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Abstract: We discuss the design of sampled-data economic nonlinear model predictive control
schemes for continuous-time systems. We present novel sufficient convergence conditions that
do not require any kind of terminal constraints nor terminal penalties. Instead, the proposed
convergence conditions are based on an exact turnpike property of the underlying optimal
control problem. We prove that, in the presence of state constraints, the existence of an exact
turnpike implies recursive feasibility of the optimization. We draw upon the example of optimal
fish harvest to illustrate our findings.

Keywords: economic model predictive control, stability, turnpike property, optimal control

1. INTRODUCTION

Recently, there has been a widespread interest in nonlinear
model predictive control (NMPC) schemes that are not
tailored to stabilization around a setpoint but rather to
optimization of transient performance. In Rawlings and
Amrit (2009), the name economic MPC is coined for
these approaches. Note that very similar ideas have been
discussed previously in the context of process control
under the label dynamic real-time optimization by Kadam
and Marquardt (2007).

A recent overview article by Ellis et al. (2014) points out
that turnpike properties are an intrinsic feature of optimal
control problems (OCP) arising in economic NMPC. The
term turnpike describes a property of OCPs, whereby,
for varying initial conditions and horizons, the computed
solutions stay close to a specific steady state during the
major part of the time horizon. The paper by Ellis et al.
(2014) also mentions that only a few works—such as Grüne
(2013); Rawlings and Amrit (2009); Würth et al. (2009)—
deal explicitly with turnpike properties in the context of
economic NMPC. This gap in the literature on NMPC is
surprising, since turnpike properties are known to play an
important role in the analysis of infinite-horizon OCPs,
which frequently arise in optimal control approaches to
economic systems, see Carlson et al. (1991); McKenzie
(1976). The goal of the present paper is to partially
close this gap by showing how the turnpike property of
OCPs allows establishing sufficient convergence/stability 1

conditions for NMPC.

Often, the convergence/stability of NMPC is enforced via
terminal constraints or terminal penalties that are added
to the OCP that is solved at each sampling instant, see
Mayne et al. (2000). Since, in general, terminal constraints

1 Note that for discrete-time systems one usually shows stability
of NMPC-controlled systems. In contrast, the majority of results on
sampled-data NMPC for continuous-time systems merely establishes
convergence via Barbalat’s Lemma, cf. Fontes (2001).

tend to increase the computational burden of solving the
OCP, several works have established convergence/stability
via controllability assumptions to avoid these constraints,
see Grüne and Pannek (2011); Jadbabaie and Hauser
(2005). The main contribution of this paper is a turnpike-
based approach addressing sufficient convergence condi-
tions of sampled-data NMPC schemes without the addi-
tion of terminal constraints nor terminal penalties.

We show that an exact turnpike property allows establish-
ing (i) finite-time convergence of sampled-data NMPC to
the optimal steady state and (ii) recursive feasibility of
the underlying optimal control problems. The proposed
conditions do not require any specific structure of the
cost function, such as lower boundedness of the distance
to a setpoint by a class K function. Our approach uses
techniques similar to those proposed in Grüne (2013).
However, there are two main differences to the work of
Grüne: While the former considers discrete-time economic
NMPC, we consider the sampled-data case for continuous-
time systems; and while the former proves stability based
on a dissipativity assumption (that implies the presence of
turnpike behavior in the OCP), we directly use a specific
turnpike property to establish finite-time convergence. It is
worth mentioning that the case of sampled-data economic
NMPC for continuous-time systems has received much
less attention than its discrete-time counterpart. One of
the few works on this topic uses restrictive terminal con-
straints, see Alessandretti et al. (2014). Hence, the present
paper seems to be the first work that establishes conver-
gence of sampled-data economic NMPC for continuous-
time systems and relies on turnpike properties instead of
terminal constraints and/or terminal penalties.

