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Abstract: This paper gives a concise review of work on ensuring feasibility and stability within
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proposals in the literature is presented and this forms a useful baseline for establishing where
improvements can be made.
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1. INTRODUCTION

Model Predictive Control (MPC) is one of the most suc-
cessful advanced control approaches in the industrial field.
This is, in part, due to its ability to handle input and state
constraints. The basic concepts of model predictive control
are well illustrated and understood e.g. Rossiter (2003);
Wang (2009). However, it noted that in the literature MPC
tracking problems have often been considered as regulating
problems, about a steady-state operating point, rather
than full tracking problems.

One of the challenges within a tracking scenario is the
need to ensure feasibility, that is to guarantee that the
class of predictions available to the MPC algorithm can
indeed satisfy all the constraints simultaneously. However,
even putting to one side issues linked to model uncertainty,
feasibility can easily be lost during rapid or large set point
changes and during disturbance changes, both of which
have a strong impact on terminal constraints Limón et al.
(2008); Rossiter (2003). Consequently, there is a strong
link between set point tracking and feasibility; feasibility
of the controller may be lost and the controller ill-defined,
or not defined at all Rawlings et al. (2008), in the case of
some set point changes.

A convenient and essential component to enable stability
guarantees of MPC algorithms is to ensure feasibility, that
is, to ensure the existence of a set of future controls which
ensure predictions meet all constraints, including the ter-
minal constraint. For a suitable underlying MPC approach
such as dual-mode Scokaert and Rawlings (1998); Rossiter
et al. (1998), a feasibility guarantee is often sufficient to
enable a simple guarantee of nominal (and at times ro-
bust) closed loop stability for the controller. Some authors
have tackled the potential loss of feasibility during target
changes by developing modified formulations for the MPC
algorithm, but nevertheless, the range of solutions and
approaches in the literature is still quite limited.

? The first author is supported by a grant from the Libyan govern-
ment.

1.1 Overview of MPC approaches for tracking

Many results have been obtained for feasibility and stabil-
ity of MPC for tracking scenarios. In Rossiter et al. (1996),
a Constrained Stable Generalised Predictive controller
(CSGPC) for SISO plants is presented; the proposed con-
troller ensures feasibility by deploying, temporarily, an
artificial reference as a degree of freedom (d.o.f) and con-
vergence is ensured by means of a contractive constraint
based on the artificial reference. In Rossiter (2006), it
is demonstrated that changes to the loop target can be
a very effective mechanism for increasing the volume of
feasible regions; consequently an artificial target can be a
more useful degree of freedom within MPC than the more
normal choice of future control increments. A conceptually
equivalent approach for dealing with temporary infeasibil-
ity due to changes in the target is a command governor
(CG), whose action is based on the current state, set point
and prescribed constraints Bemporad et al. (1997). One
example of this approach is the addition to the system
of a non-linear low-pass filter, which is selected to ensure
the satisfaction of constraints while retaining offset free
tracking behaviour. Command governor approaches have a
strong synergy with closed loop paradigm implementations
of MPC. Similar ideas have been applied in conjunction
with non-square techniques Shead and Rossiter (2007)
which investigates the impact of non-square systems on
feasibility in tracking problem in linear MPC.

In Limón et al. (2008); Ferramosca et al. (2009), a slight
variation on MPC for tracking changing constant ref-
erences for both constrained linear and non-linear sys-
tems was presented. These controllers ensure feasibility by
means of adding an artificial steady state and input as a
degree of freedom to the optimization problem. Conver-
gence to an admissible target steady state is ensured by
using a modified cost function and a stabilizing extended
terminal constraint. Optimality is ensured by means of
an offset cost function which penalizes the difference be-
tween the artificial reference and the real one. A subtlety
of interest here is that the recovery of local optimality
Ferramosca et al. (2009) despite the use of a bias term in
the performance index. It is proved that the proposed con-
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troller steers the system to the target if this is admissible. If
not, the controller converges to an admissible steady state
optimum according to the modified performance index.
The approach was extended in Ferramosca et al. (2011)
by considering an alternative offset cost function based on
the infinity norm as it was show this enabled the recovery
of a local optimality property while retaining all the key
properties of the original formulation.

