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Abstract: To enhance convergence property of Genetic Algorithm (GA), we in this work
propose modification in GA by combining the global search property of GA with a convergence
property of Box-Complex method. Using the current population of GA, new members are created
using Box-Complex concept, which replaces equal number of worst population members. A
comparative study of the proposed GA with the conventional GA and widely accepted Jumping
Gene GA (JG GA) is presented in this work. We have considered two mathematical and a
batch reactor optimal control applications for evaluating the efficacy of the proposed GA. There
are two user defined parameters in the proposed algorithm, namely extent of Box-Complex
Assistance(BCA), and expansion/contraction factor α. Effect of both these parameters on
convergence is presented in this work for the proposed GA.

Keywords: optimal control, Genetic Algorithm, Box-Complex method, batch reactor, off-line
optimization

1. INTRODUCTION

Genetic Algorithm (Goldberg, 1989; Holland, 1975) is a
popular stochastic optimization technique for past couple
of decades and has been successfully applied to numer-
ous applications of single and multi-objective optimization
problems . Genetic Algorithm (GA) is more computation-
ally expensive algorithm compare to the gradient based
algorithms, but it is suitable for complex functions and
more flexible.

There has been a significant contribution in GAs for past
two decades mainly addressing the two aspects of a GA,
namely 1) increasing convergence rate or reducing com-
putational efforts and 2) maintaining or increasing the
diversity among population members for enhancing the
probability of obtaining global optimum solution. The con-
ventional GA includes initialization, fitness assignment,
fitness selection, crossover, mutation and survival selection
as common steps. Crossover and mutation operators add
diversity in the population leading to high probability of
convergence to global optimum solution, selection method
guides the GA to achieve appropriate convergence.

Usually hybridization of GA is done to combine the global
search capacity of GA with efficient local search method
to improve convergence rate without deteriorating the
global search capacity. Pandey et al. (2014) presents an
exhaustive review of different approaches implemented to
prevent premature convergence with their strengths and
weaknesses. El-mihoub et al. (2006) has reviewed different
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forms of integration between GAs and other search and op-
timization techniques. It was observed in hybridization of
GAs that combination of a GA and a local search method
can speed up the search to locate the exact global opti-
mum. GA and Box-Complex method both being popula-
tion based techniques, mixing their capabilities to develop
more powerful hybrid technique is easy to implement.
Applying a local search to the solutions that are guided
by a GA to the most promising region can accelerate con-
vergence to the global optimum. Hybridisation of gradient
based technique with GA can potentially provide faster
convergence. Usually these gradients are computed nu-
merically when the analytical gradients are not available,
which adds computational cost and numerical error as well.
On the other hand Box Complex technique is a population
based technique like GA. Hence, the hybridization is quite
straightforward without significant additional computa-
tional efforts. To implement this concept, we propose a
modification in GA by incorporating convergence property
of Box-Complex method in GA. A related work on hybrid
GA using Box Complex method by the authors can be
found elsewhere (Patel and Padhiyar, 2015). Though, the
choice of Complex, the results, and two test applications
in this work are entirely different from the previous work.

The proposed modification for Box-Complex Assisted GA
is discussed in next section. The two mathematical appli-
cations followed by the results and discussion are presented
in Section 3. The proposed GA is then applied to an
optimal control problem in a batch reactor in Section 4.
The reported values in the open literature using other
optimization algorithms for this application have also been
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presented in this section. Finally the concluding remarks
are presented in Section 5.

2. BOX-COMPLEX ASSISTED GENETIC
ALGORITHM (BCA GA)

Box (1965) proposed a multi-start optimization method,
which gives progressive convergence with significantly
small population size compared to other population based
evolutionary techniques such as GA. But this method has a
limitation of getting trapped in local minima. To overcome
the large computational effort with larger population for
obtaining global minimum, we propose to combine global
search property of GA; assisted by convergence property
of Box-Complex method. One or more new members are
created using the current population by Box-Complex con-
cept at every generation. We add the new member(s) at
every generation by replacing equal number of the inferior
member(s) of the population, thereby maintaining the
constant population size. Since the GA is a very popular
optimization technique, we skip the detailed description
of the conventional GA. The proposed modified GA with
Box Complex Assistance is presented in next subsection.

