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Abstract: Soft sensors based on dynamic PLS (DPLS) have been widely used in industrial
applications for predicting hard-to-measure quality variables. However, DPLS is prone to over-
fitting due to an increasing number of model inputs. A plethora of approaches have been
proposed to improve DPLS-based soft sensors, among which variable selection has been a
prevailing one. Recently, a new method termed as DPLS-TS has been proposed to penalize
dynamic parameters in DPLS using a temporal smoothness regularization, which helps reduce
model complexity and deliver smooth predictions for quality variables. In this work we present
a comparative study of temporal smoothness regularization and variable selection in terms of
their improvements in prediction performance when a large number of lagged time series data
are involved. Comparisons are performed through a simulated case of crude distillation unit.

Keywords: Partial least squares, quality prediction, variable selection, temporal smoothness
regularization, soft sensor.

1. INTRODUCTION

Partial least squares (PLS) has been a basic tool in de-
veloping data-driven soft sensors due to significant corre-
lations existing in process data (Dayal et al. (1997); Qin
(1998); Sharmin et al. (2006)). A low-dimensional latent
subspace can be described by selecting fewer dominant
components that capture most information in input and
output data. Because of the dynamics that character-
izes industrial processes and the sparsity of quality mea-
surements, dynamic extensions of PLS, i.e., DPLS, have
been proposed and successfully implemented by including
lagged inputs (Kano et al. (2000); Lin et al. (2007); Facco
et al. (2009); Galicia et al. (2011)).

A major concern with DPLS is that an increasing number
of model inputs are utilized while the number of available
training samples remains unchanged, resulting in the over-
fitting problem. Variable selection is an effective method
that helps improve soft sensors when tremendous process
variables are used as inputs for soft sensor modeling
(Mehmood et al. (2012)). The inputs of a soft sensor are
usually selected in advance by process engineers according
to first-principle experiences. It is hence likely that some
less relevant variables would be involved. Depending upon
the statistical properties of available data, a variable
selection approach is able to identify vital process variables
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and remove unimportant ones without referring to first-
principle knowledge. Therefore the model complexity can
be greatly reduced and the prediction performance get
enhanced. Wang et al. (2014) demonstrated the efficacy
of variable selection by a comparative study of different
variable selection methods for static PLS-based soft sensor
development. In Liu (2014), variable selection is applied to
DPLS in order to prune out redundant process variables.

In addition to the variable selection approach, regulariza-
tion technique is also an effective approach in the statisti-
cal learning theory with the aim to alleviate over-fitting in
the face of limited data (Suykens et al. (2002)). Inspired by
this idea, a regularized DPLS with temporal smoothness
(DPLS-TS) has been proposed in Shang et al. (2015). This
formulation incorporates prior information about process
dynamics into the latent subspace by adding an extra
term to temporal parameters with a smooth regularization
constant. In this way, the model enjoys clearer physical
interpretations. The related optimization scheme involves
a typical eigen-decomposition task that provides compu-
tational convenience in practice.

The variable selection and regularization approaches share
some similarities because both of them essentially aim at
reducing the model complexity, only with differences in
their standpoints. In this paper, we make a comparative
study of different versions and combinations of both ap-
proaches. For variable selection purposes, the PLS with
variable importance in projection (PLS-VIP) has been
shown to outperform other variable selection methods in
terms of prediction accuracy and robustness (Chong and
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Jun (2005); Liu (2014)). Hence PLS-VIP is taken into
considerations in this study. An alternative to VIP called
group VIP (GVIP) is also proposed especially for group
variable selection in DPLS models. In addition, we propose
a new DPLS model to simultaneously adopt regulariza-
tion and variable selection, and investigate performances
thereof to gain some further insight into both approaches.
A quality prediction task in a crude distillation unit (CDU)
is used to test performance of different models in practical
scenarios. The influence of tuning parameters on predic-
tion performance is also studied and discussed in detail
through the case study.