The remainder of the paper is structured as follows.
Section 2 describes a general sampled-data NMPC scheme.
The notion of exact turnpike of OCPs and its properties
are discussed in Section 3. The main NMPC stability
result is presented in Section 4. A fish harvest problem
is considered as an example in Section 5.
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2. SAMPLED-DATA NONLINEAR MODEL
PREDICTIVE CONTROL

We consider the nonlinear plant given by

ẋp = f(xp, up), xp(0) = x0 ∈ X0, (1)

where the state xp ∈ Rnx and the input up ∈ Rnu are
constrained to lie in the compact sets X ⊂ Rnx and
U ⊂ Rnu . The initial condition x0 is constrained to the
compact set X0 ⊆ X . We assume that f : Rnx×Rnu → Rnx

is Lipschitz on X × U and sufficiently often continuously
differentiable.

We are interested in controlling the plant (1) by means
of a sampled-data NMPC scheme similar to Findeisen
et al. (2007); Fontes (2001). The NMPC scheme is based
on receding-horizon solutions to an OCP. Hence, at each
sampling instant tk = kδ, k ∈ N, we propose to minimize
the objective functional

JT (xp(tk), u(·)) =
1

T

∫ T

0

F (x(τ), u(τ))dτ, (2)

where F : X × U → R is the cost function, T ∈ R+ is
the prediction horizon, and δ > 0 is the sampling time.
We distinguish between the plant variables in (1) and the
values predicted by the model by denoting the former with
the subscript (·)p.
The NMPC scheme is based on receding-horizon solutions
to the following OCP, denoted as OCPT (xp(tk)),

minimize
u(·)∈M([0,T ],U)

JT (xp(tk), u(·)) (3a)

subject to

∀τ ∈ [0, T ] :
dx(τ)

dτ
= f(x(τ), u(τ)), x(0) = xp(tk), (3b)

u(τ) ∈ U , x(τ) ∈ X , (3c)

where M([0, T ],U) denotes the class of measurable func-
tions on [0, T ] taking values in the compact set U .

The purpose of the subsequent developments is to establish
novel conditions ensuring that NMPC based on (3) leads
to asymptotic convergence to a specific steady state. To
this end, we make the following assumptions.

Assumption 1. The prediction model (3b) is identical to
the plant (1), i.e., there is no plant-model mismatch.

Assumption 2. For any x0 ∈ X and any input u(·) ∈
M([0,∞),U), plant (1) has a unique absolutely continuous
solution.

Let x(·, xp(tk), u(·)) denote a solution to (3b) that starts
at xp(tk) at time τ = 0 and is driven by the input

u(·). The pair (x(·, xp(tk), u(·)), u(·))T is said to be ad-
missible if u(·) ∈ M([0, T ],U) and, for all τ ∈ [0, T ],
x(τ, xp(tk), u(·)) ∈ X . An optimal solution to (3) is de-
noted as u?(·) and the corresponding state trajectory
x?(·, xp(tk), u?(·)). 2 At the sampling instant tk, the first
part of the optimal solution u?(·, xp(tk)) is applied i.e.

up(tk + τ) = u?(τ, xp(tk)), ∀τ ∈ [0, δ). (4)

Notational remarks. We denote the dependence of (3)
on the initial conditions xp(tk) and the horizon length

2 Here, we assume for simplicity that the optimal solution exists and
can be attained. We refer to Lee and Markus (1967) for conditions
ensuring the existence of optimal solutions to OCP (3).

T arising from the receding-horizon control strategy by
writing OCPT (xp(tk)). While the time variable of the
plant (1) is t ≥ 0, the time variable of OCPT (xp(tk))
is denoted by τ ∈ [0, T ]. Admissible pairs are abbre-

viated by z(·) := (x(·), u(·))T . Occasionally, we want
to highlight the dependence of an admissible pair or
an admissible input on the initial condition xp(tk), for

which we write z(·, xp(tk)) := (x(·, xp(tk), u(·)), u(·))T
and u(·, xp(tk)). Likewise, we write F (z(·, xp(tk))) :=
F ((x(·, xp(tk), u(·)), u(·) . Steady-state values are indi-
cated by the superscript (̄·), and thus we denote steady-
state pairs by z̄ := (x̄, ū)T .