2.1 Proposed Algorithm of BCA GA

We propose to modify the GA to incorporate the conver-
gence capability of the Box-Complex method. Please note
that eliminating step 6 from the proposed algorithm leads
to the conventional GA. A stepwise implementation of the
proposed GA modified for Box-Complex Assistance is as
follows:

(1) Initialization:
• Define system parameters such as number of

variables, lower and upper bounds on decision
variables.

• Specify GA parameters such as population size
(Np), number of generations, parameters for GA
operators and choice for BCA assistance.

(2) Generation of Initial Population
• Generate initial population of size Np, satisfying

the bound constraints.
• Compute the fitness values of the all initial pop-

ulation members.
(3) Crossover and Mutation

• Carry out the crossover operation with user de-
fined crossover probability.

• Carry out the mutation operation for the popula-
tion generated after crossover.

(4) Fitness calculation
• Calculate fitness values of the child population

generated after crossover and mutation.
(5) Elitism selection

• Select the Np best individuals from the pool of
parent and child population(s) for the next gen-
eration.

(6) Box-Complex Assistance
• Select complex members as the best n+1 members

from newly created population, where n+1 is the
number of variables.

• Generate a new member by Box-Complex assis-
tance, taking the projection of the worst mem-
ber of complex through centroid of the remaining

members of complex. The explanation on how
to generate a new complex member using Box-
Complex method from a given population is illus-
trated in next subsection.

• Calculate fitness value of the newly created BCA
member and replace the worst member in the
population if it is inferior to the BCA member.

• If the new member is inferior to the worst mem-
ber in the population, move half way towards the
centroid of remaining complex members.

• Calculate fitness value of the shifted member and
replace the worst member in the population if it is
inferior to the new member, else ignore the BCA
member.

• In case of more than one BCA members (BN >
1), select best first n members and one (n +
BN)th member. This selection will skip previ-
ously used (n+1)th members from the population.
Follow the procedure adapted in previous steps
until the total BN members are created.

(7) Continuation of loop
• This completes one loop. Stop if the convergence

criteria is satisfied else go to step 3. Convergence
criteria can be the maximum number of gener-
ations or tolerance in fitness value of the best
member of the population.

As can be noticed in the above BCA GA, there are two
user defined parameters, namely number of BCA mem-
bers, BN and the expansion/contraction factor, α. Small
values of BN may contribute little to the convergence
rate, maintaining high diversity created by crossover and
mutation operators. On the other hand large BN val-
ues may increase the convergence rate at a cost of the
population diversity. This may result in convergence to
the local minima. For smaller values of the second tun-
ing parameter, expansion/contraction factor (α) may not
provide sufficient projection of the worst complex member
in the direction of improvement. On the other hand very
large value of α may lead to excessive projection of the
worst complex member and consequently rejection of the
new point. The process of generation of BCA member is
illustrated in next subsection.

2.2 Illustration of Box-Complex Assistance

A Complex is created by selecting k members from popu-
lation, where k = n+ 1. The complex comprising of three
points, A,B and R is shown in Fig. (1). The objective
function values (Rosenbrock’s function, 1) are evaluated
for each vertex of the complex and are shown in table (1).
The vertex (R) having the most inferior value of objective
function is projected through the centroid of the remain-
ing points(A and B) of complex. Centroid is calculated
using the formula given at (2). The new point is obtained
by projecting the worst vertex(R) through centroid at a
distance α times the distance of the centroid from the
rejected vertex. The new BCA member is calculated using
(3). The process of generating a new vertex point in two
dimensional space is graphically illustrated in Fig. (1) and
values are presented in table 1 for α=0.8.

f = 100(x2 − x12)
2

+ (1− x12)2 (1)
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Fig. 1. Box-Complex method: Illustration of projection of
worst vertex through centroid

xi,M =
1

k − 1

 k∑
j=1

xi,j − xi,R

 (2)

xi,N = α(xi,M − xi,R) + xi,M = (1 + α)xi,M − αxi,R (3)

3. NUMERICAL APPLICATIONS

For testing the efficiency and effectiveness of the proposed
modified GA, we are using two mathematical test applica-
tions with known optimal solution.