In Rao and Rawlings (1999), a new infinite horizon MPC
formulation for the case of the active steady state con-
straints is implemented and discussed. This new formu-
lation is based on an iterative algorithm that determines
the optimal solution of the control problem within a user
specified tolerance. In Rawlings et al. (2008), the case
of unreachable set points is considered; here the authors
propose that the performance index should be based on
the distance from the unreachable set point rather than the
artificial reachable one. The authors proved the asymptotic
stability and the convergence to the steady state values
with a desired tracking response, despite the performance
index being technically unbounded.

1.2 Contributions of this paper

This paper reviews some existing methods discussed above
which are related to the feasibility and stability in linear
MPC for different tracking scenarios and from this pro-
poses avenues for future work. Section 2 demonstrates the
basic MPC algorithm components, section 3 describes dif-
ferent methods for retaining feasibility, section 4 presents
the summary of similarities and weaknesses of each method
and section 5 gives the conclusions and future work.

2. BASIC MPC ALGORITHM COMPONENTS

In this section, we summarise the main MPC algorithm
components such as models, performance indices, and the
degrees of freedom. These are used as foundation for the
comparisons given later.

2.1 State space Model

For convenience, the model type used in the reviewed
methods is the state space model represented as follows:

xk+1 = Axk +Buk, yk = Cxk +Duk (1)

where x, y, u are states, process output and process in-
puts respectively and A,B,C,D are matrices defining the
model; here take D = 0. Input and output disturbances d
and p can be incorporated with small modifications:

xk+1 = Axk +B(uk + d), yk = Cxk + p (2)

In this case, the observer models are augmented to include
the disturbance into the system dynamics. For conciseness
model parameter uncertainty is not discussed in this paper.

2.2 Performance index or cost function

For a typical MPC algorithm, the control law is based
on the optimisation of predicted performance based on a
performance index. The most common performance index
e.g. Rossiter (2003); Rossiter et al. (1996) penalises the

weighted squares of both predicted tracking errors and the
control increments/deviations (weights W,Wd), that is:

J =

ny∑
i=1

‖rk+i−yk+i‖22+

nu−1∑
i=0

‖W (uk−uss)‖22+‖Wd∆uk‖22

(3)
where uss, xss are the expected steady-states of the input
and states which enable y → r asymptotically, r being the
notional true output target.

Nevertheless, the treatment of tracking may require minor
changes to this popular index where horizons ny, nu are
large (or infinite) and it is not possible for the output
prediction to reach the desired target while satisfying
constraints (which would imply J is unbounded (Rawlings
et al. (2008)). A common adjustment, presented in detail
in the next section, is to penalise the deviations from a
well selected reachable but artificial steady state target
and in addition penalising the deviation of the artificial
steady state target from the true steady state target e.g.
Rao and Rawlings (1999); Limón et al. (2008); Rossiter
et al. (1996); Rossiter (2006).

2.3 Constraints.

Many processes contain constraints such as upper and
lower limits on the input ui ≤ ui ≤ ui, or on the input rates
4ui ≤ 4ui ≤ 4ui. One can also contain constraints on
outputs and states such as y

i
≤ yi ≤ yi and xi ≤ xi ≤ xi

respectively, and indeed more complex constraints can
also exist. Input constraints are usually refereed to hard
constraints which must be satisfied while output/state
constraints may be refereed to as soft constraints which
should be satisfied if possible. Assuming a linear model, the
constraints above can be captured as linear inequalities in
the assumed d.o.f and hence combine with the performance
index to give a quadratic programming optimisation which
defines the control law.

Constraints are a key factor because it is often in-
consistency between these and the requirement that
the predicted output reaches the target asymptotically
(limk→∞ yk → r) while using just a few control d.o.f.
that causes so called infeasibility. In such cases MPC
is undefined and so something has to be changed. One
could relax so called soft constraints, but the approaches
discussed in this paper consider the alternative mechanism
of temporary, or permanent, changes to the target r.

2.4 Degrees of freedom (d.o.f)

It is common to define the degrees of freedom as the first
nu control increments (or moves), that is uk, · · · , uk+nu−1.
For convenience, with infinite horizon algorithms, the d.o.f
can be equivalently parametrised Rossiter et al. (1998) as
perturbations ck about a nominal stabilising control law.

uk − uss = −K(xk − xss) + ck; i < nu
uk − uss = −K(xk − xss); i ≥ nu (4)

However, in cases where the change in the steady-state
xss, uss is too rapid, the prediction class (4) is not suffi-
ciently large to meet constraints and therefore either more
(larger nu) or alternative d.o.f. are required. A simple
solution Rao and Rawlings (1999) could be to increase the
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control horizon nu, but this is computationally expensive
so not pursued here. It is common in the existing work
for guaranteeing feasibility of MPC during tracking to add
alternative d.o.f in the optimisation problem to the normal
MPC d.o.f mentioned above:

(1) The extra d.o.f proposed in Rossiter et al. (1996) is a
slack variable, essentially a deviation from the ideal
steady-state.

