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Abstract: A discrete model predictive controller for inverse response control systems is
presented. The controller has two degrees of freedom (DOF): The feedback path contains current
and past errors, and the feedforward path contains future setpoint values for tracking control.
The controller can eliminate the inverse response completely due to its characteristic of having
an infinite number of predictive values of the setpoint disturbance.
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1. INTRODUCTION

Nonminimum phase control systems are difficult to con-
trol. A nonminimum phase control system gives an in-
verse response due to an unstable zero of the transmission
zero polynomial. Chemical process control engineers are
familiar with these control systems. Some controllers such
as the Dahlin controller cannot be used for this system.
Other controllers like the Vogel-Edgar and PID can control
this system, but they cannot suppress its inverse response,
Vu (2008a). In Camacho, E.F. and Bordons, C. (2003),
chapter 7, the authors praise model predictive control
and have a picture showing model predictive control can
suppress part of the inverse response of a nonminimum
phase system, a feat that no other controllers or control
algorithms can do so far.

Predictive control is a characteristic of discrete feedback
control systems. The control system loses one control
interval due to feedback, so it has to predict for a future
value of the controlled variable to control it. If prediction
is made at the dead time value of the control system,
the designed controller has a dead time compensator.
If, however, predictions are made beyond the dead time
value of the control system, the predictions have future
values of the control variable. This is an important and
controversial topic of predictive control, but it is only
serious for regulating control. For tracking control, the
issue of future values of the control variable is less severe;
see Vu (2008b).

In this paper, a model predictive tracking controller with
an infinite control and prediction horizon is presented.
It makes use of the fact that prediction of the setpoint
disturbance is exact, and there can be an infinite number
of predictions. The controller has been discussed in the
author’s book, Vu (2008a). Since the book is still little
known and the controller was not presented as a predictive
controller, this paper was written for this purpose. The
paper gives an improvement of the controller discussed
in Vu (2008a), and it is organized as follows. Section
I is the introduction section. In section II, we discuss
a little bit about the similarity and difference of model

predictive tracking and regulating controls. In section
III, we present our infinite-prediction-horizon predictive
controller. In section IV, we give an example, and section
V is the conclusion of the paper.

2. MODEL PREDICTIVE CONTROL

In this section, we discuss the application of predictive
control in both tracking and regulating controls. Predic-
tion of the setpoint is exact, and we can have an infinite
number of predictions. Prediction of the load disturbance
is more difficult because it requires the feedback signal.

2.1 An Account of Historical Development

In a year of the mid 90’s, the author of this paper had
a task, and that was to evaluate an algorithm of model
predictive control for the employer the author worked
for. The paper that presents the control algorithm is a
conference paper by Cutler, C.R. and Radamaker, B.C.
(1980). The algorithm is named DMC (Dynamic Matrix
Control). The author was awed by the most striking
characteristic of the algorithm: It is the calculation of
the future values of the input or control variable. This
led to the paper Vu (2008b) on the author company’s
website www.aulactechnologies.com. In Ding, B.C. (2010),
its author said that the future values of the control vari-
able are discarded. But different algorithms might have
different ways to deal with the future values of the control
variable. While the characteristic seemed to be a commer-
cial hype, it has created a number of algorithms, in the
ensuing years, that have been known in the industry. In
Camacho, E.F. and Bordons, C. (1995), the authors listed
these algorithms as: MUSMAR (Multistep Multivariable
Adaptive Control), MURHAC (Multipredictor Receding
Horizon Adaptive Control), PFC (Predictive Functional
Control), UPC (Unified Predictive Control). One algo-
rithm that has an academic origin is the GPC (Generalized
Predictive Control) algorithm. Because of its academic
origin, it has been described in a technical journal Clarke,
D.W., Mohtadi, C. and Tuffs, P.S. (1987) and textbooks
Camacho, E.F. and Bordons, C. (1995).
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2.2 Regulating and Tracking Model Predictive Controls

Fig. 1 below is the block diagram of a feedback discrete
control system.
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Figure 1. A Feedback Control System.

From this figure, we can write the following equation

yt = yspt − ŷt − nt,

= yspt −Gp(z−1)ut − nt.