3. EXACT TURNPIKE PROPERTIES OF OCPS

This paper investigates sufficient conditions for the con-
vergence of plant (1) subject to the sampled-data NMPC
scheme based on OCPT (xp(tk)). These conditions rely on
turnpike properties that describe features of solutions to
an OCP for varying initial conditions and horizon length.
To this end, we consider in this section OCPT (x0) with
x0 ∈ X0 and T > 0.

Turnpike Properties

Definition 1. (Input-state turnpike property).
The optimal solution pairs z?(·, x0) of OCPT (x0) are said
to have an input-state turnpike property with respect to
the steady-state pair z̄ = (x̄, ū)T ∈ Z if there exists a
function ν : [0,∞)→ [0,∞) such that, for all x0 ∈ X0 and
all T > 0, we have

µ[Θε,T ] < ν(ε) <∞ ∀ ε > 0, (5)

where µ[·] is the Lebesgue measure on the real line and

Θε,T := {τ ∈ [0, T ] : ‖z?(τ, x0)− z̄‖ > ε} . (6)

The pairs z?(·, x0) of (3) are said to have an exact input-
state turnpike property if Condition (5) also holds for
ε→ 0, i.e.,

lim
ε→0

µ[Θε,T ] < ν(0) <∞. (7)

The term turnpike property was coined by Dorfman et al.
(1958). The turnpike property states that—for any initial
condition x0 ∈ X0 and any horizon length T > 0—
the time that the optimal solutions spend outside an ε-
neighborhood of z̄ is bounded by ν(ε), where ν(ε) is not a
function of the horizon length T . In essence, the turnpike
property states the existence of an arc along which the
optimal pair z?(·) stays close to the steady-state pair z̄ in
the sense of the Euclidean norm ‖·‖, and the length of this
arc increases with increasing horizon length T . The exact
turnpike property (7) requires that, for a sufficiently long
horizon T , the optimal solutions have to be exactly at z̄
for all τ ∈ [0, T ]\Θ0,T . Note that if a turnpike property is
not exact we call it approximate. 3

Definition 1 is a variant of that used in Faulwasser et al.
(2014), where turnpike solutions are required to be close
only to the steady state x̄, which may be denoted as a state
turnpike. In contrast, we require here that the turnpike

3 In Faulwasser et al. (2014) we used a slightly different terminology,
denoting general turnpikes as being approximate. Herein, in order to
be more precise, we adjust the terminology.
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Fig. 1. Sketch of an exact turnpike.

solutions are close to the steady-state values of the state
and the input, which we denote as an input-state turnpike.

A definition of the turnpike property based on exponential
bounds on the trajectories is used in Damm et al. (2014)
for discrete-time problems. For continuous-time systems a
definition similar to (5) is implicitly given in Carlson et al.
(1991).

Remark 1. (Dependence on T and x0).
According to Definition 1, the steady-state pair z̄ at which
the turnpike takes place has to be the same for all horizon
lengths T > 0 and all initial conditions x0 ∈ X0.

Remark 2. (Reachability of x̄ and optimality of z̄).
Definition 1 implies that the steady state x̄, at which
the approximate turnpike occurs, is asymptotically reach-
able from all x0 ∈ X0. Furthermore, using ideas from
Faulwasser et al. (2014), it can be shown that, under a
reachability condition, z̄ = (x̄, ū)T is guaranteed to be an
optimal solution to

minimize
(x̄,ū)∈Rnx×Rnu

F (x̄, ū) (8a)

subject to

f(x̄, ū) = 0 (8b)

(x̄, ū)T ∈ X × U . (8c)

In principle, the measure-based turnpike definition used
here allows for pathological cases, in which the optimal
solutions pass the optimal steady state infinitely often
within some time interval such that the measure of Θ0,T is
larger than zero. Hence, we make the following assumption
to exclude such pathological cases.