The organization of this paper is given as follows: Section
2 reviews basics of the DPLS-TS algorithm and variable
selection approaches in brief. The concept of GVIP is also
inspired. A new DPLS model utilizing both approaches is
also proposed. Section 3 compares the methods using an
example of a crude distillation unit. Section 4 concludes
the paper based on the case study.

2. DYNAMIC PLS WITH TEMPORAL SMOOTHNESS
AND VARIABLE SELECTION

In this section, we first review the DPLS model with
temporal smoothness presented in Shang et al. (2015).
Then we introduce the variable selection method and
combine it with DPLS-TS.

Assume that there areN quality samples {y(t1), · · · , y(tN )}
and m process variables {x1(t), · · · , xm(t)}. In order to
estimate the quality, process variables are used as the
inputs of the soft sensor model. At each time ti, the kth
process variable (1 ≤ k ≤ m) can be augmented into
a historical input vector by including d lagged samples,
which is described as:

xk(ti) = [xk(ti), xk(ti −∆t), . . . , xk(ti − d∆t)]
T

∈Rd+1, 1 ≤ i ≤ N
(1)

where ti is the sampling time of the ith quality measure-
ment and ∆t is the measurement interval for process vari-
ables. By stacking historical vector of m process variables
into a column, we derive the input vector for DPLS model:

x(i) =


x1(ti)
x2(ti)

...
xm(ti)

 ∈ Rm(d+1), 1 ≤ i ≤ N (2)

For simplicity, the time ti is replaced by the index
i in the following to enumerate the process samples
{x(i), 1 ≤ i ≤ N}.

2.1 DPLS with Temporal Smoothness

In this study, the case of univariate output, i.e., PLS1
(Boulesteix et al. (2007)), is considered. Given an input
matrix

X = [x(1),x(2), . . . ,x(N)]T ∈ RN×(md+m) (3)

and an output matrix

y = [y(t1), y(t2), . . . , y(tN )]T ∈ RN , (4)

PLS projects input and output onto a low-dimensional
subspace spread by A latent variables (LVs) {t1, t2, · · · , tA}
(A � md+m). Mathematically, the latent variable model
is formed as:

X = TPT +E

y = Tq+ F
(5)

where T = [t1, t2, · · · , tA] ∈ RN×A denotes the score
matrix, and P = [p1,p2, · · · ,pA] ∈ R(md+m)×A,q =

[q1, q2, · · · , qA]T ∈ RA are the loading matrices for X and
y. Matrices E and F represent modeling residuals of X
and y. The objective of the classical PLS1 algorithm is to
sequentially solve the following problem:

max
wj

wT
j X

T
j yjy

T
j Xjwj

s.t. wT
j wj = 1, j = 1, · · · , A

(6)

where wj is the weight vector for the jth latent variable,
computed as the eigenvector of XT

j yjy
T
j Xj corresponding

to the largest eigenvalue. The score vector is then derived
as tj = Xjwj . The loading vectors for X and Y are
calculated as pj = XT

j tj/t
T
j tj and qj = yT

j tj/t
T
j tj . Then

the jth latent variable is removed and the input and output
matrices for the (j + 1)th latent variable are derived as
Xj+1 = Xj−tjp

T
j and yj+1 = yj−tjqj . With these basics,

we further analyze the influences of temporal inputs on the
model structure by decomposing the elements in LV tj :

tj(i) = x(i)Twj =

m∑
k=1

xk(ti)
Twj,k

=

m∑
k=1

d∑
l=0

xk(ti − l∆t)wj,k(l + 1).