(2) In Shead et al. (2008); Limón et al. (2008) the d.o.f are
two free variables that capture changes in the steady
state as well as transient control moves.

This paper does not discuss alternative parameterisations
of the degrees of freedom Khan and Rossiter (2013) as
that is a conceptually different approach.

3. FEASIBILITY IN MPC FOR TRACKING

Common causes of infeasibility are set point and distur-
bance changes which cause a conflict between the input
parameterisation of (4) (in effect the terminal mode re-
quirements of a dual-mode approach) and the constraints.
Several authors have proposed approaches to maintain
the feasibility and guarantee asymptotic stability in dual-
mode MPC hence the aim of this section is to give a brief
review of some of those approaches.

Remark 1. It should be noted that single mode finite hori-
zon algorithms often have better feasibility properties due
to the lack of a terminal constraint, but there can also be
corresponding performance/stability weaknesses and con-
sequently this paper focusses on dual-mode approaches.

3.1 Slack Variable Endpoint Constraint (SVEC)

This approach was first presented by Rossiter et al. (1996)
for guaranteeing feasibility and stability of dual mode
MPC during rapid set point changes; further insights and
options were presented in Rossiter (2006). The key idea
is that constrained stable generalised predictive control
(CSGPC 1 ) is applied while it remains feasible, but to
switch to a new strategy which implements a modified
terminal constraint at times when CSGPC is infeasible;
this is done by replacing the terminal mode in (4) by:

uk − uss = −K(xk − xss) + c∞; i ≥ nu (5)

Convergence is achieved by ensuring the implied slack
variable c∞ converges to zero and thus ultimately, the
system converges to the correct set point.

(1) The original proposal of Rossiter et al. (1996) en-
forced a contractive constraint on the slack variable
c∞, that is

‖c∞k+1‖ ≤ ‖c∞k ‖ (6)
and minimised the true cost J subject to this con-
straint and using predictions (5).

(2) Later work in Rossiter (2006) noted that the un-
derlying concept could easily be applied for general
terminal conditions and also replaced the constraint
(6) by modifying the cost as follows:

min−→c ,c∞
‖c∞‖P +

∑
∞
‖r − y − αc∞‖22 + λ ‖∆u‖22 (7)

1 Readers should note that CSGPC had deadbeat terminal con-
straints, although the principal concepts can be applied to more
general terminal constraints.

Readers will note the tracking performance is based
on the artificial target (namely r−αc∞) and not the
true target and the addition of a term penalising the
magnitude of the slack variable.

(3) It can be shown that, assuming c∞ = 0 is feasible
asymptotically, then c∞ → 0 and thus the approach
will both retain feasibility and converge as, at each
sample instant, there is an implied terminal con-
straint limk→∞ yk = r − αc∞.

Readers may also note that, in cases where the true set
point is not reachable, the proposed algorithm will cause
the slack variable and thus the output to settle at the
nearest (determined by any scaling in J for the MIMO
case) boundary.

3.2 MPC for tracking

Although in principle applicable to the MIMO case, the
approach of Rossiter (2006) was limited in scope and
detail. Subsequently, the approach was extended by Limón
et al. (2008) to more generic scenarios such as non-square
systems and to take up an flexibility in the implied steady-
state for a given target. The authors proposed to use a cost
function which is explicitly linked to the states, rather
than the outputs, and based on deviations in the states
and inputs from their target steady-state values (xss, uss).
The ’artificial’ steady-state is denoted here as xsa, usa and
xN is the terminal state (N steps ahead):

J =

N−1∑
i=0

(‖xi − xsa‖2Q + ‖ui − usa‖2R)

+ ‖xN − xsa‖2P + ‖xss − xsa‖2T

(8)

The key contribution of this paper is to define and exploit
the full flexibility in the implied steady-state xsa, usa to
meet an implied steady-state output ysa.[

A− In B 0
C D −Ip

][xsa
usa
ysa

]
=

[
0
0

]
⇒

[
xsa
usa
ysa

]
= Xθ (9)

The control input predictions of (4) then take the form

u = K(x− xsa) + usa + ck = Kx+ Lθ + ck. (10)

where flexibility in the artificial target is embedded in the
d.o.f. θ; the definition of L follows immediately from X
and (10). It is noted that this new controller provides
a large domain of attraction and of course guaranteed
feasibility/convergence. However, the additional degree of
freedom and the use of artificial targets will result in loss
of local optimality.