Assumption 3. (Non-pathological exact turnpike). For all
x0 ∈ X0 and a sufficiently long horizon T ≥ Tmin,
OCPT (x0) has a non-pathological exact input-state turn-
pike at z̄ = (x̄, ū)T such that there exist non-negative
constants T1(x0) and T2 which, with τ1(x0) = T1(x0)
and τ2(T ) = T − T2, leads to 0 ≤ τ1(x0) < τ2(T ) ≤ T .
Furthermore, the optimal pairs z?(·, x0) satisfy z?(τ, x0) =
z̄ for all τ ∈ [τ1(x0), τ2(T )] and z?(τ, x0) 6= z̄ for all
τ 6∈ [τ1(x0), τ2(T )].

A graphical interpretation of this assumption is sketched
in Figure 1. In essence, it is required that, for a sufficiently
long horizon, the optimal solutions enter the turnpike
exactly at time τ1(x0) = T1(x0) and leave the turnpike
at time τ2(T ) = T − T2. 4 Note that the duration T1(x0)

4 One may wonder whether it is possible that exact turnpike
solutions first enter the turnpike exactly, then leave the turnpike,
and finally return to the turnpike. However, a simple proof by
contradiction shows that, in a time-invariant setting, any finite-time

of the turnpike-approaching part of the optimal solutions,
in general, depends on the initial condition x0. We will
show later that the duration T2 of the turnpike-leaving
part of the optimal solutions is independent of x0 and
T . 5 Several examples that satisfy Assumption 3 can
be found in the literature, cf. Fuller’s problem (Zelikin
and Borisov (1994)), the optimal fish harvest problem
discussed in Cliff and Vincent (1973), the protein folding
problem presented in Coron et al. (2014) and the ressource
allocation problems shown in Bryson and Ho (1969);
Clarke (2013).

Remark 3. (Solutions may stay close to the turnpike).
Definition 1 allows optimal solutions to leave the neigh-
borhood of z̄ at the end of the optimization horizon as
illustrated in Figure 1. However, this is not required. In
other words, solutions that enter a neighborhood of z̄
and do not leave this neighborhood later are also called
turnpike solutions.

Remark 4. (Turnpikes, parametric OCPs and NMPC).
We want to stress here that turnpike properties are prop-
erties of parametric OCPs, i.e., they describe common
features of the solution trajectories under variation of the
initial conditions and the horizon length. Since NMPC
typically relies on the receding-horizon solution to the
same OCP for varying initial conditions, turnpike prop-
erties are natural candidates to help establish convergence
conditions for NMPC.

Properties of Exact Turnpike Solutions

Next, we investigate several helpful technical properties
that characterize exact turnpike solutions.

Lemma 1. (Identical end pieces).
Consider OCPT (xi) with xi ∈ {x1, x2} and let Assumption
3 hold. Then, for any x1, x2 ∈ X0 and a sufficiently long
horizon T ≥ Tmin, the optimal pairs z?1(·, x1) and z?2(·, x2)
satisfy

1

T

∫ T

τ̃

F (z?1(τ, x1))dτ =
1

T

∫ T

τ̃

F (z?2(τ, x2))dτ (9)

for all τ̃ ∈ [max{τ1(x1), τ1(x2)}, T ].

Proof. Without loss of generality, let us assume a
sufficiently large T such that, at time τ̃ , we have
z?(τ̃ , xi, u

?(·, xi)) = z̄, xi ∈ {x1, x2}, i.e., the optimal pairs
of OCPT (x1) and OCPT (x2) have reached the turnpike.

