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Abstract: In this work, we develop a run-to-run (R2R) model parameter estimation scheme
based on moving horizon estimation (MHE) concepts for the modeling of batch-to-batch process
model parameter variation using a polynomial regression scheme in a moving horizon fashion.
Then, a model predictive controller (MPC) with the proposed parameter estimation scheme is
applied to a kinetic Monte Carlo (kMC) simulation model of a batch crystallization process used
to produce hen-egg-white (HEW) lysozyme crystals. The average crystal shape distribution of
crystals produced from the closed-loop simulation of the batch crystallizer under the MPC with
the proposed R2R model parameter estimation scheme is much closer to a desired set-point
value compared to that of MPC based on the nominal process model.

Keywords: run-to-run control, parameter estimation, moving horizon estimation, model
predictive control, batch crystallization, crystal shape control

1. INTRODUCTION

Batch configuration is one of the most widely used reactor
and crystallization configurations in the specialty chem-
icals and pharmaceutical industries. However, unknown
systematic trends or drifts in the process parameter values,
for example, in initial pH level, operating conditions, and
impurity concentrations in raw materials (e.g., Flores-
Cerrillo and MacGregor (2004)) may be challenging from
the standpoint of operating batch crystallization processes
because even a small change in the pH level may have
a significant influence on the size and shape distribution
of crystal products, and thereby, on the bioavailability of
crystals produced from a batch crystallization process.

In general, common uncertainties in batch processes in-
clude fully stochastic (random) variations (e.g., noise in
the measurements) and process drift of repetitive nature.
While stochastic filtering techniques such as Kalman fil-
tering and its variants such as the extended Kalman filter
(EKF) are known for their ability to handle stochastic
fluctuations effectively Mesbah et al. (2011), the ability of
Kalman filtering to handle process drift is limited as batch-
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to-batch parametric drift can not be explicitly taken into
account in the EKF design Haseltine and Rawlings (2005).

The best known method for handling batch-to-batch
drift is the double exponentially weighted moving average
(dEWMA) formula, which can capture the changes in the
rate of the process drift, and thus, forecast the process drift
in the next batch run Simith et al. (1998); Chen and Guo
(2001); Castillo and Rajagopal (2002); Su and Hsu (2004);
Wu and Maa (2011); Kwon et al. (2014a, 2015). However,
when the batch-to-batch dynamics of the process drift is
nonlinear, the effectiveness and convergence speed of the
dEWMA scheme are highly restricted, and thus, the re-
maining parametric mismatch between the process model
used in the controller and the actual process variables may
significantly affect the controller performance.

Motivated by the above considerations, in this work, a
run-to-run model parameter estimation scheme based on
moving horizon estimation concepts is proposed in order
to model the batch-to-batch dynamics of the process drift
and compute improved estimates of process model pa-
rameters, utilizing post-batch measurements from multiple
batch runs. Specifically, the key elements of the proposed
R2R model parameter estimation scheme based on MHE
concepts are: First, the variation of the process model
parameters from batch-to-batch is estimated by solving
an R2R model parameter estimation scheme along with
the post-batch measurements from multiple batch runs.
Second, the batch-to-batch parametric drift is modeled
through the use of a nonlinear function (e.g., 2nd, 3rd or 4th
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order polynomials) that are used to update the parameters
of the model predictive controller (MPC) model (used for
real-time feedback control within each batch) to suppress
the undesired effect of the process drift in the next batch
run.

The manuscript is structured as follows: we initially dis-
cuss the model of our case study, a batch crystallization
process used to produce tetragonal hen-egg-white (HEW)
lysozyme crystals. Then, we develop an R2R model pa-
rameter estimation scheme in order to identify the batch-
to-batch dynamics of the process drift by solving a multi-
variable optimization problem along with the post-batch
measurements from multiple batch runs in a moving hori-
zon fashion. Lastly, the closed-loop performance of the
MPC with the proposed R2R model parameter estimation
scheme is compared with that of MPC with no model
parameter update.

2. MODELING OF BATCH CRYSTALLIZATION
PROCESS

To present and evaluate the proposed technique for process
model parameter estimation, we will focus on a batch
crystallization process used to produce HEW lysozyme
crystals.

2.1 Crystal nucleation

At at 4%(w/v) NaCl and pH=4.5, the lysozyme crystals
are nucleated according to the following rate expressions
Galkin and Vekilov (2001):

B =

{
0.041σ + 0.063 for σ ≥ 3.11

8.0× 10−8 exp(4.725σ) for σ < 3.11
(1)

where B is the nucleation rate with units [cm−3 · sec−1],
and the supersaturation level σ is defined as follows:

σ = ln(C/s) (2)

where C is the solute concentration and s is the solubility,
which is calculated using the following third-order polyno-
mial equation taken from Ref. Cacioppo and Pusey (1991):

s (T ) = 2.88× 10−4T 3 − 1.65× 10−3T 2 + 4.62× 10−2T

+ 6.01× 10−1

(3)
where the temperature in the crystallizer, T , is in degrees
Celsius.

