = Niid(0, TsRd) and vk = Niid(0, Rv).
Ts is the sample time. The three noise-terms are as-
sumed to be uncorrelated. F (·) is the state integration of
f(xk, uk, dk, θ) using a 3rd and 4th order accurate implicit
Runge-Kutta (ESDIRK) method with variable step size
(Kristensen et al., 2004). h(·) is the measurement equation.

The state vector, x, the manipulated input vector, u, and
the disturbance vector, d are

x =



TSD

TSFB

Yab
Xab

TVFBh

TVFBc

Ycd
Xcd


u =


Ff

Tmain

Tsfb

Tvfbh

Tvfbc

 d =



Xf

Tf
Fmain

Fsfb

Fvfbh

Fvfbc

Tamb

Yamb


(5)

The measurement vector, y, is

y = [TSD TSFB Yab TVFBh TVFBc Xcd]
T

(6)

The noise variances, Ru, Rd and Rv, are based on manual
inspection of the estimation data. The noise variances are
unknown to the state estimator.

2.5 Parameter estimation

The parameters, θ, in the model (4) are estimated using
data for a medium-scale spray dryer from GEA Process
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Table 1. Estimated param. in model (1)-(3)

Sym. Value Unit Sym. Value Unit

Ca 61.634 KJ/K Tadd 60.018 ◦C
Cb 148.26 KJ/K k7 9.401·10−2 -
k1 0.2725 KW/K k8 1.4887·10−2 -
k2 1.5017 KW k9 8.4203 -
k3 0.0605 KW/K Ccd 29.244 KW/K
k4 27.276 KW k10 9.561·10−3 KW/K
k5 0.24735 KW/K k11 22.314·10−3 KW/K
k6 -0.03198 KW/K k12 46.818·10−3 KW/K
Fadd 248.54 kg/hr k13 1.9963·10−3 -
Yadd 9.4566 g/kg k14 13.49·10−6 -

Engineering A/S. Table 1 provides the least squares esti-
mated parameters of the model. ma = 7.5 kg, mb = 15 kg,
mc = 15 kg andmd = 4 kg are fixed parameters and deter-
mined from physical considerations. Generally the model
fits and predicts the data well both for the estimation and
validation data, respectively.

2.6 Constraints

The maximum capacity of the feed pump limits the feed
flow such that 0 kg/hr ≤ Ff ≤ 130 kg/hr. The inlet tem-
peratures must be higher than the ambient temperature,
Tamb, as the dryer can only heat and not cool the air.
Furthermore, the risk of powder explosions and the risk
of scorched particles creates upper limits on the allowable
inlet temperatures. Consequently, Tamb ≤ Tmain ≤ 200◦C,
Tamb ≤ Tsfb ≤ 120◦C, Tamb ≤ Tvfbh ≤ 80◦C and Tamb ≤
Tvfbc ≤ 80◦C. These constraints are hard input constraints
of the form (9d).

To avoid depositions of sticky particles on the spray dryer
surfaces, the temperatures TSD, TSFB, TVFBh and TVFBc

must be below the glass transition temperatures in the
SD stage, TSD ≤ T SD

g , the SFB stage, TSFB ≤ T SFB
g ,

the VFBh stage, TVFBh ≤ TVFBh
g and the VFBc stage,

TVFBc ≤ TVFBc
g ≤ 35◦C, respectively. The glass transition

temperatures are determined by (3). Furthermore, the
powder moisture must be below a maximum limit, Xcd ≤
Xmax = 3.5%, that is 3.5% for the case study in this paper.
These constraints are treated as soft output constraints in
the form (10e). The soft `1 penalty is sW = 104 · Ts ·
[1 1 1 1 0.1] and the soft `2 penalty is SW = diag(sW ).

2.7 Key Performance Indicators (KPIs)

The profit from operating the spray dryer is the value of
the product minus the raw material and energy costs

p(x(t), u(t), d(t)) = ppFs(1 +Xcd)− pfFs(1 +Xf )

− pH∆H
(7)

in which pp is the unit value of the product, pf is the unit
cost of feed material, pH is the unit energy cost, and ∆H
is the total energy supplied to the dryer. ∆H is

∆H = Fmain(haain
− haamb) + Fsfb(habin − h

a
amb)

+ Fvfbh(hacin − h
a
amb) + Fvfbc(hadin

− haamb)

in which haamb = (cda + cvYamb)Tamb. The price of, the
produced powder is pp = 4.47 $/kg, the feed material is
pf = 0.447 $/kg, and the energy is pH = 34.873 $/GJ. The
prices are selected to reflect industrial reality meaning that

the price of natural gas is almost negligible compared to
the price of the powder, i.e. pp � pH .