3.3 Recovering local optimality with modified performance
indices

It is clear that the performance indices of (7,8) include
what could be considered two alterations from what is
ideal.

(1) The predictions are costed on the basis of an artificial
(or incorrect) target.

(2) The performance index has a transient bias due to
the inclusion of the additional term weighting the
distance between the true and artificial targets.

The problem of local optimality loss, that is the inclusion
of the bias term, was addressed in Ferramosca et al. (2011).
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They showed that one could retain the core property that
the artificial target converged to the true target. However,
more importantly, by appropriate selection of this bias
term, one could also recover local optimality, which is to
say the bias term does not impact on the main performance
aspects of the optimisation.

To what extent this issue, that is local optimality, is
significant is probably open to debate. Clearly the desire
is that the artificial target keeps changing until it returns
to the true value, and therefore any ’optimality’ in the
predictions with respect to a temporary artificial target
is to some extent meaningless as the future parts of the
performance are being assessed against a target which
will no longer be valid in the next samples. Ideally, one
would want performance to be measured against the most
representative infinite horizon performance index possible,
and that of course is with respect to the true target.

3.4 Infinite variable horizon regulator

This approach presented in Rao and Rawlings (1999) is
also focused on implementing an infinite horizon MPC
algorithm for the scenarios where constraints are active at
steady state due to set point/disturbance changes. It uses
a slightly more complex disturbance model but otherwise
is conceptually similar to the previous section. The key
difference is that the step used to determine the artificial
target deploys a cost which includes a linear term. First
capture the offset between the ideal target r and the
artificial target ysa as follows:

‖r − ysa‖ ≤ η; η ≥ 0 (11)

Next, utilise the following minimisation to determine the
artificial steady-state; this assumes equivalent equations
to (9).

min
xsa,usa,η

[ηTQssη+(uss−usa)TRss(uss−usa)]+qTssη (12)

It can be shown that, if feasible, then η = 0 will result.
The authors argue that the combination of linear and
quadratic terms on η gives clear benefits in the resulting
solution. There are some minor nuances required to ensure
the target steady-state xsa is unique.

Hereafter, the control law derivation is a standard dual-
mode predictive control law Scokaert and Rawlings (1998),
but based on the artificial steady-states. Nevertheless,
there is some discussion of the fact (often overlooked
in papers) that when the steady-state lies on an active
constraint then computation of the admissible set Gilbert
and Tan (1991) may not converge!

3.5 Set point-tracking MPC (sp-MPC)

This approach was proposed by Rawlings et al. (2008) for
scenarios where the true set points are unreachable, for
example due to a large disturbance. This approach is also
quite similar conceptually to section 3.1 in that it implic-
itly uses the same input parametrisation of eqns.(4,5,10)
but with some minor differences: (i) there is a two stage
optimisation equivalent to algorithm 2.1 in Rossiter et al.
(1996) and (ii) the true set point was retained in J rather
than the artificial one as in eqns.(7,8).

(1) First find the ’artificial target’ (xsa, usa, or equiva-
lently slack c∞) as close as possible to the true target

(xss, uss) such that one can determine a feasible input
trajectory.

min−→c ,c∞
(xsa−xss)TQ(xsa−xss)+(usa−uss)TR(usa−uss)

(13)
(2) Use input predictions (4,5) with the c∞ from optim-

sation (13) and then optimise the ’true’ performance
index (for example):

J =

∞∑
i=0

(‖xi − xss‖2Q + ‖ui − uss)‖2R) (14)

The main contribution of this paper was not so much the
choice of degrees of freedom, the steps or the choice of
cost, but rather the observation that even with general
terminal conditions (CSGPC used dead-beat conditions),
despite the cost function (14) being unbounded in cases
where the artificial target does not match the true target,
it is still possible to derive a rigorous proof of convergence
(recursive feasibility is obvious). It is suggested that using
the true target rather than the artificial target within J
modifies transient behaviour and is expected in general
to lead to better performance although this observation
is somewhat subjective as one could equally argue that a
cost based on an unreachable target is an ill-posed one.