Let OCPT−τ̃ (x?(τ̃ , xi, u
?(·))) denote the truncation of

OCPT (xi) to the reduced horizon T − τ̃ . By Bellman’s
principle of optimality, the end pieces of z?i (·, xi) truncated
to [τ̃ , T ] are optimal for OCPT−τ̃ (x?(τ̃ , xi, u

?(·))). With
x?(τ̃ , x1, u

?(·, xi)) = x?(τ̃ , x2, u
?(·, xi)) = x̄ from the

choice of τ̃ , it follows that OCPT−τ̃ (x?(τ̃ , x1, u
?(·))) and

beneficial turnpike excursion (that returns to the turnpike) either
violates the exact turnpike property or cannot exist. Due to space
limitations we do not elaborate on this here.
5 In principle, one could denote the duration of the turnpike-
approaching and the turnpike-leaving part of the optimal solutions
as T1(x0, x̄), respectively, T2(x̄). In order to simplify the notation,
we surpress the argument x̄ in both cases. One should keep in
mind, however, that changing the constraints or the cost function of
OCPT (x0) leads, in general, to a change of the turnpike z̄ = (x̄, ū)T

and thus also to different values of T1(x0) and T2.
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OCPT−τ̃ (x?(τ̃ , x2, u
?(·))) are identical, which leads to

(9). 2

The message of the previous lemma is as follows: If
the optimal solutions to an OCP show exact turnpike
behavior, then the end pieces of the optimal solutions
starting at different initial conditions lead to identical cost.
It follows that the duration T2 of the turnpike-exiting part
of the optimal solutions is independent of x0 and T .

Next, we characterize the start pieces of exact turn-
pike solutions. To this end, we denote as OCP τ̂ (x0, x̄)
a variant of OCP (3), whereby the horizon is limited
to τ̂ ∈ [τ1(x0), τ2(T )] and the additional terminal con-
straint x(τ̂) = x̄ is considered. Let u?τ̂ (·, x0, x̄) and
z?τ̂ (·, x0, x̄) denote the optimal input and the optimal pair
of OCP τ̂ (x0, x̄). The following lemma shows that the first
part of an exact turnpike solution has to be an optimal
solution to OCP τ̂ (x0, x̄).

Lemma 2. (Turnpikes are reached optimally).
Let z?(·, x0) denote an optimal pair of OCPT (x0) and let
Assumption 3 hold. Then∫ τ̂

0

F (z?τ̂ (τ, x0, x̄))dτ =

∫ τ̂

0

F (z?(τ, x0))dτ (10)

holds for all τ̂ ∈ [τ1(x0), τ2(T )].

Proof. Note that z?(τ̂ , x0) = z̄ holds for all τ̂ ∈
[τ1(x0), τ2(T )]. Hence, the truncation of z?(·, x0) to [0, τ̂ ]
is an admissible pair of OCP τ̂ (x0, x̄). Optimality of
z?τ̂ (·, x0, x̄) in OCP τ̂ (x0, x̄) leads to∫ τ̂

0

F (z?τ̂ (τ, x0, x̄))dτ ≤
∫ τ̂

0

F (z?(τ, x0))dτ. (11a)

Let us consider the input

û(τ, x0) =

{
u?τ̂ (τ, x0, x̄) τ ∈ [0, τ̂)
u?(τ, x0) τ ∈ [τ̂ , T ]

,

which is admissible in OCPT (x0). The corresponding ad-
missible pair is denoted as ẑ(·, x0). Optimality of z?(·, x0)
in OCPT (x0) leads to∫ T

0

F (z?(τ, x0))dτ ≤
∫ T

0

F (ẑ(τ, x0))dτ.

Since z?(τ̂ , x0) = ẑ(τ̂ , x0) = z̄ and û(τ, x0) = u?(τ, x0) for
all τ ∈ [τ̂ , T ], the last inequality can be rewritten as∫ τ̂

0

F (z?(τ, x0))dτ ≤
∫ τ̂

0

F (ẑ(τ, x0))dτ. (11b)

However, the construction of û(·, x0) implies∫ τ̂

0

F (ẑ(τ, x0))dτ =

∫ τ̂

0

F (z?τ̂ (τ, x0))dτ. (11c)

Equality (10) follows from (11a)–(11c). 2

It is worth mentioning that the solutions to OCP τ̂ (x0, x̄)
are, in general, not minimum-time solutions. Hence, the
time τ1(x0) is often larger than the minimal time required
to steer the state from x0 to x̄. 6

We will show next that the exact turnpike property allows
for an easy construction of optimal solutions to sequences
of OCPT (xp(tk)) as they arise in the context of NMPC.