The energy efficiency of operation and the product flow
rate are also key performance indicators for evaluation of
the performance of a spray dryer. The energy efficiency is

η =
λFs(Xf −Xcd)

∆H
Here λFs(Xf −Xcd) is the energy used to evaporate water
and ∆H is the total energy supplied. The flow rate of the
produced powder is

Fp = Fs(1 +Xcd)

3. STATE ESTIMATION PROBLEM

In the following, we will use an extended Kalman Filter
(EKF), consisting of a filtering part and a one-step predic-
tor part, to estimate the states of the nonlinear stochastic
system described in (4).

3.1 Offset-free output estimation

The regulator and state estimator are based on the aug-
mented model in order to achieve offset-free output es-
timation at steady-state, in the presence of plant/model
mismatch and/or un-modeled disturbances (Pannocchia
and Rawlings, 2003). We define the augmented model as

x̄k+1 = F̄ (x̄k, uk, d̄k, θ̄) + w̄k (8a)

ȳk = h̄(x̄k) + v̄k (8b)

in which F̄ is the time integral of f̄ and h̄ is the output
equation. x̄(tk) is the estimated state, d̄ is the measured
disturbances and θ̄ is the model parameters that both
may differ from the true value in (4). The state and
measurement noise covariances are w̄k = Niid(0, R̄w) and
v̄k = Niid(0, R̄v) and estimated in Sec. 3.3 from data. We
select pure input disturbances such that the energy- and
the vapor mass balances are subject to the disturbance
integration.

3.2 State estimator

The EKF utilizes many of the same principles as the
Kalman filter. However it linearizes the non-linear model
around the current estimate at each time step allowing the
system to be solved as a linear time varying (LTV) system.

The estimator consists of a filtering part and a one-step
predictor part. The filtering part corrects x̂k|k, using the
latest measurement, yk. x̂k|k is used in the controller as the
initial state. The predictor part uses the model to predict
x̂k+1|k. Assuming that the state and measurement noise
are uncorrelated, we get the filter equations

x̂k|k = x̂k|k−1 +Kfx,k(yk − h̄(x̂k|k−1))

Pk|k = Pk|k−1 −Kfx,kRe,kKfx,k

where the Kalman gains are

Re,k = CkPk|k−1C
T
k + R̄v

Kfx,k = Pk|k−1C
T
kR
−1
e,k

The one-step predictor is

[x̂k+1|k, Sx,k] = ESDIRK(x̂k|k−1, uk, d̄k, θ̄)

Pk+1|k = Sx,kPk|kS
T
x,k +GR̄wG

T
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In the above we have Ck = dh̄
dx̄

∣∣∣
x̂k|k−1

and G = I. The

state estimator needs a good estimate of the process
and measurement noise covariances to work properly. To
achieve this we will use the ALS method.

3.3 ALS Estimator tuning

Rajamani and Rawlings (2009) describes a method for
estimating the noise covariances based on data, the LTI
discrete-time model of the augmented system and an
initial guess on the noise sources. We obtain the LTI
discrete-time model by linearization and descretization of
(8). The estimate of the states are then constructed by the
stationary Kalman filter as

x̂k+1 = Āx̂k|k−1 + B̄uk + Ēdk + ĀL(yk − C̄x̂k|k−1)

The state estimation error then evolves as

εk+1 = (Ā− ĀLC̄)εk +
[
I −ĀL

] [w̄k

v̄k

]
In which Ā, B̄, Ē and C̄ are the state, input, disturbance
and output LTI system matrices of (8). L is the static
Kalman gain constructed from the initial guess of the
noise sources and the LTI model. (Ā,C̄) is detectable and
Ā − ĀLC̄ is stable. The innovations, Yk, are constructed
by

Yk = C̄εk + vk

and the auto covariance is constructed by E(YkYT
k+1).