There are two variables that change the current state of
the control system: One comes from the setpoint yspt , and
the other comes from the load nt. Both these variables are
called a disturbance. As long as the design of the controller
Gc(z

−1) is concerned, the feedback controller is the same
if the models of the setpoint and the load are the same.
This fact constitutes a duality of tracking, with a setpoint
change, and regulating control, with a load change. The
setpoint can be known exactly. The load disturbance is
usually not known; its existence is usually inferred from the
feedback signal. Because of the unknown or uncertainty
of the load disturbance, control theorists use a stochastic
model for the case of a load change. The following model

yt =Gp(z−1)ut + nt,

=
ω(z−1)

δ(z−1)
ut−f−1 +

θ(z−1)

φ(z−1)
at

is called the Box-Jenkins stochastic control model. In this
model, the variable at is a white noise. Reference Box,
G.E.P. and Jenkins, G.M. (1976) gives a fundamental
discussion of this model, and reference Vu (2008a) gives
an extended discussion of the controllers for this model.
This model can be obtained from the block diagram of
Fig. 1 by setting the setpoint variable yspt to zero and not
negating the feedback signal.

While a stochastic model might have a strong argument
for a load disturbance change, industrial experiences have
shown that the load change can very well be deterministic
in the sense that its successive values can be predicted
exactly from others. What is not known is the prediction
formula for prediction or the model of the disturbance.
From the time series literature, see Vu (2007), we can
say the white noise at in the Box-Jenkins model can be
replaced by the discrete Dirac delta function.

If we take this modified model and compare it with the
model given by Fig. 2 in the next section, we can say

that there is a similarity between tracking and regulating
controls. However, since the load nt is not known like the
setpoint yspt , its value must be inferred from the feedback
signal and the control variable. A long-range prediction
creates the problem of the future control variable values.
We will see this problem clearer in the next section.

3. THE INFINITE-PREDICTION-HORIZON MODEL
PREDICTIVE CONTROLLER

A feedback tracking control system has its configuration
described by the block diagram shown in Fig. 2 below.
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Figure 2. A Feedback Tracking Control System.

From the block diagram of Fig. 2, we can write

yt = −Gp(z−1)ut + yspt ,

= −ω(z−1)

δ(z−1)
ut−f−1 +

θ(z−1)

φ(z−1)
rt,

= −ω(z−1)

δ(z−1)
ut−f−1 +

θ(z−1)

φ∗(z−1)(1 − z−1)d
rt.

The variable rt is actually a multiple value of the discrete
Dirac delta function. We define it here so that the polyno-
mial θ(z−1) can be monic and the model of the system has
a similarity with the Box-Jenkins stochastic control model,
except for the minus sign in front of the transfer function
of the dynamic part. The parameter f is the dead time
of the system, and the parameter d usually has value one
because of a change in the mean level of the setpoint. Also
from this figure, we can see that the source of disturbance
of the system is the variable rt. This means that we can
write the controller in the following form

(1 − z−1)dut = l(z−1, z)rt.

In this form, the controller will calculate its control action
from all the past, current and future disturbance values.
To proceed further, we define the following functions:

u(z−1) =

∞∑
t=0

utz
−t, y(z−1) =

∞∑
t=0

ytz
−t,

r(z−1) =

∞∑
t=0

rtz
−t = const.,

ysp(z−1) =
θ(z−1)

φ∗(z−1)(1 − z−1)d
r(z−1).
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Having defined these quantities, we now use them to
construct our performance index for the controller. We can
define the performance index for our controller as

ŝ2 =Min s2,

with

s2 = Residue
z=0

[
y(z)y(z−1)

r(z)r(z−1)
+λ

(1−z)du(z)(1−z−1)du(z−1)

r(z)r(z−1)
]
1

z
.

The performance index value is a sum of two normalized
sums of squares of infinite values of the error variable yt
and the control or input variable (1−z−1)dut with a weight
or constraint on the input variable. The positive weight λ
is called a penalty constant.

From the equation of the controller, we can obtain

(1 − z−1)du(z−1)

r(z−1)
= l(z−1, z).

