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Abstract: In this paper, we extend a previously introduced methodology for tube-based robust economic
MPC to consider nonlinear average constraints, i.e., constraints on system states and inputs that need to
be satisfied on average. A specifically defined integral stage cost takes the disturbance into account when
considering the performance. The key idea is to use an appropriately tightened version of the average
constraints by using a modified auxiliary output function in their formulation. By means of the tightened
constraints, satisfaction of the original average constraints can be guaranteed despite disturbances acting
on the system. For some special cases, we provide concepts to simplify the tightening (which might in
general be difficult to determine). In addition, we discuss how average constraints can be used in order
to enforce convergence of the closed-loop system to an invariant set. Finally, the proposed approach is
illustrated with a numerical example.

1. INTRODUCTION

Within the last years, the study of economic model predictive
control (MPC) schemes has gained a significant amount of
attention (see e.g. Angeli et al. [2012], Amrit et al. [2011],
Grüne [2013], Müller et al. [2013], Ellis et al. [2014]). In
contrast to stabilizing MPC approaches, the primary control
objective is not the stabilization of a desired set-point (or ref-
erence trajectory). Instead, some general performance criterion
is considered, which could, e.g., be related to the economics
of the considered process, such as the maximization of some
product or of the profit of a plant. This means that some gen-
eral cost function can be employed within the MPC algorithm,
which needs not be positive definite as is typically assumed in
stabilizing MPC. As a consequence, the closed-loop system is
not necessarily convergent, but can exhibit some more complex,
e.g., periodic, behavior (see, e.g., Angeli et al. [2012]).

The possibly non-convergent closed-loop behavior leads to
the fact that besides classical pointwise-in-time constraints,
which are typically considered in MPC, also constraints on
averages of state and input variables become of interest in
economic MPC (Angeli et al. [2012], Müller et al. [2014]). In
particular, such constraints have to be dealt with online, i.e.,
within the optimization problem that is solved at each time
step. This is in contrast to standard stabilizing MPC, where
asymptotic averages of state and input variables are determined
by their value at the set-point to be stabilized, and hence
asymptotic average constraints can be considered offline (when
determining the set-point). The concept of average constraints
can be interesting for different applications such as a chemical
reactor, where the average feed flow should be constrained in
order to meet storage capacities.

As most of the practical applications are affected by distur-
bances, some effort in taking disturbances into account within
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economic MPC has been made. In Huang et al. [2012], based
on a formulation that is related to tracking MPC, a stability
result for robust economic MPC is presented. A scenario based
approach is, for example, studied in Lucia et al. [2014]. In
Bayer et al. [2014], the conceptual idea of tube MPC has been
transferred to an economic setup by taking an appropriately
modified integrated cost function into account, which can be
interpreted as an averaging over all possible states induced by
the disturbance.

The results in this paper are based on the latter approach. In par-
ticular, we extend the tube-based robust economic MPC scheme
of Bayer et al. [2014] such that it can also handle average con-
straints. A first attempt in this direction was made by Bayer and
Allgöwer [2014], where, however, only linear systems subject
to linear average constraints could be considered. In contrast,
the scheme proposed in this paper can be applied to nonlinear
systems with general (possibly nonlinear) average constraints.
To this end, we use an appropriately tightened version of the
average constraints by using a modified auxiliary output func-
tion. This allows us to guarantee satisfaction of the average
constraints by the closed-loop system despite the presence of
disturbances. In addition to the above, we discuss further results
which are of interest when considering average constraints, for
example, how these constraints can be used to enforce conver-
gence of the closed-loop system.

The remainder of the paper is organized as follows. In Section
2, we will recapitulate the concept of robust economic MPC.
The proposed robust economic MPC scheme including aver-
age constraints as well as an analysis of the resulting closed-
loop system will be provided in Section 3. Some extensions
are stated in Section 4. A numerical example illustrates the
proposed approach in Section 5, and the paper is concluded in
Section 6.