6 An easy example demonstrating this is obtained by comparing the
minimum optimal control for the double integrator to the optimal
solution to Fuller’s problem, see Liberzon (2012).

Consider
xδ := x?(δ, x0, u

?(·, x0)),

which is the state reached from x0 after one sampling
time upon application of the optimal input u?(·, x0). We
want to show that the exact turnpike property allows
constructing the optimal solution to OCPT (xδ) from the
optimal solution to OCPT (x0). To this end, we assume
that T ≥ Tmin and consider the following input trajectory

u(τ, δ) =

{
u?(τ + δ, x0) τ ∈ [0, τ2(T )− δ)
u?(τ, x0) τ ∈ [τ2(T )− δ, T ]

. (12)

Theorem 1. (Optimal recursive solution to OCPT (x0)).
Let Assumption 3 hold. Then, for any δ satisfying

0 ≤ δ < min {τ1(x0), τ2(T )− τ1(x0)} , (13)

the input trajectory u(·, δ) from (12) is an optimal solution
to OCPT (xδ).

Proof. Consider OCPT+δ(x0), whereby, in comparison to
OCPT (x0), the horizon is increased from T to T + δ. Two
observations are important: (a) We know from Lemma 2
that, for all τ ∈ [0, τ2(T )], the input u?τ2(T )(τ, x0, x̄) from

OCPτ2(T )(x0, x̄) can be used as the first part of the optimal
input in OCPT+δ(x0); and (b) we can infer from Lemma
1 that for all τ ∈ [τ1(x0) + δ, T + δ] the input u?(τ − δ, x0)
stemming from OCPT (x0) can be used as the second part
of the optimal input in OCPT+δ(x0). Combining these
observations gives the optimal input in OCPT+δ(x0)

u?T+δ(τ, x0) =

{
u?τ2(T )(τ, x0, x̄) τ ∈ [0, τ̄)
u?(τ − δ, x0) τ ∈ [τ̄ , T + δ]

, (14)

with τ̄ ∈ [τ1(x0) + δ, τ2(T )]. Lemma 2 indicates that, for
all τ ∈ [0, τ2(T )], the optimal input in OCPτ2(T )(x0, x̄) can
be replaced, without loss of optimality, by u?(τ, x0) from
OCPT (x0). Thus, setting

u?τ2(T )(τ, x0, x̄) = u?(τ, x0)

for all τ ∈ [0, τ̄) in (14) gives

u?T+δ(τ, x0) =

{
u?(τ, x0) τ ∈ [0, τ̄)
u?(τ − δ, x0) τ ∈ [τ̄ , T + δ].

(15)

Now observe that x?(δ, x0, u
?
T+δ(·, x0)) = xδ. Hence, by

Bellman’s principle of optimality, for all τ ∈ [0, T ], the
input u?T+δ(τ + δ, x0) is optimal for OCPT (xδ). Rewriting
(15) in terms of OCPT (xδ) gives

u?(τ, xδ) =

{
u?(τ + δ, x0) τ ∈ [0, τ̄ − δ)
u?(τ, x0) τ ∈ [τ̄ − δ, T ]

. (16)

Note that, for τ̄ = τ2(T ), the last equation corresponds to
(12), which indicates that u(·, δ) from (12) is optimal for
OCPT (xδ). 2

Corollary 1. Consider OCPT (xi) with xi ∈ {x0, xδ}, with
δ from (13), and let Assumption 3 hold. Then, τ1(xδ) =
τ1(x0)− δ.
Proof. The proof follows from Theorem 1 and the follow-
ing observation: The construction of u(·, δ) in (12) implies
that, at τ = τ1(x0) − δ, the optimal solution satisfies
x?(τ, xδ, u(·, δ)) = x̄, whereas, for 0 ≤ τ < τ1(x0) − δ,
x?(τ, xδ, u(·, δ)) 6= x̄. 2

Corollary 2. Consider OCPT (x̄), where x̄ is the turn-
pike steady state, and let Assumption 3 hold. Then,
x?(δ, x̄, u?(·, xδ)) = x̄.