3.6 Robust offset free tracking with active constraints

A robust approach was presented by Shead et al. (2008)
and extends the work of Limón et al. (2008) and others
by analysing how the decision making alters in the case
of parameter uncertainty and where the final target is
unreachable. It was shown that optimisation algorithms
already in the literature may result in poor choices for
the artificial steady-state in the case where there is model
uncertainty, that is what appears to be the closest point
in space within the feasible region to the real target may
in fact be be far from the best artificial target to aim for.

Parameter uncertainty alters the shapes of the feasible
regions and implicitly the equalities implicit in (9). It is
easy to show that even small changes in a few parameters
can lead to large changes in the implied ’best’ steady-
state (xsa, usa); clearly the designer wants to be able to
monitor, as far as possible, whether the artificial steady-
state is indeed close to the best position. The paper Shead
et al. (2008) demonstrated that an algorithm such as that
in Limón et al. (2008) which does not explicitly allow for
unreachability could (not must) converge to the wrong
steady-state; for readers looking at these two papers the
performance indices and d.o.f. look slightly different but
in essence are equivalent.

The original observations of Shead et al. (2008) were ex-
tended in Shead et al. (2010) where an algorithm was pro-
posed which iteratively improved the choice of the artificial
steady-state to take account of parameter uncertainty.
The technique was based on an analysis of the underlying
KKT conditions for optimality and compensates for the
relaxation of condition of optimality in Kvasnica (2009).
Using KKT conditions of optimality, it is shown that the
necessary condition for correct target selection for SISO
systems is that the sign of the determinant of both the
plant and the model’s steady state gains and must be the
same. For multivariable systems, the necessary condition

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 817



for a single active constraint, is that the rows of the inverse
matrices of the plant and the model’s steady state gains
corresponding to the active constraints should be linearly
dependent. For multiple active constraints a more general
sufficient condition for constrained offset free control is
that model gain matrix differs from plant gain matrix by
only a scalar gain.

In summary, the key contribution is to make a case for a
separate SSTO (steady-state target optimisation Muske
and Rawlings (1993),Rao and Rawlings (1999)) rather
than embedding into the performance index as in (8,7).

(1) The proposed design is a two stage process with stage
1 being the iterative estimate of the artificial steady-
state to improve the choice.

(2) The performance index to be minimised is based
solely on the artificial target and takes no account of
the real, unreachable, target (as in Rao and Rawlings
(1999)).

Nevertheless, while this SSTO is very insightful, it could
be difficult to use effectively on MIMO examples as the
implied KKT conditions for convergence to the correct
point are quite restrictive.

4. DISCUSSION

The predominant approach for dealing with unreachable
targets so to determine an an artificial target that can
be used in the performance index rather than the true
set point. This artificial set point is updated such that it
converges to the true set point if possible, and if not, to a
point which in some sense is closest. Nevertheless, it would
be useful to summarise what the key differences and sim-
ilarities are and use these as a foundation for considering
what issues have yet to be tackled effectively. A convenient
comparison considers the steady-state computation, the
assumed terminal mode and the choice of performance
index. All the approaches discussed in this paper implicitly
use a dual-mode prediction structure of the form (4,5).

4.1 Steady state calculation

The main divide is between computations which are done
as part of a separate optimisation and those which are
embedded within the prediction optimisation. Also, any
separate optimisations are typically based on a quadratic
or linear programme.

(1) For SVEC, the steady-state is either computed from
a linear programme (LP) or included as an inequality
(contraction) constraint into the performance optimi-
sation. The work of Rawlings et al. (2008) also deploys
a separate SSTO although which in some sense could
be viewed as closer to a 1-norm.

(2) Limón et al. (2008),Ferramosca et al. (2011) and
Rossiter (2006) embed the steady-state into the per-
formance index as an additional objective and thus
have a single optimisation, although with extra d.o.f.
to deal with the flexibility in the steady-state.

(3) The works of Rao and Rawlings (1999), Shead et al.
(2010) have a comprehensive SSTO which identifies
the best (typically via a 2-norm measure) target.

4.2 Terminal modes and constraints

The terminal constraints, or terminal mode of a dual-mode
strategy, play a key role in the obtainable performance, the
volume of the feasible regions, the computational load and
so forth. For the algorithms discussed here, the implied
terminal mode is identical and governed by an input
prediction of the form of (5), that is a fixed control law
with an offset term. Only SVEC differs in that the choice
of the underlying feedback K is a dead-beat one although
this is not necessary. Asymptotic constraint handling is
possible using conventional invariant set approaches.