3.1 Application 1

This unconstrained mathematical system (SUN et al.
(2013), Rajesh et al. (2001) and Luus and Okongwu
(1999)) has been used as a dynamic optimization problem
for assessing the algorithm performance. The detailed
mathematical model is formulated as,

minJ(u) = x2(tf ) (4)

s.t.
dx1
dt

= u,
dx2
dt

= x21 + u2, (5)

x(0) = [1, 0]T , tf = 1 (6)

The application has a known global minimum analytical
solution (LIU et al., 2013) as follows,

u∗ = −2
2e

1 + e2
sinh(1− t) (7)

J∗
min =

e2 − 1

1 + e2
(8)

Note that for tf = 1 h, the global minimum is found to be
0.761594.

Table 1. Illustration of BCA member calcaula-
tion using Rosenbrocks function

Point x1 x2 f

A 1.1970 -9.0043 15.2420
B 9.5731 -0.9029 16.6219
R 13.0600 -4.4721 18.9063
Centroid 5.3851 -4.9536 14.5029
BCA -0.7549 -5.3387 12.6089

3.2 Application 2

The second test application along with the known opti-
mum solution (SUN et al., 2013) is described as follows,

minJ(u) =
1

2

1∫
0

(x2 + u2) dt (9)

s.t.
dx

dt
= −x+ u, x(0) = 10, tf = 1 (10)

u∗(t) = 0.10(
√

2 + 1) exp(
√

2t)

−9.9(
√

2− 1) exp(−
√

2t)
(11)

Note that at tf = 1 h, the J∗ is 19.2910.

3.3 Result Discussion

Real coded GA program developed in MATLAB 2011 is
used in this work. The conventional GA code developed
uses stochastic remainder roulette wheel selection, Simu-
lated Binary Crossover (SBX) and Non-uniform mutation
with elitism survival selection. The BCA GA code uses
the same operators along with BC member addition as
per the proposed algorithm. The Real coded JG GA is im-
plemented using the same GA operators and JG operator
as recommended by Nawaz Ripon et al. (2007). The GA
parameters used for all the applications are summarized
in table (2)

Table 2. GA parameters for Application 1(A1),
Application 2(A2) and Batch Reactor(BR)

Parameter A1 A2 BR

Number of decision variables 10 10 40
Lower limit(for all variables) -15 -15 298
Upper limit(for all variables) 15 15 398
Population size 50 50 200
Number of generations 150 150 400
Crossover probability 0.9 0.9 0.9
Mutation probability 0.2 0.2 0.2
SBX crossover parameter, c 2 2 2
Non-uniform mutation parameter, b 4 4 4
JG probability 0.4 0.4 0.4
Box-Complex projection factor, α 0.9 0.9 0.9

For the previously discussed two test applications ef-
fect of Box-Complex Assistance (BCA) is tested for real
coded GA and compared with conventional GA and
Real coded Jumping Gene (JG) GA. We study sensi-
tivity of both the tuning parameters for proposed GA,
namely 1)extent of Box-Complex Assistance (BCA) and
2) expansion-contraction parameter α using these test
applications. The extent of BCA represents the number of
BCA members,BN used in evolution. We use BN value
of 1 to 5 naming it as 1BCA to 5BCA. As GA is a
stochastic optimization technique, it does not converge to
the same solution every time even with the same initial
population. Hence, we carry out ten simulation runs for
every combination of the test application with different
initial population. Please note that in BCA GA, extra
function evaluations are carried out that of the BCA.
Hence, we have shown convergence plot as a function
of Number of Function Evaluations (NFEs) instead of
generation number for computational efforts by various
GAs.
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Fig. 2. Effect of expansion/contraction factor α on con-
vergence at the end of 5000 NFEs for application 1
(average of ten runs)

The effect of tuning parameter α for application 1 is shown
in Fig.(2). It is observed that BCA GA with α in the range
of 0.5 to 1.5 always convergences to a better objective
value. The best value of α for 1BCA and 2BCA cases is 0.8
and for 3BCA case it is 1.0. The statistical analysis of ten
simulation runs at the end of 5000 NFEs are summarised
in table(3). The best vale of 0.7621 close to the analytical
solution of 0.7615 is achieved by 3BCA and 5BCA GAs.
Standard deviation values clearly reflect that all BCA GA
converges consistently better than conventional and JG
GAs.