Notation: By I≥0, we denote the set of non-negative integers
and by I[a,b] the set of all integers in the interval [a, b] ∈ R. The
relation operators are meant component-wise when applied to a
vector. For example, for a, b ∈ R

n, a ≤ b means that ai ≤ bi
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for all i ∈ I[1,n]. For the sets X,Y ⊆ R
n, the Minkowski set

addition is defined by X ⊕ Y := {x+ y : x ∈ X, y ∈ Y }; the
Pontryagin set difference is defined by X ⊖ Y := {z : z +
y ∈ X, ∀y ∈ Y }. Following the definition in Angeli et al.
[2012], the set of asymptotic averages of a bounded signal
v : I≥0 → R

nv is defined by

Av[v] := {v̄ ∈ R
nv : ∃tn → ∞ : lim

n→∞

∑tn
k=0 v(k)

tn + 1
= v̄},

where tn is an infinite subsequence of I≥0.

2. ROBUST ECONOMIC MPC

In this section, we recapitulate the concept of robust economic
MPC which was developed in Bayer et al. [2014]. We consider
a nonlinear, discrete-time system of the form

x(t+ 1) = f(x(t), u(t), w(t)), x(0) = x0 (1)
with f : Rn × R

m × R
q → R

n being continuous in (x, u, w),
where x(t) ∈ X ⊆ R

n is the system state, u(t) ∈ U ⊆ R
m is

the input to the system, and w(t) ∈ W ⊂ R
q is an unknown but

bounded disturbance acting on the system at time t ∈ I≥0. The
disturbance set W is assumed to a compact and convex set and
to contain the origin. States and inputs are required to satisfy
pointwise-in-time constraints (x(t), u(t)) ∈ Z ⊆ X×U, where
Z is compact.

As mentioned above, the goal in economic MPC is not nec-
essarily stabilization of a given steady-state but rather the opti-
mization of a more general stage cost which could be motivated
by an economic performance criterion. Hence, the objective
is to find a feasible input sequence such that the asymptotic
average performance

lim
T→∞

1

T

T−1
∑

t=0

ℓ(x(t), u(t)) (2)

is minimized, where ℓ : R
n × R

m → R is the stage cost.
In contrast to stabilizing MPC, where usually the stage cost
is assumed to be positive definite with respect to the set-
point to be stabilized, the stage cost employed here does not
need to satisfy such definiteness assumptions. As mentioned
above, this can lead to a closed-loop behavior which is not
necessarily convergent but which can, for example, result in a
cyclic behavior.

Due to the unknown disturbances, the exact system behavior
cannot be predicted. However, by using the associated nominal
system

z(t+ 1) = f(z(t), v(t), 0), z(0) = z0, (3)
where z(t) is the nominal state and v(t) is the nominal input at
time t ∈ I≥0, bounds on the error

e(t) = x(t)− z(t) (4)
between the real and the nominal system at each time can be
provided. Using the feedback control law for the real input
u(t) = ϕ(v(t), x(t), z(t)), we can derive the error system
e(t+1) = f(x(t), ϕ(v(t), x(t), z(t)), w(t))− f(z(t), v(t), 0).

(5)
In order to determine bounds on the error, we make use of the
following definition.
Definition 1. (Bayer et al. [2014]) A set Ω ⊆ R

n is robust
control invariant (RCI) for the error system (5) if there exists
a feedback control law u(t) = ϕ(v(t), x(t), z(t)) such that for
all x(t), z(t) ∈ X with e(t) := x(t) − z(t) ∈ Ω, all v(t) ∈ U,
and all w(t) ∈ W, it holds that e(t+ 1) ∈ Ω and u(t) ∈ U. �

In the literature, approaches on determining such RCI sets can
be found (see e.g. Limon et al. [2002], Bayer et al. [2013]),
where the determination of the invariant sets is based on the
idea of invariant level-sets of a Lyapunov function.