(7)

where wj,k comes from the decomposition of wj :

wj =


wj,1

wj,2

...
wj,m

 ∈ Rm(d+1), 1 ≤ j ≤ A. (8)

Intuitively, each historical input vector xk(ti) contributes
to the LV tj by a convolution with a coefficient vector wj,k,
and each lagged sample corresponds to its own coefficient
wj,k(l + 1) in (7). The coefficients of proximal historical
samples xk(ti − l∆t) and xk(ti − (l − 1)∆t) should be
temporally similar because dynamic data have smoothly
varying impacts on inherent features {tj}. In order to
encourage temporal smoothness in weighed coefficients, a
common choice is to use the L2 regularization:
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d∑
l=1

[wj,k(l)− wj,k(l − 1)]
2

(9)

which is denoted as the temporal smoothness regulariza-
tion. Then minimization of (9) can be neatly re-written
as:

min
wj,k

wT
j,kJ

TJwj,k (10)

where

J =

 1 −1
. . .

. . .
1 −1

 ∈ Rd×(d+1). (11)

Taking into considerations coefficient vectors wj =[
wT

j,1,w
T
j,2, . . . ,w

T
j,m

]T
of all m process variables, the

smoothness penalty for wj is derived as

min
wj

wT
j (Im ⊗ JTJ)wj (12)

where ⊗ denotes the Kronecker product. Because wj is
calculated by solving an eigenvector problem, we further
modify the optimization problem in (6) by adding the L2

penalty term, expressed as follows:

max
wj

wT
j

[
XT

j yjy
T
j Xj − α||XT

j yj ||2(Im ⊗ JTJ)
]
wj

s.t. wT
j wj = 1

(13)

where α ≥ 0 denotes the regularization parameter. The
first term in (13) maximizes the covariance between Xjwj

and yj , whereas the second term serves to enhance
smoothness of coefficients. It is worth noticing that the
additional regularization constant ||XT

j yj ||2 in the second
term renders the solution wj invariant to the linear scaling
of input and output matrices. The optimization problem in
(13) simply takes the form of eigen-decomposition of merit,
which necessitates a low computational cost in practice.

With A latent variables obtained, the final regression
equation can be written as:

y = XW
(
PTW

)−1
q+ F (14)

where W = [w1,w2, · · · ,wA]. Given an out-of-sample
data point xnew, the prediction model is expressed as:

ŷ = bTxnew (15)

where b = W
(
PTW

)−1
q.

2.2 Variable Selection based on the VIP Score

The VIP score is used to evaluate the importance of each
process variable (Wold et al. (2001)). When applied in

dynamic cases, the VIP score of the l-th lagged variable of
the k-th process variable is defined as:

VIPl,k =

√√√√m(d+ 1)

A∑
j=1

(
q2j t

T
j tj ·

w2
j,k(l)

||wj ||2

)
/

A∑
j=1

q2j t
T
j tj ,

0 ≤ l ≤ d, 1 ≤ k ≤ m.
(16)

For VIP scores that are larger than a threshold, i.e.,
VIPl,k ≥ sVIP, the corresponding process variables are
considered as having significant impacts on the latent
subspace. One can easily verify that the average of squared
VIP scores equals 1. For this reason, variables of which VIP
scores are greater than one are often selected as dominant
input variables (Chong and Jun (2005)).

2.3 DPLS-TS with the Group VIP score

Both temporal smoothness regularization and variable
selection aim at reducing model complexity and further
alleviate the over-fitting problem. One would be interested
in the simultaneous utilization of these two approaches for
better prediction performances. In this context, however,
the classical VIP score cannot be directly used along
with the temporal smoothness regularization. A portion
of lagged data are removed and thus the definition of
temporal smoothness regularization becomes invalid, as
shown in Fig. 1(a). We suggest entirely removing the
process variables that are of less significance, rather than
some individual lagged measurements, as shown in Fig.
1(b). Hence the group effect on LV subspaces of all lagged
measurements xk(t) of a certain process variable should
be considered instead of the effect of individual lagged
measurements. The proposed group VIP (GVIP) score of
the k-th process variable in DPLS modeling is therefore
derived as:

GVIPk =

√√√√m

A∑
j=1

(
q2j t

T
j tj ·

||wj,k||2
||wj ||2

)
/

A∑
j=1

q2j t
T
j tj ,

1 ≤ k ≤ m.
(17)

3. SIMULATED CASE STUDY

3.1 Experimental Design

In this study, HYSYS, a well-known simulation software
for chemical processes, is used to generate experimental
datasets. The atmospheric column of the crude distillation
unit (CDU) is simulated as an object. Fig. 2 provides a
systematic sketch of an atmospheric column unit, which
arises fromWang et al. (2010). The 100% cut point (ASTM
D86) of the top product, naphtha, is set as the quality
variable. There are 13 process variables in total selected
as the inputs of soft sensors, which are listed in Table 1.
All flow rate measurements are contaminated by random
noises.

