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Abstract: A novel approach has been developed to diagnose intermittent stochastic faults by combining 

a generalized polynomial chaos (gPC) method with maximum likelihood estimation. The gPC is used to 

propagate stochastic changes in an input variable to a measured output variable from which the fault is to 

be inferred. The fault detection and diagnosis (FDD) problem is formulated as an inverse problem of 

identifying the unknown input from a maximum likelihood based fitting of the predicted and measured 

output variables. Simulation studies compare the proposed method with a Particle Filter (PF) to estimate 

the value of an unknown feed mass fraction of a chemical process. The proposed method is shown to be 

significantly more computational efficient and less sensitive to user defined tuning parameters than PF. 
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1. INTRODUCTION 

This paper presents a new method for diagnosing unmeasured 

stochastic intermittent faults for a nonlinear chemical plant. 

The proposed approach is based on modelling by generalized 

polynomial chaos (gPC) expansions and maximum likelihood 

based estimation. In a previous contribution by the authors it 

was shown how the gPC models can be used to detect steady 

state changes in an input variable (fault) (Du, et al., 2014). 

The novel contribution in this work is a methodology for 

diagnosing time varying stochastic faults while maintaining 

the computational complexity at a reasonable level. Unlike 

many traditional model based methods such as Kalman Filter, 

the proposed approach explicitly considers the nonlinear 

behaviour of the process, the stochastic nature of the input 

faults and their effects on the measured output variables. 

The benefit of using the gPC models in parameter estimation 

problems has been reported (Chen-Charpentier & Stanescu, 

2014; Pence, et al., 2011), but there are no reports of gPC in 

dynamic fault detection problems as proposed in the current 

study. The available model based alternative to solve this 

problem is to apply a particle filter (PF). It will be shown that 

due to the analytical properties of the gPC expansions, the 

proposed approach is significantly more computationally 

efficient than the PF, thus making it more suitable for real 

time implementation in problems of large dimensions (Nagy 

& Braatz, 2007; Elsheikh, et al., 2014). Also, the proposed 

algorithm is less sensitive than PF to the user selected tuning 

parameters. 

Assuming a nonlinear system described as follows: 

    ẋ = f (t, x, u; g)                              (1) 

, where 0 ≤ t ≤ tf , x ∈ R
n
 contains the system states (measured 

variables) with initial conditions x(0) = x0 over time domain 

[0, tf]. u denotes the known inputs of the system, and g ∈ R
ng 

defines an unknown time varying input that is considered as a 

fault in this work.  

To identify an input fault g, a two-level fault detection and 

diagnosis (FDD) algorithm is proposed, for which the 

occurrence of a major deviation from a specific operating 

mode is detected in level-1 of the algorithm by using the 

probability density functions (PDFs) of measured variables 

calculated off-line for constant mean values of g, and then, in 

level-2 of the algorithm, dynamic changes in g are inferred by 

fitting the measured and gPC model predicted variables based 

on a maximum likelihood cost. The level-2 algorithm is only 

executed when large deviations are detected in the level-1 

algorithm to reduce the computational burden. 

This paper is organized as follows. In section 2, the 

theoretical background of gPC expansions is presented. The 

maximum likelihood based fault detection approach is 

explained in section 3. A nonlinear chemical plant with two 

continuously stirred tank reactors and a flash tank separator is 

introduced as a case study in section 4. Analysis and 

discussion of the results are given in section 5 followed by 

conclusions in section 6. 

2. GENERALIZED POLYNOMIAL CHAOS THEORY 

The generalized polynomial chaos (gPC) expansion has been 

proposed as a modelling method for stochastic systems (Xiu, 

2010), which is based on the representation of an arbitrary 

random variable of interest as a function of a random variable 

ξ of a known prior distribution. To preserve orthogonality, the 

basis functions, e.g., Laguerre or Hermite, have to be selected 

according to the choice of the distribution of ξ (Xiu, 2010).  

To quantify the effect of the stochastic input g in (1) on the 

measured variables x, the gPC expansions are employed. 