And by defining the following Diophantine equation

θ(z−1)

φ(z−1)
= ψ(z−1) +

γ(z−1)

φ(z−1)
z−f−1,

we can obtain the equation for the error variable as below

y(z−1)

r(z−1)
= ψ(z−1) −

ω(z−1)φ∗(z−1)l(z−1, z) − δ(z−1)γ(z−1)

δ(z−1)φ(z−1)
z−f−1.

By replacing the input variable in the performance index
equation, we can write it as

s2 = Residue
z=0

[
y(z)y(z−1)

r(z)r(z−1)
+ λl(z, z−1)l(z−1, z)]

1

z
,

and by replacing the error variable in the performance
index equation, we can write

s2 = Residue
z=0

[ψ(z) − ω(z)φ∗(z)l(z, z−1) − δ(z)γ(z)

δ(z)φ(z)
zf+1]

[ψ(z−1)−ω(z−1)φ∗(z−1)l(z−1, z)−δ(z−1)γ(z−1)

δ(z−1)φ(z−1)
z−f−1]

1

z

+λ Residue
z=0

l(z, z−1)l(z−1, z)
1

z
.

The cross-product terms of the first term in the last
equation vanish with residue calculus, so we can write the
performance index as

s2 = Residue
z=0

[
ψ(z)ψ(z−1)

1

z
+

ω(z)φ∗(z)l(z, z−1) − δ(z)γ(z)

zδ(z)φ(z)
×

ω(z−1)φ∗(z−1)l(z−1, z) − δ(z−1)γ(z−1)

δ(z−1)φ(z−1)

+λ
l(z, z−1)δ(z)φ∗(z)(1 − z)d

zδ(z)φ(z)
×

δ(z−1)φ∗(z−1)(1 − z−1)dl(z−1, z)

δ(z−1)φ(z−1)

]
.

By adding the last two terms in the last equation and
defining the spectral factorization equation

α(z)α(z−1)=ω(z)ω(z−1)+λδ(z)(1−z)dδ(z−1)(1−z−1)d,(1)

we can arrive at the following equation

s2 = Residue
z=0

[
ψ(z)ψ(z−1)

1

z
+

λ
δ(z)γ(z)δ(z−1)γ(z−1)

zα(z)φ∗(z)α(z−1)φ∗(z−1)
+

[
α(z)l(z, z−1)

δ(z)(1 − z)d
− γ(z)ω(z−1)

φ(z)α(z−1)
] ×

[
α(z−1)l(z−1, z)

δ(z−1)(1 − z−1)d
− γ(z−1)ω(z)

φ(z−1)α(z)
]
1

z

]
.

The spectral factorization always gives a stable polynomial
α(z−1) even though the right hand side of equation (1)
contains unstable zeros of ω(z−1) and zeros of unit value
of (1 − z−1)d. Therefore, the performance index value has
a finite positive number and we can minimize it by setting
the third term on the right hand side of the last equation
to zero. This means that we must have

α(z−1)

δ(z−1)(1 − z−1)d
l(z−1, z) =

γ(z−1)ω(z)

φ(z−1)α(z)
.

The last equation gives us the controller in one form. To
obtain the controller in an implementable form, we write

α(z−1)

δ(z−1)(1 − z−1)d
(1 − z−1)du(z−1)

r(z−1)
=
γ(z−1)ω(z)

φ(z−1)α(z)
,

α(z−1)u(z−1)

δ(z−1)r(z−1)
=
β(z−1)

φ(z−1)
+
ζ(z)

α(z)
z,

α(z−1)θ(z−1)u(z−1)

δ(z−1)φ(z−1)ysp(z−1)
=
β(z−1)

φ(z−1)
+
ζ(z)

α(z)
z

or

α(z−1)θ(z−1)

δ(z−1)φ(z−1)
u(z−1) = [

β(z−1)

φ(z−1)
+
ζ(z)

α(z)
z]ysp(z−1).

In terms of the variables in the time domain, we can write

α(z−1)

δ(z−1)

θ(z−1)

φ(z−1)
ut =

β(z−1)

φ(z−1)
yspt +

ζ(z)

α(z)
zyspt ,

=
β(z−1)

φ(z−1)
yspt + vt.