The sampling interval of input variables is set as 2 min.
To mimic the multi-rate characteristics in real industrial
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Fig. 1. Classical variable selection and group variable selec-
tion in DPLS. (a) Classical variable selection results:
Separate lagged measurements are deleted, leading to
an invalid definition of temporal smoothness regu-
larization. (b) Group variable selection results: If a
certain process variables is determined as irrelevant,
all lagged measurements of this variable should be
deleted.

Fig. 2. A systematic sketch of an atmospheric column unit.

processes, the product quality is sampled with an interval
varying around 66 min. The dataset consists of 150 samples
for training and 150 samples for test. Five versions of
DPLS models are introduced for comparison:

(a) the classical DPLS;

(b) DPLS with VIP scores (DPLS-VIP);

(c) DPLS with group VIP scores (DPLS-GVIP);

(d) DPLS-TS;

(e) DPLS-TS with group VIP scores (DPLS-TS-GVIP).

In this study, all optimal tuning parameters for DPLS
models, including the number of LVs, and the regular-
ization parameter α for DPLS-TS, are selected using 5-
fold cross-validation, and the greater-than-one rule is used

as a criterion for adopting VIP and GVIP scores. Before
model training, all the inputs and outputs have been zero-
mean normalized. To evaluate the performance of different
models, the root mean square error (RMSE) is used as the
error criterion:

RMSE =

√√√√ 1

N

N∑
i=1

[ŷ(i)− y(i)]
2

(18)

where ŷ(i) denotes the predicted output.

3.2 Results and Discussions

In simulations, various models are established, of which the
length of lagged variables, d, is chosen consecutively from
1 to 33. The RMSE curves of five approaches in terms
of d are presented in Fig. 3, and detailed RMSE values
and numbers of LVs are shown in Table 2, where the bold
figures and the shaded figures denote the minimal RMSE
value in the located row and column, respectively.
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Fig. 3. RMSE curves of different approaches with different
lengths of lagged data.

A. Discussions on prediction accuracies

First, we can observe from Table 2 and Fig. 3 that, in most
cases, the best prediction performance is achieved by two
approaches with temporal smoothness, namely, DPLS-TS
and DPLS-TS-GVIP. In addition, DPLS-TS generally has

Table 1. Process Variables in the Crude Distil-
lation Unit

No. Description

1 Top temperature
2 10# tray temperature
3 18# tray temperature
4 23# tray temperature
5 Feed temperature
6 Top pressure
7 Reflux flow rate ratio
8 Side-drawn 1# flow rate ratio
9 Side-drawn 2# flow rate ratio
10 Side-drawn 3# flow rate ratio
10 Steam flow rate ratio
11 Top recycle flow rate ratio
12 Middle recycle 1# flow rate ratio
13 Middle recycle 2# flow rate ratio
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Table 2. Results of Different DPLS Models under Different Lengths of Lagged Data