2.2 Crystal growth

The crystal growth is modeled through the kMC simula-
tion using the following rate equations, which are adopted
from Durbin and Feher (1991). The adsorption rate, ra, is
independent of each lattice site and is defined as follows:

ra = K+
0 exp (σ) (4)

where K+
0 is the adsorption coefficient. On the other hand,

the desorption and migration rates depend on the surface
micro-configuration (i.e., the number of particles that
surround the particle of interest). Thus, the desorption
rate for a lattice site with i nearest neighbors, rd(i), is
given by:

rd(i) = K+
0 exp

(
ϕ

kBT
− i

Epb

kBT

)
(5)

where Epb is the average bonding energy per bond, ϕ is the
total binding energy when chemical bonds of a molecule
are fully occupied by nearest neighbors (i.e., i = 4). The
migration rate, rm(i), is shown below:

rm(i) = K+
0 exp

(
ϕ

kBT
− i

Epb

kBT
+

Epb

2kBT

)
(6)

The crystal growth rates obtained from the kMC simula-
tions are calibrated with the experimental data in litera-
ture by manipulating a set of Epb and ϕ values for (110)
and (101) faces through extensive open-loop kMC simula-
tions. The reader may refer to Kwon et al. (2013) for more
details regarding the execution of the kMC simulation.

2.3 Mass and energy balance equations

The mass and energy balance equations that calculate the
amount of the protein solute remaining in the continuous
phase, C, and the temperature in the crystallizer, T , are
given by the following ordinary differential equations:

dC

dt
= − ρc

Vbatch

dVcrystal

dt
(7)

dT

dt
= − ρc∆Hc

ρCpVbatch

dVcrystal

dt
− UcAc

ρCpVbatch
(T − Tj) (8)

where Vcrystal is the total volume of crystals in the
crystallizer, C(0) = 42 mg/cm3 is the initial protein solute
concentration, ρc = 1400 mg/cm3 is the crystal density,
and Vbatch = 1 L is the volume of the batch crystallizer,
T (0) = 17 ◦C is the initial crystallizer temperature,
∆Hc = −4.5 kJ/kg is the enthalpy of crystallization,
ρ(t) = 1000+C(t) mg/cm3 is the density of the continuous
phase, Cp = 4.13 kJ/K · kg is the specific heat capacity,
Ac = 0.25 m2 and Uc = 1800 kJ/m2·h ·K are the area and
the overall heat transfer coefficients between the jacket
stream Tj and the crystallizer wall, respectively. These
values are taken from Shi et al. (2005).

2.4 Moment model

Due to the complexity of a population balance equation
(PBE), it cannot be directly used for the computation of
a crystal volume distribution in real-time. Motivated by
this, a moment model is used to describe the zero and
first moments of the evolution of the number and the total
volume of crystals in the batch crystallization process in
the process model used in the controller of the form:

dM0

dt
= B (9)

dM1

dt
= GvolM0 (10)

where Mj(t) =
∫∞
0

V jn(V, t)dV is the jth moment for
j = 0, 1, n(V, t) is the number of crystals with volume
V at time t, and Gvol is the volumetric crystal growth
rate, which is formulated as follows:

Gvol = 2G110⟨h110⟩⟨h101⟩+G101⟨h110⟩2 (11)

where ⟨h110⟩ and ⟨h101⟩ are the average crystal heights
in the direction of the (110) and (101) faces, G110 and
G101 are the crystal growth rates in the direction of the
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(110) and (101) faces, which can be obtained through the
following expressions:

G110 = 0.1843σ3 − 1.1699σ2 + 2.8885σ − 2.5616

G101 = 0.1893σ3 − 1.2264σ2 + 2.9887σ − 2.5348
(12)

and
d⟨h110⟩

dt
= G110 −

BVbatch⟨h110⟩
M0

d⟨h101⟩
dt

= G101 −
BVbatch⟨h101⟩

M0

(13)

Thus, the average crystal shape, ⟨α⟩, and size, ⟨V ⟩, can be
computed as follows:

⟨α⟩ ≈ ⟨h110⟩
⟨h101⟩

⟨V ⟩ = M1

M0
(14)

A more detailed description regarding the derivation of the
moment model that accounts for the dynamic evolution of
the crystal volume distribution for the batch crystalliza-
tion process can be found in Kwon et al. (2014b).

Fig. 1. Model predictive control with R2R model parame-
ter estimation.