The variable vt is a converging sum of the weighted future
setpoint values. From the above equation, we can derive
the equation for the controller as

α(z−1)

δ(z−1)

θ(z−1)

φ(z−1)
ut =

β(z−1)

φ(z−1)
yspt + vt,

=
β(z−1)

φ(z−1)
[ŷt + yt] + vt,

=
β(z−1)

φ(z−1)
[
ω(z−1)

δ(z−1)
z−f−1ut + yt] + vt.

By moving the term with the input variable from the right
hand side of the above equation to its left hand side, we
can write

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 565



[
α(z−1)

δ(z−1)

θ(z−1)

φ(z−1)
− β(z−1)

φ(z−1)

ω(z−1)

δ(z−1)
z−f−1]ut =

β(z−1)

φ(z−1)
yt︸ ︷︷ ︸

Current and past errors

+ vt.︸︷︷︸
Infinite future setpoint values

In model predictive tracking control, the variable vt can be
calculated because we have all the values of the setpoint
yspt . This is not so in model predictive regulating control:
We do not know the future values of the load variable nt.
The future values of the disturbance nt are inferred from
the future values of the control and controlled variables ut
and yt. This is a characteristic of model predictive control.

The controller for our case is

ut =
δ(z−1)β(z−1)

α(z−1)θ(z−1) − ω(z−1)β(z−1)z−f−1
yt

+
δ(z−1)φ(z−1)

α(z−1)θ(z−1) − ω(z−1)β(z−1)z−f−1
vt. (2)

This is the controller given in Vu (2008a). The polynomial
in the denominators of the terms on the right hand side
of the last equation usually has a zero of unit value, so
calculation ut by long division is impractical. Also the
variable vt has to be calculated separately. Therefore,
for practical purposes, we can improve the calculation by
introducing another equation as follows. We write

ut =
δ(z−1)β(z−1)

α(z−1)θ(z−1) − ω(z−1)β(z−1)z−f−1
yt +

δ(z−1)φ(z−1)

α(z−1)θ(z−1) − ω(z−1)β(z−1)z−f−1
ζ(z)

α(z)
zyspt .

By replacing the model of the setpoint change, we obtain

ut =
δ(z−1)β(z−1)

α(z−1)θ(z−1) − ω(z−1)β(z−1)z−f−1
yt +

δ(z−1)θ(z−1)

α(z−1)θ(z−1) − ω(z−1)β(z−1)z−f−1
ζ(z)

α(z)
zrt.

From this equation, we can calculate the control variable
from the following equation

[α(z−1)θ(z−1) − ω(z−1)β(z−1)z−f−1]ut

= δ(z−1)β(z−1)yt +
zζ(z)δ(z−1)θ(z−1)

α(z)
rt. (3)

The controller gives the following optimal performance
index value

ŝ2 = Residue
z=0

[ψ(z)ψ(z−1)+λ
δ(z)γ(z)δ(z−1)γ(z−1)

α(z)φ∗(z)α(z−1)φ∗(z−1)
]
1

z
.

To judge and compare the performance of the controller,
we need to calculate the sums of squares of the error and
input variables. The normalized sum of squares of the
input variable (1 − z−1)dut values for the controller can
be calculated as

s2u = Residue
z=0

δ(z)γ(z)ω(z)δ(z−1)γ(z−1)ω(z−1)

zφ∗(z)α(z)α(z)φ∗(z−1)α(z−1)α(z−1)
.

To find the normalized sum of squares of the error variable,
we need to obtain the expression for the output variable
ŷt first. This can be obtained as follows. First, we find an
expression for the output variable

ŷ(z−1)

r(z−1)
=
ω(z−1)

δ(z−1)

u(z−1)

r(z−1)
z−f−1,

=
ω(z−1)

δ(z−1)
[
δ(z−1)γ(z−1)ω(z)

α(z−1)φ(z−1)α(z)
]z−f−1,

=
γ(z−1)ω(z−1)ω(z)

φ(z−1)α(z−1)α(z)
z−f−1.

The existence of the polynomial ω(z) beside of the polyno-
mial ω(z−1) is the proof that the controller can suppress
the inverse response of a nonminimum phase system. This
is because by the spectral factorization, we can always
find a stable polynomial ω∗(z−1) that will satisfy the
equation ω∗(z−1)ω∗(z) = ω(z−1)ω(z). It is as if we have
the response of a minimum phase transfer function, which
implies no inverse response for a step change in the set-
point, with the transmission zero polynomial ω∗(z−1).