4.3 MPC performance index, optimisation and d.o.f.

As implied above, the degrees of freedom deployed in each
algorithm are essentially equivalent, albeit the original
works used different notation and expressions. One can
easily show one-to-one mappings between the parametri-
sations selected. For example one can choose perturbations
to an nominal input trajectory or the values themselves,
but in essence one has the same flexibility and the pre-
ferred option depends upon algebraic convenience. The
user can choose the deviations ck in the transient inputs
of (4) and an offset term c∞ or equivalently usa, xsa
(discounting special cases). The degrees of freedom can
be deployed in a single optimisation or determined in a
2-stage process.

With the exception of SVEC which deployed dead-beat
terminal constraints, each of the proposed methods im-
plicitly deploys infinite horizon performance indices but
there are some minor differences. Conceptually the original
choices made of whether to penalise input deviations or
input increments or indeed both is not relevant as all
algorithms can equally include both terms as in (3) with
minor algebraic modifications.

(1) SVEC and Shead et al. (2010) optimise performance
with respect to the artificial target only.

(2) The papers of Rossiter (2006), Limón et al. (2008)
Ferramosca et al. (2011) optimise performance with
respect to the artificial target but add an additional
term to penalise the distance from the artificial target
to the true target. As a consequence, in some sense
the optimisation has mixed objectives which could be
argued not to match an ideal criteria.

(3) The work of Rawlings et al. (2008) penalises the
distance from the true target, but has a performance
index that is strictly unbounded and thus there are
questions over how meaningful this really is.

4.4 Summary

Table I summarises the similarities and differences of the
algorithms discussed. It is clear that some decisions are
viewed as objectively reasonable whereas others are still
more open to debate.

(1) It is unclear whether it is better to have a 2-stage or
1-stage approach; obviously this is excluding the large
scale problems where a separate optimisation would
be automatic anyway.
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(2) More papers seems to favour the use of the artificial
target within the performance index, but an objective
comparison of the pros and cons of this is outstanding.

(3) The use of input parametrisations built on dual mode
structures with a feasible terminal mode seem to be
used throughout.

(4) Very little work has studied the repercussions of
parameter uncertainty whereas all the work implicitly
caters for unknown disturbances.

(5) Less attention has considered MPC algorithms with-
out terminal modes/constraints although these often
give better feasibility.

Concepts
Techniques Approaches

[1] [2] [3] [4] [5] [6]

SSTO

Separate LP * *
Separate QP * *
Single stage QP * *

Cost
True target *
Artificial target * * *
Mixed * *

Terminal Contraction const. *
constraint Invariant set * * * * *

Table 1. Comparison of algorithms: [1] SVEC,
[2] Limón et al. (2008), [3] Rawlings et al.
(2008), [4] Rao and Rawlings (1999), [5] Shead

et al. (2010), [6]Rossiter (2006)

5. CONCLUSIONS AND FUTURE WORK.

Most of the existing work is focussed on a fixed scenario,
that is one whereby a single change in the disturbance and
or target leads to infeasibility in transients. In assessing
the efficacy of the algorithms it is tacitly assumed that
thereafter the target and/or disturbance remains fixed.
There is no real consensus on what would constitute a fair
global comparison of performance and the choices made
are usually pragmatic. There is no clear divide between
algorithms that deal with permanent as opposed to tempo-
rary infeasibility, that is targets which are unreachable in
the long term; consequently a comparison of performance
under different scenarios has not really been provided.
There is no real consensus over whether one or two stage
optimisation is to be preferred. Finally, very little work
has really looked at the robust case with any rigour.

Notwithstanding the apparent gaps highlighted above,
there are also some other areas which seem to have been
largely ignored and indeed attract little attention in the
predictive control literature as a whole. One of these is how
to make more effective use of feed forward information.
All the works above assume that there is no feed forward
information of either target changes, or indeed distur-
bances. In practice, in many cases, some feed forward will
be available and that should enable the designer to give
much more effective handling or even avoidance of infeasi-
bility. Moreover, this has obvious parallels with reference
governor approaches. A second issue that has attracted
some interest of late is the potential to use alternative
parametrisations for the d.o.f. in the input predictions
as opposed to just taking the individual values of future
inputs for N samples.
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