According to the gPC theory and the prior information, each 
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unknown parameter gi (i = 1, 2,…, ng) in g is assumed to be a 

function of a set of random variables ξ = {ξi}: 

   gi = gi (ξi)                                       (2) 

,where ξi is the i
th

 random variable. The random variables {ξi} 

are assumed to be independent and identically distributed. It 

should be noted that although ξi is assumed to follow a 

standard distribution, the elements in g(ξ)  may follow a non-

standard distribution. The unknown g(ξ) and states x(t,ξ) in 

(1) can be approximated in terms of polynomial orthogonal 

basis functions Φk(ξ) as: 
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, where xk is the gPC coefficients of measured variables at 

each time instant t, and Φk(ξ) is a multi-dimensional 

orthogonal polynomial.  Since it is assumed in this work that 

the statistical distribution of the input g is known priori, i.e., 

the gPC coefficients in (3) are available, the only unknowns 

are the gPC coefficients xk of the measured state variables in 

(4). These coefficients can be estimated with Galerkin 

projection by projecting equation (1) onto each polynomial 

chaos basis function {Φk(ξ)} as (Xiu, 2010): 

)()),(),(),,(,()(),,(  kk gtutxtftx       (5) 

For practical application, (3) and (4) are truncated to a finite 

number of terms, i.e., TN. Hence, the total number of terms 

(TN) in (5) is a function of the number of terms p in (3) that is 

necessary to represent the a priori known distribution of g 

and the number of different inputs g (ng) as follows: 

1))!!/()!((  pnpnT ggN                       (6) 

The inner product in (5) between two vectors φ(ξ) and φ’(ξ) 

is defined by: 

  dw )()(')()('),(              (7) 

, where the integration is conducted over the entire domain of 

the random variables ξ, and w(ξ)is a weighting function, 

which is chosen for normalization purposes with respect to 

the type of polynomial basis functions used in the expansion 

(Xiu, 2010). Statistical moments for the measured variables x 

represented by the gPCs can be efficiently calculated at any 

given time instant t as a function of the coefficients xk of the 

expansion in (4) as follows: 
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Also, the PDF profiles for the measured variables, x(t), can 

be easily estimated by sampling from the distribution of ξ and 

substituting the samples into the expansion in (4). The ability 

of analytically calculating the mean and variance as per 

equation (8) and (9) and to rapidly calculate the PDFs of the 

measured variables are the main rationale for using the gPC 

since these quantities have to be repeatedly estimated in the 

algorithms proposed in this work. Thus, the use of gPC to 

propagate the stochastic variability of inputs onto measured 

outputs (states) results in significant computational savings. 

3. FAULT DIAGNOSIS METHODOLOGY 

3.1 Unknown input FDD problem formulation 

The unknown input faults g considered in the current work 

affecting the system described by (1) consist of stochastic 

perturbations around a specific set of means as described in 

Fig.1 (a), and given as follows:  

g = ḡi + ∆gi  (i = 1, …,k)                          (10) 

, where ḡi is a set of constant mean values (operating modes), 

∆gi are stochastic variations around each mean value. The 

statistical distribution of ∆gi is assumed to be known a priori.  

The changes in the mean values of ḡi follow a ML-PRS 

(Multilevel Pseudo Random Signal).  The FDD problem is 

defined as detecting a change in the unknown input mean ḡi 

as well as diagnosing around which particular ḡi the system is 

being operated. Each particular mean ḡi will be referred 

heretofore as to an operating mode, and thus the goal is to 

diagnose the mean value ḡi at any given time instant. 

  

Fig. 1 Fault profiles representing intermittent stochastic fault 

and resulting measured variable 

The FDD algorithm in this work is formulated as a two-level 

procedure composed of: 

Level-1 algorithm – For each mean value of ḡi given in (10) 

the corresponding PDFs of the measured output variables (x) 

are approximated assuming that the mean remains constant. 

The PDF profiles of the measured variables are calibrated 

with simulated noisy measurements. When operating in the 

neighbourhood of a specific mean ḡi, the input and measured 

variables are not constant due to the stochastic variations 

(∆gi) and the noise on measurements, as seen in Fig.1 (a) and 

(b). A change in ḡi is detected based on measurements and 

the calculated PDFs as further explained below. 

Level-2 algorithm – A maximum likelihood based FDD 

algorithm is applied to detect the average of the unknown 

input variable g over a pre-defined window of time. The 

likelihood function is based on the error in mean and variance 

between a set of measurements and predictions calculated 

with a gPC model in (4). To reduce computational effort, this 

step is only launched when large deviations from an input 

mean are detected with the level-1 algorithm as explained 
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above. However, in principle this second level algorithm 

(level-2 algorithm) can be executed at each time interval as 

an online dynamic parameter estimator but at the cost of 

increased computation. Details on the two algorithms are 

given below. 