Table 3. Statistical analysis of ten simulation
runs for application 1 at the end of 5000 NFEs

GA Type Worst Best Average Std. dev

Conventional 0.8106 0.7666 0.7908 0.0149
1BCA 0.7795 0.7657 0.7708 0.0052
2BCA 0.7680 0.7637 0.7657 0.0015
3BCA 0.7667 0.7621 0.7645 0.0015
4BCA 0.7667 0.7622 0.7640 0.0015
5BCA 0.7642 0.7621 0.7631 0.0008
JG 0.8223 0.7794 0.8033 0.0140

The Convergence profile for application 1 as the average
of ten simulation runs has been shown in Fig.(3). The
convergence rate of both the BCA GAs has been found
to be significantly better than the other two GAs. At the
end of 2000 NFEs objective function value obtained by
1BCA GA is obtained by conventional and JG GA after
3000 NFEs. Similarly, the function value of 1 obtained at
2000 NFEs by 2BCA GA, is obtained nearly after 4000
NFEs by conventional and JG GAs.

The effect of the other tuning parameter, namely expan-
sion/contraction factor, α for application 1 is shown in
Fig. (4). Note that too small value of α may not provide
sufficient improvement in the newly created member, too
large value may lead to infeasible member. Following this
trend, the best value of α for 1BCA case is 0.8, for 2BCA
case is 0.8 and 1.1, and for 3BCA case it is 1.1. The
statistical analysis of ten simulation runs at the end of
5000 NFEs are summarized in table (4). The best objective
function vale of 19.2907 is found to be marginally better
than the reported value of 19.2910 by 4BCA GA. Standard
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Fig. 3. Convergence profile for application 1 (average of
the ten runs)
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Fig. 4. Effect of expansion/contraction factor α on con-
vergence at the end of 5000 NFEs for application 2
(average of ten runs)

deviation values clearly reflect that all BCA GA converges
consistently better than conventional and JG GAs.

Table 4. Statastical analysis of ten simulation
runs for application 2 at the end of 5000 NFEs

GA Type Worst Best Average Std. dev

Conventional 19.3251 19.3081 19.3152 0.0057
1BCA 19.2989 19.2928 19.2963 0.0019
2BCA 19.2975 19.2921 19.2944 0.0019
3BCA 19.2969 19.2913 19.2929 0.0017
4BCA 19.2989 19.2907 19.2940 0.0032
5BCA 19.2942 19.2912 19.2925 0.0010
JG 19.3229 19.3022 19.3107 0.0067

Convergence profiles as average of ten simulation runs has
been shown in Fig.(5) for application 2. The convergence
rate is significantly better for both the BCA GAs com-
pared to the conventional and JG GAs. The objective func-
tion value obtained by both the BCA GAs at about 1500
NFEs is obtained after 2500 NFEs using conventional and
JG GA. Though, after 5000 NFEs, all the GAs converge
to the objective function values very close to each other.
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Fig. 5. Convergence profile for application 2 (average of
the ten runs)

4. OPTIMAL CONTROL OF BATCH REACTOR

While the earlier two studies were the mathematical ap-
plications of dynamic optimization, we now present an off-
line optimal control application of a batch reactor with
reaction scheme, A → B → C to optimize temporal
temperature recipe for maximizing the yield of product
B at the end of the batch time of 1 hour.

The optimal control problem for batch reactor is,

maxJ(T ) = CB(tf ) (12)

s.t.
dCA

dt
= −4000 exp

(
−2500

T

)
C2

A (13)

dCB

dt
= 4000 exp

(
−2500

T

)
C2

A

−6.2X105 exp

(
−5000

T

)
CB

(14)

[C
(0)
A C

(0)
B ] = [10]; 298 ≤ T ≤ 398 (15)

4.1 Optimal Control Results for Batch Reactor

Generation wise convergence for batch reactor application
are shown in Fig.(6). Unlike previous two applications,
initial convergence rate of JG GA is higher than that of
the conventional both the BCA GAs. Note that while the
cost of extra function evaluation for BCA GA paid off for
improved convergence, a shift of the convergence profile
to the right has been observed. Though, after about 500
NFEs, the convergence rate is observed to be hindered
by enhanced diversity provided by the JG GA on the
convergence rate. On the other hand both the BCA Gas
provide more convergence because of the Box-Complex
Assistance. Further, at the end of 2000 NFEs, a tendency
of further convergence is observed in case of the BC GAs,
which is not found in the conventional and JG GAs. This
can be attributed to the progressive convergence obtained
by the Box Complex concept. The function value obtained
at 40,000 NFEs by conventional GA is obtained by JG
GA in about 30,000 NFEs. On the other hand 1BCA GA
takes about 20,000 NFEs and 2BCA GA needs only 15,000
NFEs for the same convergence.
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Fig. 6. Convergence profile for batch reactor application
(average of the ten runs)