For linear systems, determining an RCI set boils down to
determining a robust positively invariant (RPI) set. For finding
RPI sets, many set theoretic approaches have been presented
(see e.g. Chisci et al. [2001], Raković et al. [2005]).

In order to be able to meet the pointwise-in-time constraints
for the real system despite the presence of disturbances, the
nominal state and input must be restricted to a tightened set

Z = {(z, v) ∈ Z : (x, ϕ(v, x, z)) ∈ Z for all x ∈ {z} ⊕ Ω}.
(6)

The real states and inputs are guaranteed to be in Z for all
possible disturbances, if the nominal states and inputs are kept
within Z and the feedback ϕ is chosen such that the error e is
in the RCI set Ω.

The concept of robust economic MPC presented in Bayer
et al. [2014] is based on the following idea: When economic
stage costs are considered and when disturbances are acting
on the system, it may not be the best to consider only the
performance of the nominal system, as is typically done in
tube-based stabilizing MPC. Instead, a cost function is used
which explicitly considers the influence of the disturbance in
the following way. As mentioned above, the real system state at
future time instants cannot be predicted but is only known to lie
in the RCI set centered at the predicted nominal states. Hence,
this RCI set represents (possibly an outer approximation of) all
possible states of the real system. Thus, the following integrated
stage cost is used within the repeatedly solved optimization
problem:

ℓint(z, v) =

∫

x∈{z}⊕Ω

ℓ(x, ϕ(v, x, z))dx. (7)

This integrated cost can be interpreted as an averaging of the
stage cost over all possible states of the real system. Moreover,
the input ϕ applied to the real system is taken into consideration
within the integrated cost in order to resemble also all possible
inputs for the associated real states. For a more detailed discus-
sion on these issues, we refer the reader to Bayer et al. [2014].

The optimization problem solved at each time instant t is given
by

min
z(0|t),v(t)

N−1
∑

k=0

ℓint(z(k|t), v(k|t)) (8)

s.t. z(k + 1|t) = f(z(k|t), v(k|t), 0), (9a)

(z(k|t), v(k|t)) ∈ Z ∀k ∈ I[0,N−1], (9b)

x(t) ∈ {z(0|t)} ⊕ Ω, (9c)
z(N |t) = zs, (9d)

where z(k|t) and v(k|t) denote the k step ahead prediction of
the nominal state and input, respectively, predicted at time t. In
the following, we denote by v

∗(t) := {v∗(0|t), . . . , v∗(N −
1|t)} the optimal nominal open-loop input sequence and by
z
∗(t) := {z∗(0|t), . . . , z∗(N |t)} the associated nominal state

trajectory starting at the optimal initial state z∗(0|t).

The terminal state is constrained to the robust optimal steady-
state given by

(zs, vs) = argmin
(z,v)∈Z,z=f(z,v),

∫

x∈{z}⊕Ω

ℓ(x, ϕ(v, x, z))dx, (10)
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which is needed in the MPC algorithm in order to guarantee
recursive feasibility and establish average performance bounds
(see Bayer et al. [2014]).

3. NONLINEAR AVERAGE CONSTRAINTS

In the following, we want to consider additional average con-
straints on the system as motivated in the introduction. There-
fore, we introduce the auxiliary output

y(t) = h(x(t), u(t)), (11)
where h : Rn×R

m → R
p is assumed to be twice continuously

differentiable. With this auxiliary output at hand, the average
constraints imposed on system (1) are given by

Av[h(x, u)] ⊆ R
p
≤0, (12)

with R
p
≤0 := {y ∈ R

p|y ≤ 0}.

In case of undisturbed systems, satisfaction of the average
constraint for the closed-loop system is usually guaranteed by
using an additional constraint within the optimization problem,
namely

N−1
∑

k=0

h(x(k|t), u(k|t)) ∈ Yt.