3.2 Level-1: generation of PDFs of measured variables when 

the system is operated around a particular mean (ḡi) 

For the purpose of calculating the PDFs profile, it is assumed 

that measurements of the measured variables (x) around each 

mean value ḡi are available. It is also assumed in this step that 

ḡi remains constant but its exact value is not known. The 

constancy of ḡi can be experimentally inferred from the 

constancy of measured and/or controlled variables. 

In the absence of measurement noise, if the inputs would be 

known the PDF profiles of output variables (x), that can be 

measured and used for detection such as manipulated and 

controlled variables of the closed-loop system, could be 

calculated with the analytical expressions of a gPC as per the 

method shown in Section 2. In reality, due to noise, model 

error (e.g., gPC truncation error) and lack of exact knowledge 

about the input, i.e., it is only assumed that the mean is 

constant but its exact value is not available, the PDFs of x 

have to be calibrated using actual process measurements. To 

this purpose, the mean and variance of the unknown input 

variable are found from an optimization problem around each 

mean (operating mode) of the input shown in Fig.1 (a) as: 
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, where ϑ1,i and ϑ2,i are the predicted mean and variance of a 

particular measured variable (x) of the problem to be used for 

detection. These predicted means and variances are given 

explicitly by (8) and (9) using the gPCs representations of x 

given in Section 2, and are functions of the stochastic input as 

shown in Fig.1 (a). The terms υ1,i and υ2,i are the measured 

mean and variance of x in (1). The last term σn,i  is utilized to 

represent the standard deviation of noise that is also 

expressed by a gPC expansion of the following form: 
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, where σn,k is the gPC coefficients of noise at time instant t, 

Φk(ξ) is the multi-dimensional polynomials in terms of ξ, and 

the variance of noise is calculated by (9). 

The decision variable λlower in (11) is a vector consisting of 

the mean and variance of the unknown input (g) and noise σn, 

and n is the number of the measured variables used to 

calibrate the gPC model.  Due to noise and truncation error 

introduced by the gPC approximation, the mean and variance 

of the input variable (g) defining λlower calculated from (11) 

deviate from the actual values entering the process. After 

obtaining λlower, it is possible to calculate the actual gPC 

coefficients for the state variables x. Using these coefficients, 

the PDF profiles for x’s around each constant mean value 

(operating mode) are approximated by substituting samples 

(ξ) from its a priori known distribution into the resulting gPC 

expansions given in (4), and the PDFs are calculated as an 

histogram composed of bins each corresponding to different 

ranges of values of x (Du, et al., 2014).   

Then, for each of the mean values considered in (10), a PDF 

can be calculated. If the system is operated around a constant 

mean ḡi, the corresponding i (i = 1,…, k) in (10) is detected 

from the PDF profiles for a given measurement as follows: 

i = arg max {Pi}                                (13) 

, where i is the operating mode as defined in (10). Pi means 

the probability of being operated around a particular mean ḡi 

for a given measurement, each referred heretofore as ‘Mode’. 

The solution of this problem is depicted in Fig.2 showing 3 

PDFs that correspond to 3 different operating modes (input 

mean values). For example, three probabilities (red dots) can 

be found for a given measured output shown in Fig.2, where 

the maximum probability is used to indicate that the system is 

operating around the mean value corresponding to ‘Mode j’. 
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Fig. 2 Visual interpretation of FDD 

3.3 Level-2: Maximum likelihood based input estimation and 

classification 

The Level-1 algorithm presented in Section 3.2 assumes that 

the system is operated around a specific mean value ḡi in 

(10), but it does not take into account transient responses 

resulting from the step changes between ḡi shown in Fig.1 

(a). This section explains the problem of estimating these 

input changes based on the maximization of a likelihood 

function. Define fx
’
 as the PDF of a measured output of 

interest, which can be estimated by a Gaussian kernel density 

function (Wand & Jones, 1995) as: 
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, where Gk denotes the Gaussian kernel, x
’ 

is the measured 

variable, ni is the number of samples drawn from an a priori 

known distribution of ξ. The π operator is defined as the gPC 

model conditioned on the gPC coefficients and is obtained as 

explained in Section 2. Then, a likelihood function of output 

variables x over a moving time window of m measurements 

can be calculated as: 
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Then, for the moving window of length m, an estimate of an 