The proof follows directly from Theorem 1.
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4. CONVERGENCE OF NMPC BASED ON
TURNPIKE PROPERTIES

Theorem 1 and Corollaries 1 and 2 indicate that (non-
pathological) exact turnpike properties allow easy con-
struction of optimal solutions to receding-horizon se-
quences of OCPT (xp(tk)) as they arise in NMPC. Hence,
we use exact turnpike properties to establish finite-time
convergence and recursive feasibility for sampled-data
NMPC. Consider the plant (1) controlled by the NMPC
scheme based on OCPT (xp(tk)) that generates the input
(4).

Theorem 2. (Convergence of NMPC via exact turnpike).
Let Assumptions 1–2 hold and OCPT (x0) satisfy Assump-
tion 3. Then, there exists a sampling time δ ∈ (0, τ2(T )−
τ1(x0)) such that the following properties hold:

(i) If OCPT (x0) is initially feasible, then it is feasible for
all subsequent sampling instants tk > 0.

(ii) There exists a finite time t̄ ≥ 0 such that, for any
x0 ∈ X0, the NMPC input (4) generates

xp(t, x0, up(·)) = x̄, ∀t ≥ t̄.

Proof. The proof proceeds in three steps: Step 1 estab-
lishes the existence of δ ∈ (0, τ2(T )−τ1(x0)), Step 2 shows
recursive feasibility, while Step 3 establishes finite-time
convergence.

Step 1 (Existence of a sampling time δ): Theorem 1 shows
that, given a fixed x0 ∈ X0, the optimal input u?(·, x0)
and a sampling time δ satisfying (13), the input u(·, δ) in
(12) is an optimal solution to OCPT (xδ). Hence, for each
x0 ∈ X0, the choice of a suitable δ is dictated by (13).
Consider

τmax1 := max
x0∈X0

τ1(x0).

Since X0 is a compact set and, for all x0, Assumption
3 implies τ1(x0) < T < ∞, we have that τmax1 < ∞.
Assumption 3 also gives τ2(T )− τmax1 > 0. Hence, for any
sampling time δ satisfying 0 < δ < min{τmax1 , τ2(T ) −
τmax1 }, Theorem 1 holds for all x0 ∈ X0 using the same δ.

Step 2 (Recursive feasibility): Assume that OCPT (xp(tk))
is feasible and u?(·, xp(tk)) is applied for t ∈ [tk, tk + δ).
Due to Assumption 1 (no plant-model mismatch), the
plant state and the predicted state at time tk+1 = tk + δ
are equal, i.e., xp(tk+1) = x?(δ,xp(tk), u?(·, xp(tk))). It
follows from Theorem 1 that u(·, xp(tk)) in (12) is an
optimal solution to OCPT (xp(tk+1)). Hence, the sequence
of OCPT (xp(tk)) problems is recursively feasible for all tk.

Step 3 (Finite-time convergence): By Assumption 1, it
follows from Corollary 1 that

τ1(xp(tk+1)) = τ1(xp(tk))− δ, ∀k ∈ {0, 1, . . . , k̄ − 1}
where k̄ is given by

k̄ = argmin
i
{i ∈ N : τ1(x0)− iδ ≤ 0}.

The last two equations show that, for k := k̄, we have

xp(tk̄) = x̄.