Then, from the above equation, we write the error variable
as

y(z−1)

r(z−1)
=
θ(z−1)

φ(z−1)
− γ(z−1)ω(z−1)ω(z)

φ(z−1)α(z−1)α(z)
z−f−1,

= ψ(z−1) +
γ(z−1)

φ(z−1)
z−f−1 − γ(z−1)ω(z−1)ω(z)

φ(z−1)α(z−1)α(z)
z−f−1,

= ψ(z−1) +
γ(z−1)[α(z−1)α(z) − ω(z−1)ω(z)]

φ(z−1)α(z−1)α(z)
z−f−1,

= ψ(z−1) + λ
γ(z−1)δ(z−1)(1 − z)dδ(z)

φ∗(z−1)α(z−1)α(z)
z−f−1.

From this equation, we can calculate the normalized sum
of squares of the error variable values for the controller
from the following equation

s2y = Residue
z=0

[ψ(z)ψ(z−1)
1

z
+

λ2
γ(z)δ(z)δ(z)(1 − z)dγ(z−1)δ(z−1)δ(z−1)(1 − z−1)d

zφ∗(z)α(z)α(z)φ∗(z−1)α(z−1)α(z−1)
].

4. AN EXAMPLE

For a numerical example, let us consider the following
nonminimum phase feedback control system with the
transfer function

ŷt =
ω(z−1)

δ(z−1)
ut−1,

=
−0.4322 + 0.7806z−1 + 0.4655z−2 − 0.1942z−3

1+0.0835z−1−1.2126z−2−0.0635z−3+0.3475z−4
ut−1.

The system is required to follow an exponential change to
a new set point with the equation

θ(z−1)

φ(z−1)
=

1

(1 − 0.2z−1)(1 − z−1)
.

From the last equation and with the value of the dead time
f = 0, we can obtain the following polynomials:
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ψ(z−1) = 1,

γ(z−1) = 1.2 − 0.2z−1.

The system is nonminimum phase; therefore, a penalty
constant is imperative for the system. Assuming that the
penalty constant has a value of λ = 0.05, we can obtain
the necessary polynomials as follows. From the spectral
factorization equation

α(z)α(z−1)=ω(z)ω(z−1)+λδ(z)(1−z)dδ(z−1)(1−z−1)d,

we can obtain the polynomial

α(z−1) = 1.0272 − 0.0873z−1 − 0.4736z−2

+0.1363z−3 + 0.0341z−4 − 0.0169z−5.

From the spectral separation equation

γ(z−1)ω(z)

φ(z−1)α(z)
=
β(z−1)

φ(z−1)
+
ζ(z)

α(z)
z,

we can obtain the following polynomials:

β(z−1) = 1.2631 − 0.2631z−1,

ζ(z−1) = 1.7833 + 0.7238z−1 − 0.4267z−2

−0.0218z−3 + 0.0214z−4.

With all the necessary polynomials procured, we can get
the controller, given by (2), as

ut =

1.2297 − 0.1534z−1 − 1.5125z−2 + 0.2325z−3

+0.4436z−4 − 0.0890z−5

1 + 0.4465z−1 − 1.5317z−2 − 0.2398z−3

+0.3912z−4 − 0.0662z−5

yt

+

0.9736 − 1.087z−1 − 1.0834z−2 + 1.3711z−3

+0.1764z−4 − 0.4183z−5 + 0.0677z−6

1 + 0.4465z−1 − 1.5317z−2 − 0.2398z−3

+0.3912z−4 − 0.0662z−5

vt.

The controller has integral action in the feedback loop,
because the denominator polynomial in the above equa-
tion has a zero with the value z−1 = 1. However, the
feedforward path does not have integral action, because
this zero of integration is canceled out by a zero of the
same value.