average value of the input g is obtained by maximizing the 

likelihood function as follows: 
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, where the decision variable  λupper in (16) is the average of 

the dynamic value of the unknown time varying input g 

and/or its confidence interval over the moving window of m 

measurements. It is worth noting that the same set of ξ used 

in (15) is also used to maximize (16). For classification 

purposes, the average value of the input g resulting from (16) 

is compared to the values ḡi to identify which operating mode 

is active. Although the level-2 algorithm could be executed at 

each time interval, it is only used after a large deviation is 

detected by the level-1 algorithm to reduced computation. 

3.4 FDD by combining level-1 and level-2 algorithms  

The two-level fault detection algorithm proceeds as per the 

following steps: 

Step 1 – The PDF profiles of the measured variable x in (4) 

operating around each one of the mean value ḡi in (10) 

is approximated using level-1 algorithm in Section 3.1;  

Step 2 – When a sample of measurements is available, the 

probabilities Pi in (13) are assessed (i = 1,…,k). The 

maximum probability is used to infer a particular mean 

value ḡi (operating mode) as shown in Fig.2. 

Step 3 – A potential change in the operating mode (mean 

value ḡi) is detected when the probability of a given 

output measurement switches across a limit between 

two adjacent PDF, as depicted in Fig.2 (red star), 

corresponding to, Pi = Pj ; 

Step 4 – If a change in operating mode is detected in Step 3, 

the maximum likelihood based input estimation (level-2 

algorithm) in Section 3.3 is executed and a value and/or 

a confidence interval of the input g averaged over a 

moving window of m measurements is estimated; 

Step 5 – The value obtained from the level-2 algorithm in 

Step 4 is compared based on a minimum distance 

criterion to the set of mean values ḡi (operating modes) 

obtained in (11) and the corresponding operating mode 

(mean value) is diagnosed. 

To evaluate the performance of the proposed algorithm, the 

fault detection rate (FDR) (Yin, et al., 2012) is defined as: 

FDR = nd/ntotal                                                  (17) 

, where ntotal is the total number of tested samples and nd is 

the number of samples that have been correctly classified. 

4. EXAMPLE: REACTOR-SEPARATOR PROCESS 

Simulation studies of a nonlinear chemical process consisting 

of two reactors and a separator are used to demonstrate the 

efficacy of the proposed two levels’ methodology and for 

comparison with a Particle Filter (PF) (see Fig.3).  

  

Fig. 3 Two reactors in series with separator and recycle 

A stream of reactant A is added to each reactor and converted 

to the product B by the first order reaction. The feed mass 

fraction of reactant A (xA0) is the unknown input fault (g) and 

is corrupted by normally distributed perturbations around 

three mean values (operating modes) as described in (10) 

(Fig. 1). The first principles’ model for the plant is: 
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, where the subscript ‘i’ (i.e., 1, 2, 3) refers to the number of 

vessel, x is the mass fraction of A or B, T is temperature, H is 

the level, F is the flow rate and the reaction terms are: 

ivii HkF  , )/exp( iAAAi RTEkk 

)/exp( iBBBi RTEkk   

The recycle flow and the three weight percent factors satisfy:  

ivii HkF  ,
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33 / xxx BBBR 

3333 CCBBAA xxxx   , )1( 333 BAC xxx   

Each of the tanks in the plant has an external heat input and is 

manipulated by a PI controller as: 

*

0

*
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The parameters used for the simulation are given in (Stewart, 

et al., 2010). 

5. RESULTS AND DISCUSSIONS 

5.1  Model formulation for Reactor-Separator case study 

The FDD problem consists of detecting the mean values of 

unknown feed mass fraction xA0 based on measurements of 

the heat input Q1. Since the solution of the gPC coefficients 

involved in the gPC expansions of each one of the states (x in 

(1)) given in Section 2 requires the application of Galerkin 

projection, it is only applicable to polynomial terms. Hence, 

the use of Galerkin projection for non-polynomial terms such 

as the Arrhenius energy function components kAi, requires 

approximation by a 2
nd

 order Taylor expansion around each 

mean value on input xA0. Since the random variable ξ is 

normally distributed, the basis polynomial functions for the 

gPC are chosen as Hermite to maintain orthogonality (Xiu, 

2010).  
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5.2  Level-1: calibration of PDFs of the measured variable 

Q1 for operation around constant values of xA0. 