DPLS DPLS-VIP DPLS-GVIP DPLS-TS DPLS-TS-GVIP
d RMSE #LVs RMSE #LVs RMSE #LVs RMSE #LVs RMSE #LVs

1 0.4573 15 0.4446 9 0.4316 9 0.5214 16 0.4428 9
2 0.3996 15 0.3882 7 0.4070 8 0.4146 17 0.4457 11
3 0.3992 8 0.3785 7 0.3947 9 0.3996 13 0.3687 8
4 0.3769 10 0.3727 7 0.4168 11 0.3994 12 0.3666 9
5 0.3886 9 0.3797 7 0.4294 11 0.3744 16 0.3757 7
6 0.3846 10 0.3772 7 0.3761 7 0.3764 16 0.3747 7
7 0.3780 10 0.3812 7 0.3795 5 0.3761 10 0.3720 7
8 0.3736 11 0.3786 5 0.3771 5 0.3727 13 0.3692 7
9 0.3821 9 0.3765 5 0.3752 5 0.3725 10 0.3627 6
10 0.3764 9 0.3743 5 0.3733 5 0.3664 10 0.3582 6
11 0.3768 7 0.3710 5 0.3702 5 0.3577 10 0.3548 6
12 0.3698 6 0.3673 5 0.3666 5 0.3512 10 0.3512 6
13 0.3668 6 0.3623 5 0.3634 5 0.3619 11 0.3491 6
14 0.3681 7 0.3584 4 0.3615 5 0.3563 11 0.3547 6
15 0.3669 6 0.3564 4 0.3793 5 0.3532 12 0.3662 5
16 0.3658 6 0.3551 4 0.3766 5 0.3506 11 0.3636 5
17 0.3656 6 0.3531 4 0.3734 5 0.3449 10 0.3610 6
18 0.3623 6 0.3501 5 0.3691 4 0.3449 10 0.3596 6
19 0.3609 5 0.3485 5 0.3661 4 0.3431 9 0.3578 6
20 0.3568 5 0.3468 5 0.3637 4 0.3431 9 0.3562 6
21 0.3532 6 0.3451 5 0.3620 4 0.3428 9 0.3543 6
22 0.3508 6 0.3437 5 0.3608 4 0.3415 9 0.3579 11
23 0.3491 6 0.3428 5 0.3600 4 0.3414 10 0.3579 4
24 0.3491 6 0.3472 6 0.3578 4 0.3382 8 0.3572 4
25 0.3506 6 0.3468 6 0.3559 4 0.3377 8 0.3402 11
26 0.3555 7 0.3434 5 0.3541 4 0.3383 8 0.3499 5
27 0.3486 4 0.3447 5 0.3531 5 0.3532 12 0.3487 5
28 0.3459 4 0.3415 5 0.3521 5 0.3517 11 0.3479 11
29 0.3473 6 0.3415 5 0.3507 4 0.3369 6 0.3450 14
30 0.3542 4 0.3412 5 0.3502 4 0.3352 6 0.3422 9
31 0.3480 4 0.3414 5 0.3496 4 0.3292 7 0.3421 14
32 0.3477 4 0.3424 5 0.3490 4 0.3293 7 0.3408 13
33 0.3487 4 0.3417 5 0.3484 4 0.3345 6 0.3403 14

higher accuracy than DPLS, and the same trend can be
found from the comparison between DPLS-TS-GVIP and
DPLS-GVIP. It indicates that the temporal smoothness
regularization effectively helps utilize dynamic information
and thus yields improved prediction results, especially
when a large number of lagged data are involved. It is
worth mentioning that from the first two rows in Table 2,
classical DPLS without temporal smoothness is preferable
when d is small. This is because there is few dynamic
information incorporated in data, thereby restricting the
effect of the regularization term.

Second, we can see that DPLS-VIP outperforms classical
DPLS in most cases, indicating the power of variable
selection. In addition, when d is large (d > 26), more
LVs can be achieved by DPLS-VIP in spite of fewer
process variables that are used. This demonstrates that
some irrelevant process variables are harmful to the latent
structure of PLS and it is necessary to perform variable
selection (Chong and Jun (2005)). On the other hand,
it can be observed that DPLS-GVIP has no evident
advantages to DPLS. This is primarily due to the fact that
some variables are entirely deleted, leading to a greater
information loss. In contrast, DPLS-VIP might only delete
some irrelevant lagged measurements more accurately.