So far, we have shown that the NMPC scheme based on
OCP (3) and initialized at x0 reaches the turnpike steady
state x̄ at time t̄ = τ1(x0). Furthermore, we can infer from
Corollary 2 that the generated trajectory of (1) satisfies
xp(t, x̄, up(·)) = x̄ for all t ≥ τ1(x0). This completes the
proof. 2

Theorem 2 shows that exact turnpike properties allow
establishing recursive feasibility and finite-time conver-
gence of the sampled-data NMPC scheme (3)–(4). Note
that, provided a reachability assumption holds, the most
attractive steady-state value x̄ corresponds to an optimal
solution to (8). Note also that no assumption is made on
the cost function F being lower bounded by a distance
measure to a setpoint. Again, we want to re-emphasize
that the conditions of Theorem 2 do not require any
terminal penalty nor a terminal region constraint.

Remark 5. (Verification of turnpikes properties).
At this point it is fair to ask for conditions that allow
verifaction of turnpike properties. In Faulwasser et al.
(2014) it shown that a dissipativity condition combined
with a reachability assumption are sufficient to guarantee
the existence of (state) turnpike properties. 7 It is also
shown that, for polynomial OCPs, sum-of-squares pro-
gramming can be used to verify the required dissipativity
inequality. Given the existence of a turnpike, verification
of the exactness property requires a detailed analysis of
the underlying OCP. First steps in this direction have
shown that, for OCPs that exhibit singular arcs at steady
state, turnpikes, if they exist, are exact, cf. Faulwasser and
Bonvin (2015). Due to space limitations we do not detail
this here.

5. EXAMPLE – OPTIMAL FISH HARVEST

To illustrate our previous findings we consider an example
simple enough for direct calculation of optimal solutions.
The task at hand is to minimize the objective

JT (x0, u(·)) =
1

T

∫ T

0

[
ax(τ) + bu(τ)− cx(τ)u(τ)

]
dτ,

(17a)
where x, u ∈ R, and the dynamics of x are given by

ẋ = x(x− xs − u), x(0) = x0 > 0. (17b)

The state x is the fish density in a certain habitat, the
control u is the fishing rate, and the parameter xs describes
the highest sustainable fish density. In slightly modified
form, i.e., with an additional terminal constraint, this
OCP is analyzed in Cliff and Vincent (1973). We consider
the task of minimizing (17a) subject to (17b) and the
constraints for all τ ∈ [0, t| : u(τ) ∈ [0, umax] and
x(τ) ≥ xmin, with xs > xmin > 0. The parameter values
are a = 1, b = c = 2, xs = 5, umax = 5, xmin = 0.1. It can
be shown that this singular OCP has exactly one singular
arc along which xsing = 1

2xs + b−a
2c , using = xs − xsing.

In other words, along the singular arc, the optimal pair
z?(·, x0) is at steady state.

Figure 2a shows the optimal solutions of the fish harvest
problem for different intial conditions x0,i = 0.75 + i
and a fixed horizon T = 1. As one can see, the optimal
solutions show exact turnpike behavior. It turns out that
the turnpike is the singular arc, i.e., z̄ = (xsing, using)

T .
One can also observe that, as predicted by Lemma 1, the
end pieces of the turnpike solutions are all identical. Figure
2b depicts the closed-loop solutions obtained by solving

7 A slighty different property is shown therein, instead of conditions
ensuring input-state turnpikes, conditions for state turnpikes are
discussed. Note that with straightforward modifications the proof
presented in Faulwasser et al. (2014) holds for input-state turnpikes.
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(b) Closed-loop NMPC solutions for different x0.

Fig. 2. Simulation results for the fish harvest problem.

the OCP in a receding horizon fashion. The prediction
horizon is T = 1. As one can see, and as predicted by
Theorem 2, the closed-loop NMPC solutions reach the
turnpike in finite time T1(x0) and remain there.

6. CONCLUSION

This paper has presented novel sufficient convergence con-
ditions for sampled-data (economic) NMPC schemes with
input and state constraints. The proposed conditions,
which are based on an exact turnpike property, do not
require terminal penalties nor terminal constraints and,
furthermore, they ensure recursive feasibility. Future work
will investigate conditions guaranteeing the exactness of
turnpike properties and the generalization of the conver-
gence conditions to approximate turnpikes.
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