For simplicity, 3 mean values on feed mass fraction (xA0) are 

studied, i.e., 0.65, 0.75 and 0.85 (k = 3 in (10)). Stochastic 

perturbations are added around these mean values, which are 

assumed to be normally distributed with zero mean and a 

standard deviation of 0.1. The changes in the mean follow a 

ML-PRS signal as shown in Fig.1 (a). The number of step 

changes of the unknown input (xA0) among the 3 selected 

mean values (operating mode) in the ML-PRS is 242 and the 

maximum number of measurements between two consecutive 

step changes in input is limited to 1000. 

Table 1 shows the model calibration results with the level-1 

algorithm as described in (11) for a 1% noise level based on 

measurements of Q1. The highest order of the polynomials 

used for the gPC models is 2 (p = 2 in (6)). 

Table 1.  Model calibration result for level-1 algorithm 

 xA0    x’A0 σA0 σn Time(s) 

0.65 0.6370 0.0937 0.0188  992 

0.75 0.7364 0.0979 0.0199  788 

0.85 0.8319 0.0933 0.0201  871 

 

In Table 1, xA0 is the known mean value used for simulations,  

x’A0 and σA0 are the mean and standard deviation calculated 

from problem (11), σn is the standard deviation of noise. As 

explained before, the mean and standard deviation of the 

input resulting from (11) (x’A0, σA0) are not identical to the 

actual simulated values used for calibration (xA0, 0.1), since 

the sensor data are corrupted by noise and uncertainty (see 

the differences between the values of the 1
st
 and 2

nd
 column 

in Table 1). 

Once the gPC model is constructed, the PDF profiles of the 

measured variable (Q1), estimated at the 3 mean values of the 

feed mass fraction (x’A0), can be obtained. Fig.4 shows the 

PDF profiles for the external heat in vessel 1, Q1, where the 

horizontal axis signifies the range of Q1, and the vertical axis 

is the normalized probability.  

 

Fig. 4 PDFs of 3 modes on measured variable (Q1) 

Although the level-1 algorithm has been proposed only as a 

preliminary step of the level-2 methodology, the efficiency of 

the level-1 algorithm in detecting a mode is tested first to 

justify the need for the level-2 algorithm. Table 2 shows the 

result of Fault Detection Rate (FDR) with different noise 

levels using the PDF each calculated based on the assumption 

of constant values of xA0. To comply with the assumption that 

the system is operated around a fixed input, the detection 

efficiency is first studied by using collected measurements of 

Q1 before a switch between means occurred (see inset Fig.1 

(b)-A). 

Table 2.  FDR with level-1 algorithm (fixed means) 

xA0 
Noise level  

1% 2% 3% 

0.65 94% 91% 92% 

0.75 92% 90% 86% 

0.85 96% 94% 91% 

Average 94% 92% 90% 

 

In Table 2, there are 1000 test samples for each feed mass 

fraction, and the average of FDR decrease as expected when 

the noise level increases. It is worth noting that the model 

calibration as per the optimization in (11) would be 

prohibitive if Monte Carlo (MC) simulations were to be used 

instead of a gPC. For instance, the processor time required 

for one cost evaluation with MC (5000 samples) is ~15465 

seconds. The search for the optimum in (11) for each mean 

value requires 40~60 iterations and takes approximately 171 

~ 257 hours on average. However, the proposed method takes 

~15 minutes to calculate the optimum in (11) for all mean 

values, as can be seen in Table 1. Also, 5000 samples with 

MC was found to be inaccurate as compared to the gPC 

method in terms of FDR, thus an even larger number of 

samples are required to obtain comparable FDR as with gPC, 

which would further increase the computational burden. 

As mentioned above, the level-1 algorithm is only suitable 

when the system is operating for long periods around a fixed 

mean. Thus, it is expected to be less accurate during periods 

where changes among mean values occur. To demonstrate 

this point, Table 3 shows the FDR with the level-1 algorithm 

by using measurements collected during the transition 

periods, i.e., immediately after the occurrence of a step 

change in mean value of xA0 (see inset Fig.1 (b)-B). Windows 

of 50 measurements of Q1 are used for testing and the 

detection is based on the average of the probabilities of these 

50 measurements with respect to the PDF profiles generated 

in the level-1 algorithm.  