Finally we make a comparison between temporal smooth-
ness regularization and variable selection. By comparing
the last two columns of Table 2, we can find that when d
is small, DPLS-TS-GVIP is superior to DPLS-TS. When

d is large, DPLS-TS gives more accurate results. In our
opinion, when massive lagged data are involved, DPLS-TS
is still able to utilize dynamic information within those
less important variables that are simply abandoned by
DPLS-TS-GVIP, thereby enjoying better generalizations
than DPLS-TS-GVIP. As pointed in Qin (2014), a major
direction in the era of big data is the utilization of all
available data for more powerful models, including some
imperfect data. In this sense, the temporal smoothness reg-
ularization is more in line with the spirit of big data herein,
thereby being a promising approach to massive process
data. In contrast, variable selection might inevitably entail
information loss to some extent.

B. Discussions on dimensions of LV subspaces

An interesting fact is that DPLS commonly finds fewer
LVs when more lags are used. In this case, more dominant
components ought to be extracted instead because more
meaningful dynamic information are fused. It implies
that DPLS has some fundamental limitations in utilizing
dynamic information in that the maximization of the
covariance between input and output scores in (6) might be
over greedy so that the dynamic structure is unfortunately
undermined. Once model dynamics is violated in the first
LV, all subsequent LVs will be affected since they are
based on the residuals of first LV, leading to a totally
inappropriate description of model dynamics. In contrast,
DPLS-TS generally extracts more LVs than DPLS, which
is as well observed from the comparison between DPLS-
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TS-GVIP and DPLS-GVIP. This is because the additional
regularization term in (13) is able to integrate proper
dynamic information into LVs and thus more meaningful
LVs could be attained. Therefore, the model dynamics is
desirably preserved in the low-dimensional LV subspaces.
It demonstrates that temporal smoothness is able to utilize
time series lagged data in a more efficient way, yielding a
more complicated but reasonable structure.

C. Discussions on the optimal length of lagged data

When more lags are used, over-fitting would become a
major concern because the model complexity increases but
the number of available data samples remains unchanged.
For example, the optimal d∗ for DPLS is 28, as indicated
by shaded figures in Table 2. When d becomes larger than
28, the prediction performance thereof tends to degrade,
as shown in Table 2. Notice that DPLS-VIP, DPLS-GVIP
and DPLS-TS have larger d∗ than that of classical DPLS.
In one sense, they can use more lags because their model
complexity is reduced. In addition, the results accords with
the fact that the settling time of this CDU process is
about one hour. However, DPLS-TS-GVIP has a relatively
smaller d∗ = 25 than the other four methods, mainly
because a combination of regularization and variable se-
lection might excessively reduce model complexity. This is
also in accordance with the sub-optimality of DPLS-TS-
GVIP in terms of prediction accuracy in presence of a large
d.

4. CONCLUSION

In this work, several improvements for DPLS soft sensor
development based on temporal smoothness regularization
and variable selection have been investigated with an in-
dustrial case study. We first examined how DPLS model
is improved by the temporal smoothness regularization
and variable selection approaches. It was found that the
prediction RMSE decreases when temporal smoothness or
variable selection is adopted to reduce model complexity.
The optimal length of lags increases for improved models,
indicating that over-fitting problem is better mitigated
compared to classical DPLS. In general, temporal smooth-
ness outperforms other methods because it not only gives
the minimal prediction error but also helps find more
physically meaningful LVs, yielding a reasonable structure.
To combine the advantages of both strategies, we propose
a simultaneous utilization of temporal smoothness and
variable selection called DPLS-TS-GVIP. We find that
when d is large the accuracy of DPLS-TS-GVIP is even
lower than that of DPLS-TS, implying that some negligible
but still useful information is inevitably overlooked by
variable selection. It shows the effectiveness of temporal
smoothness in that it can appropriately extract informa-
tion from unimportant variables without being prone to
over-fitting. Therefore, the temporal smoothness conforms
better to the spirit of big data and would be a promising
approach to massive dynamic process data in future.
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