The set Yt is given through the recursive formula Yt+1 = Yt⊕
R

p
≤0 ⊕ {−h(x(t|t), u(t|t))} and Y0 = Y00 ⊕ R

p
≤0, where Y00

is an arbitrary compact set containing the origin. This idea is,
e.g., presented in Angeli et al. [2012] and Müller et al. [2014].

As discussed in the previous section, in case of a disturbed
system, the real future system states and inputs cannot be
predicted, but only bounds are known by means of the RCI
set Ω. Hence in order to guarantee satisfaction of the average
constraints (12) for the closed-loop system, one would need to
guarantee that predicted states and inputs satisfy

N−1
∑

k=0

h(x(k|t), ϕ(v(k|t), x(k|t), z(k|t))) ∈ Yt,

∀x(k|t) ∈ z(k|t)⊕ Ω, ∀k ∈ I[0,N−1].

(13)

However, adding this constraint to the optimization prob-
lem (8)–(9) would lead to a semi-infinite programming prob-
lem (see, e.g., Vázquez et al. [2008]), which might be in-
tractable to solve online at each time step. Furthermore, in
contrast to the pointwise-in-time constraints, it is not possible
to determine offline some (constant) tightened constraint set
Y (similar to Z in (6)) and then online in (8)–(9) require that
∑N−1

k=0 h(z(k|t), v(k|t)) ∈ Y, as the constraint set Yt is time-
varying.

For linear systems with linear average constraints, this problem
can be handled by using ideas from tube MPC, namely by
means of set tightening via the Pontryagin set difference. In
order to do so, the knowledge of the error being restricted to
an RPI set can be used, see Bayer and Allgöwer [2014] and
also Section 3.1B). However, this idea of using the Pontryagin
set difference can only be applied if a linear output function
and a linear error feedback are considered, but not for general
nonlinear average constraints and dynamics. Instead, in the
following, we will use ideas from Robust Optimization, as e.g.,
presented in Ben-Tal et al. [2009]. The general approach is to
rewrite an optimization problem such that the disturbances are
only showing up within its constraints (Robust Counterpart),
and to find a feasible solution to this rewritten problem for all
possible disturbances.

Now consider again the output h. Using the feedback u =
ϕ(v, x, z) and x = z + e, we can rewrite h as

h(x, u) = h(z + e, ϕ(v, z + e, z)).

If now an appropriate feedback control law u (see Definition 1)
is applied to system (1), we know that the error e is bounded for
all times within the RCI set Ω, i.e., x(t) ∈ {z(t)} ⊕ Ω. Hence,
defining

h̄(z, v) := max
e∈Ω

h(z + e, ϕ(v, z + e, z)), (14)

we obtain that h(x(t), u(t)) ≤ h̄(z(t), v(t)) for all t ∈ I≥0.
The idea is now to design an economic MPC scheme such that
the nominal closed-loop system satisfies Av[h̄(z, v)] ⊆ R

p
≤0,

from where it then follows that also Av[h(x, u)] ⊆ R
p
≤0

for all possible disturbances, as required. Before doing so in
Section 3.2, in the following subsection we briefly discuss some
simplifications/approximations in computing the function h̄.

3.1 Simplifying the Approximations of the Average Constraint

In this section, we discuss how/in what cases the computation
of h̄ according to (14) can be simplified.

A) Simplifications for general output functions

In order to simplify the determination of the tightened con-
straints, we consider the output function component-wise and
introduce the following assumption.