Table 3.  FDR with level-1 algorithm (transition) 

xA0 0.65 0.75 0.85 Average 

FDR 68% 72% 67% 69% 

 

As seen in Table 3, the FDR for switching periods between 

mean values on average is very low at 59%, thus justifying 

the necessity for the level-2 algorithm that does not assume 

that the mean of input xA0 is known as in the level-1 

algorithm. However, it should be noted that the level-1 

algorithm is proposed only to evaluate the necessity for 

executing the level-2 algorithm so as avoid executing the 

level-2 algorithm too frequently which would require 

excessive computation time. 

5.3  FDD results using the level-2 algorithm  

The Level-2 algorithm is only launched after the level-1 

algorithm has indicated a potential change in the input mean 

value of xA0.Table 4 shows the results by using the level-2 

algorithm for three case studies to evaluate the efficacy and 
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computation time. In the first case study, windows of 50 

measurements of Q1 (m = 50 in (16)) are used to compare the 

results obtained by the level-1 algorithm as shown in Table 3. 

For the first case study only the average value of xA0 over the 

windows is chosen as a decision variable for λupper in (16). 

For the other two case studies, 100 measurements of Q1 are 

used (m = 100 in (16)). The decision variable of the second 

case study in (16) is the average value of xA0, while in the 

third case study both the average value and confidence 

interval of xA0 are used. It should be noted that only average 

values of the input xA0 are obtained in (16) over a time 

window of m measurements. 

Table 4.  FDR with level-2 algorithm 

Case studies  FDR Time(s) 

1  (m = 50) 70% 225 

2 (m = 100) 85% 498 

3 (m = 100) 80% 1133 

 

It can be seen by comparing Table 3 and Table 4 that the 

level-2 algorithm shows better FDR performance as 

compared to the level-1 algorithm alone. For instance, the 

FDR is 70% for the first case study, which has been increased 

by ~ 10 percent point as compared with the level-1 algorithm 

for the same number of measurements thus confirming the 

necessity for the level-2 algorithm to detect transitions among 

mean values of xA0. 

Finally, comparison studies are conducted between the 

proposed algorithm and a particle filter (PF). The noise for 

the PF algorithm is assumed to be equal to the one used for 

the gPC based level-2 algorithm. Fig.5 shows the dynamic 

value and posterior standard deviation (s.t.d.) calculated by 

the PF for one of the tested input values, i.e., xA0 = 0.8388, 

where three different initial states and 100 particles are used. 

Fig. 5 Posterior estimation for xA0 with Particle Filter 

The PF is executed for a duration of time = 50 to permit a fair 

comparison with the gPC based algorithm that uses a window 

of m=50 measurements. As seen in Fig.5, three sets of the 

initial state in PF provide very different posterior estimates 

on the average value of xA0.  For example, the PF method 

stabilizes at ~0.6321 with an initial state 0.65, which would 

indicate that the closest feed concentration, out of the 3 mean 

values considered in the case study, is 0.65 whereas the 

actual input value is 0.8388. As expected, the PF approach 

cannot capture the posterior variance on xA0 as shown in Fig.5 

(b), since the standard deviation theoretically goes to 0 as 

time progresses. 

Additional studies are conducted to investigate the processor 

time with the PF. As done for the gPC method, 50 and 100 

measurements are tested respectively. The PF requires ~6800 

seconds to run for 50 time intervals and ~13780 seconds for 

100 time intervals. As shown in Table 4, the gPC based level-

2 algorithm requires significantly less computational effort, 

while it is not sensitive to the user choice of initial guesses as 

the PF. In order to reduce the sensitivity to initial guesses one 

can execute the PF algorithm for a larger set of initial guesses 

and then average the results. However based on the 

computation times discussed above, such approach will be 

prohibitive especially for real time operation. 

6. CONCLUSIONS 

This paper proposes a two-level fault detection and diagnosis 

approach based on generalized polynomial chaos modelling 

and maximum likelihood based estimator for faults of a 

stochastic nature. The proposed method is demonstrated 

using a simulation of a nonlinear chemical plant with two 

continuously stirred tank reactors and a flash tank separator. 

The results show that the proposed methodology is highly 

computationally efficient as compared to simulation based 

approaches such as MC and PF and it is not sensitive to the 

user selected tuning parameters such as PF. 
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