From Yk, εk+1 and the LTI model we can construct a con-
strained ALS estimation problem, that enforces positive
semi-definiteness, to estimate the noise variances by

Φ = min
R̄w,R̄v

∥∥∥∥A [
(R̄w)s
(R̄v)s

]
− b̂
∥∥∥∥2

2

+ ρ tr(R̄w)

s.t. R̄w ≥ 0, R̄v ≥ 0

in which A and b̂ are constructed according to Rajamani
and Rawlings (2009). The problem is convex and can
be solved efficiently even for large datasets. We select
the initial state noise covariance R̄w = I · 10−3 and
measurement noise R̄v = I · 10−4. The data set used for
the estimation is made from an open loop simulation of
the nonlinear system with step disturbances in Xf , Tf
and Yamb. It contains 650 data points of which the first
10 points are for initialization of the Kalman Filter. The
estimated R̄w and R̄v in combination with the disturbance
structure render a satisfactory performance in the EKF
and provides offset-free output estimation.

4. OPTIMAL CONTROL PROBLEM

In this section, we present the continuous-time constrained
optimal control problem and its transcription to a discrete
time optimal control problem. We solve the discrete opti-
mal control problem using the single-shooting method.

4.1 Continuous-Time Const. Optimal Control Problem

In a receding horizon manner, the manipulated variables
in the E-NMPC considered in this paper are obtained by

the solution of the following continuous-time constrained
optimal control problem in Lagrange form

min
x̄(·),u(·),s(·)

φ =

∫ tf

t0

[−p(x̄(t), u(t), d̄(t)) + φ(s(t))]dt (9a)

s.t. x̄(t0) = x̂0, (9b)

dx̄(t)

dt
= f̄(x̄(t), u(t), d̄(t), θ̄), t ∈ T (9c)

umin ≤ u(t) ≤ umax, t ∈ T (9d)

c(x̄(t)) + s(t) ≥ 0, t ∈ T (9e)

s(t) ≥ 0, t ∈ T (9f)

in which T = [t0, tf [. x̄(t) ∈ Rnx is the state vector,
u(t) ∈ Rnu is the manipulated variables, d̄(t) ∈ Rnd is the
known disturbance vector, and s(t) ∈ Rns are the slack
variables related to the soft output constraints. The initial
state x̄(t0) = x̂0 and the period [t0, tf [ are fixed. At each
sample time t0 is the current time and tf is the prediction
and control horizon. The current state, x̂0, is assigned
to the initial state by (9b). The stage cost function,
−p(x̄(t), u(t), d̄(t)), represents the cost of operation, (9c)
represents the process dynamics, and (9d) is hard input
constraints. φ(s(t)) = 1

2 ‖s(t)‖2,SW
+ ‖s(t)‖1,sW and (9e)-

(9f) represent `2 − `1 soft output constraints.

4.2 Transcription

The infinite-dimensional optimal control problem (9) is
converted to a numerically tractable finite-dimensional
optimal control problem by 1) parametrization of the
control vector, u(t), and the disturbance vector, d̄(t), 2)
point-wise Dirac delta approximation of the soft output
constraints, and 3) discretization of the dynamics (9c)
and the objective integral. Using these approximations,
(9) may be transcribed into the finite dimensional discrete
optimal control problem

min
x̄,u,s

φ =

N−1∑
k=0

[−Pk(x̄k, uk, d̄k) + φ(sk)] + φ∆u (10a)

s.t. x̄0 = x̂0, (10b)

Rk(x̄k, x̄k+1, uk, d̄k, θ̄) = 0, k ∈ N (10c)

umin ≤ uk ≤ umax, k ∈ N (10d)

c(x̄k) + sk ≥ 0, k ∈ N (10e)

sk ≥ 0, k ∈ N (10f)

with N = {0, 1, . . . , N − 1} and N being the dis-
crete prediction and control horizon. The discrete stage
cost, Pk(x̄k, uk, d̄k), and the residual function, Rk =
Rk(x̄k, x̄k+1, uk, d̄k, θ̄) = x̄k+1 − F̄ (x̄k, uk, d̄k, θ̄), are ob-
tained using the ESDIRK3(4) method. The ESDIRK in-
tegration method and the computation of the state and
stage cost sensitivities are described in Kristensen et al.
(2004); Capolei and Jørgensen (2012). The scheme has
been implemented with fixed step size using 5 intermediate
steps. No forecasts are available for the disturbances, so we
use the same-as-now forecasts, i.e. d̄k = d̄(t0).