Assumption 2. (Houska [2011]) For each i ∈ I[1,p], there exists
a twice continuously differentiable and non-negative function
λ̃i : Z → R≥0 which satisfies the inequality

∀ e ∈ Ω : λmax

(

∂2hi(z + e, ϕ(v, z + e, z))

∂e2

)

≤ 2λ̃i(z, v),

i.e., the maximum eigenvalue of the Hessian of hi with respect
to e is for all e ∈ Ω bounded from above by the function 2λ̃i. �

With this assumption at hand, we can follow the idea presented
in Houska [2011] and use a Taylor series expansion in order to
provide an approximated upper bound by

hi(x, u) ≤max
e∈Ω

hi(z + e, ϕ(v, z + e, z))

≤max
e,s∈Ω

{

hi|e=0 +
∂hi

∂e

∣

∣

∣

∣

e=0

e+
1

2
eT

∂2hi

∂e2

∣

∣

∣

∣

e=s

e

}

≤max
e∈Ω

{

hi|e=0 +
∂hi

∂e

∣

∣

∣

∣

e=0

e+ λ̃i(z, v)e
T e

}

=: h̃i(z, v).

Obviously, it holds that h(x, u) ≤ h̄(z, v) ≤ h̃(z, v), ∀e ∈ Ω.
Note that h̃i might in general again be a non-convex function
and, thus, possibly hard to find. However, in some cases further
simplifications and convexifications can be performed. If, for
example, Ω = B1(0) is given by the unit ball, we can find the
simpler upper bound

h̃i(z, v) = hi|e=0 +

∥

∥

∥

∥

∂hi

∂e

∣

∣

∣

∣

e=0

∥

∥

∥

∥

2

+ λ̃i(z, v).

Convexity of this function is of course depending on the con-
vexity properties of the original output function h. For further
details on the convexification and for further examples, the
interested reader is referred to Houska [2011].
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B) Linear output functions

As mentioned above, in Bayer and Allgöwer [2014] the prob-
lem of robust economic MPC including average constraints is
considered for a linear system with linear output functions of
the form

h(x, u) = hxx+ huu+ hc.

There, the Pontryagin set difference is used in order to tighten
the sets of the average constraints appropriately. In fact, this
idea can be generalized to all nonlinear systems for which the
associated RCI set Ω can be determined with a linear error
feedback of the form ϕ(v, x, z) = v +K(x − z). In this case,
the function h̄ in (14) is given by

h̄(z, v) = hxz + huv + hc +max
e∈Ω

{hxe+ huKe}. (15)

Then, in order to ensure that (12) is satisfied, one can define
the tightened set Ỹt = Yt ⊖ NhxΩ ⊖ NhuΩ and impose the
additional constraint

∑N−1
k=0 h(z(k|t), v(k|t)) ∈ Ỹt in problem

(8)–(9), resulting in a standard finite-dimensional nonlinear
program. Furthermore, computing the appropriately tightened
set can as well be performed by computing the Robust Counter-
part of a simple linear program (see e.g. Ben-Tal et al. [2009]),
which turns out to be equivalent to the used Pontryagin set
difference.

3.2 Satisfying the Average Constraint

In order to resemble the idea from nominal economic MPC, we
introduce an average constraint to be satisfied by the open-loop
predictions at each iteration. Namely, we require that

N−1
∑

k=0

h̄(z(k|t), v(k|t)) ∈ Yt, (16)

with
Yt+1 = Yt ⊕ R

p
≤0 ⊕ {−h̄(z(0|t), v(0|t))}, (17)

for all t ∈ I≥0 and Y0 = R
p
≤0 ⊕Y00, where Y00 is an arbitrary

compact set 1 containing the origin. Note that the set recursion
in (17) is given in terms of the tightened output function h̄
provided in (14).

Next, we introduce the robust optimal steady-state for systems
with average constraints (z̄s, v̄s), which will be used later in
the optimization as a terminal constraint in order to guarantee
recursive feasibility of the MPC algorithm. This steady-state
does not only need to satisfy the dynamics and the tightened
pointwise-in-time constraints on the states and inputs, but it
must also satisfy h̄(z̄s, v̄s) ∈ R

p
≤0. Taking all the necessary

constraints into account and considering the integrated cost, it
is given by

(z̄s, v̄s) = argmin
(z,v)∈Z,z=f(z,v),

h̄(z,v)∈R
p

≤0

∫

x∈{z}⊕Ω

ℓ(x, ϕ(v, x, z))dx. (18)

Note that it is crucial for the algorithm that there exists at least
one feasible steady-state which satisfies not only the tightened
pointwise-in-time constraints but also the average constraint for
the approximated output h̄.