Many setpoint-change or tracking controllers have only one
control path, called degree of freedom (DOF), symbolized
by the signal yt. So the controller with only the variable
yt on the right hand side of the last equation is called
an 1-DOF controller. Then some researchers, see Mosca
(1995) page 69, broke the signal yt into two signals ŷt
and yspt and called their controllers a 2-DOF controller.
But this idea is a faux pas in control theory because
the controller is nonperforming. This was mentioned in
Grimble (1994). The purpose of feedback control is to force
the signal ŷt to be the same as the signal yspt . The best
way to do it is to subtract them together and force the
difference to be zero. Breaking the error variable signal yt
into two signals might give a control engineer some degrees
of freedom, but the act defeats the purpose of feedback
control.

The controller given by last equation can also be called a
2-DOF controller due to the two signals yt and and vt. But
these two signals can be broken into 3 control paths: the
available output variable ŷt, the current and past setpoint
values and the future setpoint values. The setpoint variable
yspt , however, cannot be legitimately named as two distinct
variables. Reference Grimble (1994), therefore, uses the
name 2.5-DOF for the controller given by the last equation,
which is what this paper also uses.

The responses of the variables by the two controllers,
1-DOF and 2.5-DOF, are shown in Fig. 3. From the top
graph of this figure, we can see that the 1-DOF controller
cannot overcome an inverse response by a change of the
set point to a new level, but the 2.5-DOF controller can.
The output variable given by this controller follows the
setpoint closely without dipping first and rising later like
the one given by the 1-DOF controller.
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Figure 3: Responses of Controllers.

We now check the value of the performance index for the
controller. We can write
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ŝ2 =Residue
z=0

[
ψ(z)ψ(z−1)

z
+λ

δ(z)γ(z)δ(z−1)γ(z−1)

zα(z)φ∗(z)α(z−1)φ∗(z−1)
],

= 1 + 0.05 × 2.2030,

= 1.1101,

= 1.0201 + 0.05 × 1.8001,

= s2y + λs2u.

We can see that the controller obeys its performance index.
The control algorithm has an infinite control horizon, but
the sums of squares s2y and s2u and the performance index

value ŝ2 have finite values: This means that the controller
gives stable feedback control values. For a nonminimum
phase system, the 2.5-DOF controller usually gives a sig-
nificant improved performance over the 1-DOF controller.
For a minimum phase control system, the improvement
in performance of the 2.5-DOF controller over that of the
1-DOF controller is usually negligible.

The formulae for the performance index and the sums of
squares of the 1-DOF controller are given in Vu (2008a)
as follows.

ŝ21−dof =Residue
z=0

[ψ(z)ψ(z−1)
1

z
+

λ
δ(z)γ(z)δ(z−1)γ(z−1)

zα(z)φ∗(z)α(z−1)φ∗(z−1)
+

ζ(z)ζ(z−1)

zα(z)α(z−1)
],

s2u,1−dof = Residue
z=0

δ(z)β(z)δ(z−1)β(z−1)

zα(z)φ∗(z)α(z−1)φ∗(z−1)

and

s2y,1−dof = Residue
z=0

η(z)η(z−1)

zα(z)φ∗(z)α(z−1)φ∗(z−1)

with

η(z−1) =
α(z−1)θ(z−1) − ω(z−1)β(z−1)z−f−1

(1 − z−1)d
.

For this 1-DOF controller, we have

ŝ21−dof =Residue
z=0

[ψ(z)ψ(z−1)
1

z
+ λ

δ(z)γ(z)δ(z−1)γ(z−1)

zα(z)φ∗(z)α(z−1)φ∗(z−1)

+
ζ(z)ζ(z−1)

zα(z)α(z−1)
],

= 1 + 0.05 × 2.2030 + 3.9888,

= 5.0990,

= 4.9773 + 0.05 × 2.4336,

= s2y,1−dof + λs2u,1−dof .

It has much higher values for the sums of squares of the
error and input variables.

5. CONCLUSION

In this paper, we have presented a model predictive
controller that can prevent an inverse response of a control
system with a nonminimum phase transfer function. A
model predictive controller with a long-range prediction
can suppress only part of the inverse response because

it can see part of the inverse response through its finite
control horizon. The predictive controller presented in this
paper has an infinite control horizon, so it can completely
prevent an inverse response. The paper also demonstrates
the fact: Long-range predictive control is only legitimate
for tracking control.
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