In order to obtain smooth solutions we add the regular-
ization term that penalizes changes in the manipulated
variables

φ∆u =

N−1∑
k=0

||uk − uk−1| |2Qs

We use Qs = Ts · diag([0.5; 1; 0.5; 0.5; 0.5]).
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Fig. 2. Disturbance scenario for the case studies.
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Fig. 3. Active inequality constraint from (3) that con-
strains TSD and Yab. Notice, that cost optimal oper-
ation is achieved by maximizing Yab within the non-
sticky region.

4.3 Single-Shooting Optimization

In this paper, the optimal control problem (10) is solved
by the single-shooting method using a quasi-Newton SQP
optimization algorithm (fmincon in Matlab’s optimization
toolbox) and the adjoint method for gradient computation
(Petersen and Jørgensen, 2014). The sample time is chosen
as Ts = 30 s and we use a control and prediction horizon
of tf = 35 min i.e. N = 70.

5. RESULTS

We illustrate the performance of the E-NMPC by a closed-
loop simulation.

5.1 Simulation

Fig. 2 illustrates the feed concentration and the ambient
air humidity disturbances considered in the simulated
scenario. These renders maximum day-to-day variations.

Fig. 4 shows E-NMPC closed-loop response operation of
the spray dryer. Fig. 4(a) shows the outputs and Fig. 4(b)
shows the manipulated variables. Fig. 4(c) illustrates the
energy efficiency, the production rate and the operational
profit rate. Note that the operational profit rate is largely
dictated by the production rate.The E-NMPC pushes the
system to the constraints in order to maximize profit.
In this example, the active constraints are the stickiness

constraint in the SD stage, T SD
g , and the maximum al-

lowed residual moisture content in the powder, Xmax.
An increase in ambient air humidity, Yamb, decreases the
evaporation rate, Rw, of the dryer and the powder becomes
more moist and sticky. The E-NMPC compensates by
decreasing the production rate i.e. it decreases the feed
rate, Ff , and the inlet air temperatures. A step increase in
the feed (water) concentration, Xf , increases the amount
of water that has to be evaporated from the feed. The
E-NMPC compensates again by decreasing the produc-
tion rate. Consequently, the economically most favorable
conditions for the dryer is obtained at low ambient air
humidity and feeds with a high solids content. The sticky
temperature, TSD

g in (3), is only a function of the states
Yab and TSD. Thus, we can plot this constrain in 2D.
Fig. 3 illustrates T SD

g and shows that one can form a
sticky and non-sticky region where cost optimal operation
is achieved by maximizing Yab within the given non-stickiy
region. The stickiness constraint, T SD

g , and the residual
moisture content, Xcd, violates the constraints slightly. A
back-off strategy must therefore be implemented to avoid
constraint violation at any time.

Cost optimal operation of the plant is not guaranteed
to be obtained in general by model based optimization
due to plant and model mismatch as well as the presence
of unknown disturbances. We obtain almost exact cost
optimal plant operation for the disturbance scenario in
Fig. 2. This is primarily due to the definition of the
active constraints, that do not depend on the unknown
disturbances, but only on the measured states TSD, Yab
and Xcd.

As illustrated in Fig. 4(c), the profit of operation depends
mainly on the production rate, the feed concentration and
the residual moisture of the final powder. The energy usage
is a secondary objective. Fortunately, the energy efficiency
is maximized for a given production rate, but higher
efficiencies can be achieved at the sacrifice of production
capacity. The PI controller controls the temperature TSD

by manipulating the feed flow Ff . Thus, it does not
perform any correcting action to compensate for changes
in the ambient air humidity. A considerably back-off from
the stickiness constraint must therefore be enforced leading
to reduced production and profit loss. On average, for
the given disturbance scenario, the E-NMPC increases the
profit of operation by 17% compared to the conventional
PI controller.

6. CONCLUSIONS

This paper presents an economically optimizing control
solution for a spray dryer. The E-NMPC provides a control
solution that constantly brings the dryer to the most
cost optimal state of operation. The residual moisture is
controlled within specifications and deposition of sticky
particles on spray dryer surfaces are avoided. This is
achieved by the ability of the E-NMPC to include stick-
iness constraints and compute control profiles that are
continuously adapted to variations in the feed and the
ambient conditions. On average, for the given disturbance
scenario, the E-NMPC increases the profit of operation by
17% compared to the conventional PI controller.
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Fig. 4. E-NMPC seeking to maximize profit for the dis-
turbance scenario given in Fig. 2. Red lines indicate
constraints.
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