In order to provide recursive feasibility for the average con-
straint, we must replace the terminal constraint (9d) by

z(N |t) = z̄s. (19)
1

Y00 has to be large enough such that constraint (16) is initially feasible.

Algorithm 1 Robust Economic MPC

given: initial state x(0)
for t = 0, 1, 2, . . . do

minimize (8) subject to (9a), (9b), (9c), (16), and (19)
apply u(t) = ϕ(v∗(0|t), x(t), z∗(0|t)) to system (1)

end for

The proposed robust economic MPC algorithm is now given in
Algorithm 1.

Applying Algorithm 1 results in the optimal input for the real
system u∗(t) = ϕ(v∗(0|t), x(t), z∗(0|t)) and the closed-loop
real system

x(t+ 1) = f(x(t), u∗(t), w(t)), x(0) = x0, (20a)
y(t) = h(x(t), u∗(t)), (20b)

for which the following holds.

Theorem 3. Let the optimization problem in Algorithm 1 be
feasible at time t = 0. Then it is feasible for all t ∈ I>0 and it
holds for the closed-loop system (20) that

(x(t), u(t)) ∈ Z, ∀t ∈ I≥0,

Av[h(x, u)] ⊆ R
p
≤0.

Moreover, the closed-loop system in (20) has a robust asymp-
totic average performance which is no worse than that of the
robust optimal steady-state, i.e.,

ℓint(z̄s, v̄s) ≥ lim sup
T→∞

ℓint(z∗(0|t), v∗(0|t))

T
. �

The last statement means that the average integral cost along
the nominal closed-loop sequence is no worse than the integral
cost at the robust optimal steady-state. This can be seen as an
average performance result for the real closed loop, averaged
over all possible values of the unknown real state.

Proof. Consider the standard candidate solution at time t + 1,
given by ṽ(t + 1) = {v∗(1|t), . . . , v∗(N − 1|t), v̄s} and its
associated state trajectory z̃(t + 1) = {z∗(1|t), . . . , z∗(N −
1|t), z̄s, z̄s}. The pointwise-in-time constraints are recursively
satisfied by means of the appropriate definition of Z for the
nominal states and inputs, which is given such that for all
possible disturbances the original constraints on the real states
and inputs are satisfied. Next, we want to prove recursive
feasibility for (16). Using the sequences ṽ(t+ 1) and z̃(t+ 1),
we obtain

N−1
∑

k=0

h̄(z̃(k), ṽ(k)) =

N−1
∑

k=0

h̄(z∗(k|t), v∗(k|t))

− h̄(z∗(0|t), v∗(0|t)) + h̄(z̄s, v̄s)

∈Yt⊕ R
p
≤0⊕{−h̄(z∗(0|t), v∗(0|t))}

= Yt+1, (21)

which means that constraint (16) is recursively feasible.

In order to prove that the average constraint (12) is satisfied, we
solve the recursion for Yt, that is,

Yt = Y00 ⊕ (t+ 1)Rp
≤0 ⊕

{

−

t−1
∑

k=0

h̄(z∗(0|k), v∗(0|k))

}

.

Following the proof of [Angeli et al., 2012, Theorem 5], we can
rewrite (16) as
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N−1
∑

k=0

h̄(z∗(k|t), v∗(k|t))+
t−1
∑

k=0

h̄(z∗(0|k), v∗(0|k))

∈ Y00 ⊕ (t+ 1)Rp
≤0.