A comparative average convergence at the end of 40,000
NFEs for all GAs are shown in Fig.(7). The comparative
graphs show that all BCA GAs converged to optimal
solutions better than conventional and JG GAs. Also, it
can be noted that all BCA GAs converged to very close
optimal solutions, hence the plot is almost horizontal line
connecting 1BCA to 5BCA points. The statistical analysis
of ten simulation runs at 40,000 NFEs for all types of GAs
are presented in table (6).

Table 5. Best objective function values for
batch reactor application obtained by different

contributors

Sr.
No.

Algorithm/Method Value Reported by

1 Piecewise constant controls 0.610 Renfro et al.
(1987)

2 Iterative Dynamic Program-
ming (IDP)

0.61079 Luus (1994)

3 Two-point collocation 0.610767 Logsdon and
Biegler (1989)

4 Relaxed reduced space SQP
strategy

0.610775 Logsdon and
Biegler (1993)

5 IDP with absolute error
penalty functions

0.610775
(n=80)

Dadebo and
Mcauley (1995)

6 Iterative Ant-Colony
Algorithm (IACA)

0.6104
(n=20)

Zhang et al.
(2005)

7 Complex Ant Colony Algo-
rithm (CACA)

0.61045 Rajesh et al.
(2001)

8 Hybrid Improved Genetic Al-
gorithm (HIGA) with local
search after 28000 NFEs.

0.61046
(n=20)

SUN et al.
(2013)

9 Box-Complex Assisted GA
(4BCA GA) after 40,000 NFEs

0.61092 this work

Table 6. Statastical analysis of ten simulation
runs for batch reactor application at the end

of 40,000 NFEs

GA Type Best Worst Average Std. dev

Conventional 0.60936 0.60859 0.60894 0.00027
1BCA 0.61045 0.61004 0.61022 0.00012
2BCA 0.61086 0.61016 0.61049 0.00021
3BCA 0.61075 0.61026 0.61046 0.00015
4BCA 0.61092 0.61020 0.61050 0.00018
5BCA 0.61078 0.61040 0.61051 0.00011
JG 0.61034 0.60958 0.60989 0.00023
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Fig. 7. Comparison of progressive convergence of conven-
tional, 1BCA to 5BCA and JG GAs for batch reactor
application (average of the ten runs)

Many researchers have worked on this application as a
test bed for optimal control problem. The outcome of their
work has been summarized in table (5). The best objective
function value of 0.61079 has been obtained among these
studies by Luus (1994) using iterative dynamic program-
ming. Please note that the maximum concentration of B
obtained in this study is 0.61092 for 4BCA GA after 40,000
NFEs, which is marginally better than the value reported
by Luus (1994).

5. CONCLUSION

A Box-Complex method assisted GA is proposed in this
work for enhancing the convergence rate for dynamic op-
timization problems. The member generated using Box-
Complex method replaces the worst members of popu-
lation. There are two user defined parameters, namely
number of BC members, and expansion/contraction fac-
tor, α. This concept was extended for one to five members
(1BCA to 5BCA) in GA and the GA results are compared
with conventional GA and one of the widely accepted
GA, namely JG GA. Also the sensitivity study of the
other parameter, α has been presented. Two mathematical
applications with known optimal profile are considered
for the performance study and analysis of proposed GA.
Optimal control of a batch reactor is a test application
considered in the study, where the objective is to find opti-
mal temperature profile to maximise the endpoint product
concentration in a batch reactor at the end of one hour.

In all the three applications, convergence rate and the
objective function values are compared for all GAs con-
sidered. Please note that extra function evaluation is car-
ried out for every BCA member. Therefore, convergence
profiles for various GAs are compared in terms of NFEs
instead of generation. We notice that BCA GAs minimize
computational effort significantly for all the three applica-
tions of optimal control problems. The authors recommend
2-3 number of BCA members and an α value of 0.8-1.3 for
any application, which has consistently provided better
results than the conventional and JG GAs in this work.
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