Note that the first sum consists of N terms only. More-
over, each of these terms can be bounded due to compact-
ness of Z, continuity of h, and the definition of h̄ and Z

in (14) and (6), respectively. Considering any infinite subse-
quence tn ⊆ I≥0 such that a limit is admitted for sh̄(tn) :=
∑tn−1

k=0 h̄(z∗(0|k), v∗(0|k))/tn, we can see that

lim
n→∞

sh̄(tn) ∈ lim
n→∞

Y00 ⊕ (tn + 1)Rp
≤0

tn
= R

p
≤0,

where the set-limit has to be understood in the sense of [Goebel
et al., 2012, Definition 5.1].

Up to now, we have merely shown that Av[h̄(z, v)] ⊆ R
p
≤0.

In order to show satisfaction of the average constraint (12)
for the real closed-loop system, we have to recall that each
element of Av[h̄(z, v)] is a limit point of the sequence sh̄(t) =
∑t−1

k=0 h̄(z
∗(0|k), v∗(0|k))/t (when taking the limit along a

specific subsequence tn). Due to the fact that Av[h̄(z, v)] ⊆
R

p
≤0, if follows that lim sup

t→∞
[sh̄(t)]i ≤ 0, for all i ∈ I[1,p].

From the definition of h̄ in (14) and the definition of the
input u(t) in Algorithm 1, it follows that the closed-loop
system (20) satisfies h(x(t), u(t)) ≤ h̄(z∗(0|t), v∗(0|t)) for all
t ∈ I≥0. Hence we have sh(t) ≤ sh̄(t) for all t ∈ I≥0, where
sh(t) :=

∑t−1
k=0 h(x(k), u(k))/t, which in particular implies

that lim sup
t→∞

[sh(t)]i ≤ lim sup
t→∞

[sh̄(t)]i ≤ 0, for all i ∈ I[1,p].

But this means that
Av[h(x, u)] ⊆ R

p
≤0,

i.e., the closed-loop system satisfies the average constraints as
required.

The last statement – the bound on the asymptotic performance
– follows directly from [Bayer et al., 2014, Theorem 4]. �

4. FURTHER EXTENSIONS

In the following, we briefly discuss some further results and ex-
tensions, which were previously obtained in nominal economic
MPC (or robust economic MPC without average constraints),
and which can be transferred to the setting of this paper with
little effort.

A) Terminal Set Constraint and Terminal Cost

For ease of presentation within constraint (9d) and (19), we
have restricted the predicted terminal nominal state of the sys-
tem to lie at the robust optimal steady-state. However, this ter-
minal constraint can be relaxed to a terminal set constraint. To
this end, in [Mayne et al., 2000, Amrit et al., 2011], appropriate
conditions on the terminal set Xf ⊆ X and the terminal cost
Vf : Xf → R are given. These conditions include finding an
appropriate terminal controller κf : X → U. However, even
when these conditions are satisfied, recursive feasibility of (16)
can in general not be guaranteed. Namely, we see that we must
guarantee that

h̄(z, κf(z)) ∈ R
p
≤0, ∀z ∈ Xf.

If this condition is satisfied, we can directly apply the result
presented above with the appropriate terminal set constraint and
the terminal cost.

On the other hand, if this condition is not satisfied, we have
to define a suitably contracting terminal region and modify the
definition of Yt such that recursive feasibility and satisfaction
of the average constraints can still be guaranteed (see [Müller
et al., 2014, Section 3] for more details).

B) Enforcing Convergence by Average Constraints

As discussed above, the closed-loop system resulting from ap-
plication of an economic MPC algorithm does not necessarily
converge to a steady-state, but can exhibit some more complex
behavior. However, in certain applications, closed-loop con-
vergence is an important requirement which need be satisfied
and cannot be traded off against an improved performance.
In this case, appropriately chosen average constraints can be
used to enforce convergence. Namely, for nominal economic
MPC, several methods were presented in Müller et al. [2014]
how the output function h can be defined such that (asymp-
totic) convergence of the closed-loop system can be guaranteed.
These methods can directly be transferred to the setting of this
paper, i.e., for robust economic MPC, in order to determine
suitable functions h̄. In this way, asymptotic convergence of the
nominal system to some desired feasible steady-state z̃s can be
ensured, and the real closed-loop system then converges to the
set {z̃s} ⊕ Ω.

5. NUMERICAL EXAMPLE

In the following, we apply the approach presented in this
paper to a nonlinear example from the literature. The system
considered is presented in Limon et al. [2002] and Bayer et al.
[2013] and given by

x+
1 = 0.55x1 + 0.12x2 + (−0.6x1 + x2 + 0.01)u+ w1

x+
2 = 0.67x2 + ( x1 − 0.8x2 + 0.15)u+ w2.

For the constraints, we assume X = {x ∈ R
2 : ‖x‖∞ ≤ 1}

and U = {u ∈ R : |u| ≤ 0.1}. The disturbances are bounded
in W = {w ∈ R

2 : ‖w‖∞ ≤ 0.005}. Using the approach in
Bayer et al. [2013], we can derive the RCI set to be given by
Ω = {e ∈ R

2 : ‖e‖∞ ≤ 1/30}. Within the economic setup,
we want to minimize the value of x2, thus the cost is given by
ℓ(x, u) = x2. Our second goal, besides minimization of x2,
is the satisfaction of two average constraints expressed by the
output functions

h1(x) = x2
1 − 100x2

2 and h2(u) = −u.

The first constraint restricts the states on average to a sector,
while the second should keep the input positive on average.
For the initial state we set x = [0.1, 0.1]T and we choose
Y00 = {y ∈ R

2 : |yi| ≤ 0.6, i = {1, 2}}. The prediction
horizon is given by N = 20.

We can see that (z̄s, v̄s) = (0.0180, 0.0385, 0.0925) is the
robust optimal steady-state including the average constraints as
defined in (18). On the other hand, if we compute the robust
optimal steady-state without average constraints as defined in
(10), we end up at (zs, vs) = (−0.0055,−0.0578,−0.1).

As can be seen from considering the simulation results, the
closed-loop behavior can be separated into three phases. In
the first phase (iteration 0 to 10), the system converges to
the the robust optimal steady-state (zs, vs) without average
constraints. Note that (zs, vs) would be feasible including the
average constraint expressed by h1, however, not for the one
expressed by h2. By choosing Y00 rather large, it is possible
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Fig. 1. Closed-loop behavior of the real system. x1 is given in
blue, x2 in green, z̄s in magenta.
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Fig. 2. Closed-loop input to the real system. u is given in blue,
v̄s in magenta.

to keep the system for some iterations at the economically best
steady-state without violating the average constraint (16). After
some iterations (around iteration 25), this additional freedom is
no longer available. The length of this transient phase can be
tuned by the size of Y00. Once the additional freedom induced
by Y00 is no longer available and in order to meet both average
constraints, the input must become positive for some iterations.
Yet, the constraints only need to be satisfied on average, and
thus, the input can again become negative after a few iterations,
see Fig. 2. This leads to a cyclic closed-loop behavior, see Fig. 1
and Fig. 2. By means of this cyclic behavior, a closed-loop
performance can be achieved, which is better than staying at
(z̄s, v̄s), while still satisfying the average constraints. Note that
a steady-state near the origin, which would lead to a closed-
loop performance comparable to the one of the cyclic solution
and which would meet the average constraint expressed by h2,
is infeasible due to the average constraint expressed by h1.

6. CONCLUSION

In this paper, an idea for handling average constraints within
a robust economic MPC approach was presented. Based on
an appropriate reformulation of the auxiliary output, recursive
feasibility as well as satisfaction of the average constraint for
the disturbed closed-loop system was provided. Furthermore,
some extensions where briefly discussed regarding terminal set
constraints and the possibility to use average constraints for
enforcing convergence.
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