3. MPC WITH R2R MODEL PARAMETER
ESTIMATION

3.1 MPC formulation

In this subsection, a model predictive controller (MPC)
is presented for in-batch control. Specifically, the domi-
nant dynamic behavior of the evolution of crystal shape
distribution in the batch crystallization process is mod-
eled through the process model (cf. Eqs. (1)–(3) and (7)–
(14)), which are used to compute a set of optimal jacket
temperature that minimizes the squared deviation of the
average crystal shape from a set-point value over the entire
prediction horizon. Constraints on the rate of change of
the jacket temperature (i.e., manipulated input) and the
temperature in the crystallizer are imposed. The resulting
MPC formulation is given by the following optimization
problem:

min
Tj,1,...,Tj,p

p∑
i=1

(⟨α(ti)⟩ − αset)
2

(15a)

s.t. Eqs. (1)− (3) and (7)− (14) (15b)

4◦C ≤ T ≤ 25◦C

∣∣∣∣Tj,i+1 − Tj,i

∆

∣∣∣∣ ≤ 2◦C/min

(15c)

where p = 10 is the length of the prediction horizon,
∆=40 seconds is the sampling time, ti = t + i∆ and
Tj,i are the time and the jacket temperature of the ith

prediction step, respectively. At every sampling time, the
real-time measurements for the solute concentration in the
continuous phase and the temperature in the crystallizer
are used to compute a set of optimal jacket temperatures,
(Tj,1, Tj,2, . . . , Tj,p), by solving Eq. (15) where the first
value, Tj,1, is applied to the crystallizer over the next
sampling time.

3.2 MPC with R2R model parameter estimation scheme

For the batch crystallization process with changes in the
process model parameters owing to a process drift, an
R2R model parameter estimation scheme based on MHE
concepts is proposed and used along with post-batch mea-
surements from multiple batch runs in a moving horizon
fashion to estimate parameters of the batch crystallization
model (cf. Eqs. (1)–(3) and (7)–(14)). Then, the updated
process model parameters are used in the MPC for the
computation of control inputs applied to a batch crystal-
lization process.

There are many different formulations for an R2R param-
eter estimation scheme and the design of the observer
significantly affects the estimator performance. In this
work, an optimization-based parameter estimation scheme
is proposed in order to estimate the process model pa-
rameters using several sets of post-batch measurements.
Specifically, the uncertainty in the solubility of the protein
solute is accounted for by multiplying a correction factor,
γs, to the nominal third-order polynomial equation for
solubility, Eq. (3). The uncertainty associated with the
crystal growth rates in the direction of (110) and (101)
faces is taken into account by multiplying the parameters
γ110 and γ101 to the nominal growth rate expressions for
the (110) and (101) faces, respectively. Furthermore, to
account for the remaining offset between the predicted and
measured values for the average crystal shape and size, a
set of correction factors (γα and γV ), is directly introduced
to the objective function.

Specifically, the optimization problem for the proposed
R2R model parameter estimation scheme based on MHE
concepts after the nth batch run is formulated as follows:

min
Q

1
,...,Q

p

n∑
k=n−m+1

wα

(
̂⟨α(tf )⟩k + γα(k)− ⟨α(tf )⟩k

)2

+ wV

(
̂⟨V (tf )⟩k + γV (k)− ⟨V (tf )⟩k

)2

(16a)

s.t. Eqs. (1)− (3) and (7)− (14) (16b)

ŝ(k) = γs(k)s(k) (16c)

Ĝ110(k) = γ110(k)G110(k) (16d)

Ĝ101(k) = γ101(k)G101(k) (16e)

γx(k) =

p∑
r=1

q(x,r) [γx(k − 1)]
r

(16f)

∀γx ∈ [γ110 γ101 γs γα γV ] (16g)

where the correction factors are initially Γ(0) =[1 1 1 0 0]
which are the nominal values of the process model for the
batch crystallization process.
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Referring to Eq. (16), we note that Eq. (16g) is used
in order to approximate the batch-to-batch parameter
drift from the k − m + 1 to k batch run with a pth

order polynomial through the manipulation of the decision
variables, Q

1
= [q(110,1) q(101,1) q(s,1) q(α,1) q(V,1)], · · · ,

Q
p

= [q(110,p) q(101,p) q(s,p) q(α,p) q(V,p)] in a moving

horizon fashion. For example, the pth order polynomial
for the correction factor γs(k) can be written in the form
of γs(k) =

∑p
r=1 q(s,r) [γx(k − 1)]

r
. Then, the batch-to-

batch dynamics of the process drift is estimated by using
Eq. (16g) to predict a set of correction factors for the
k + 1 batch run, Γ(k + 1) = [γ110(k + 1) γ101(k + 1)
γs(k + 1) γα(k + 1) γV (k + 1)]. The objective function
(cf. Eq. (16a)) consists of sum of squared errors between

the predicted average crystal size and shape, ̂⟨α(tf )⟩ and
̂⟨V (tf )⟩, and the measured ones, ⟨α(tf )⟩ and ⟨V (tf )⟩,
which are obtained at the end of the batch crystallization
process from the k−m+ 1 to k batch run where m is the
moving horizon length. In the beginning of the batch-to-
batch estimation, the number of post-batch measurements
is allowed to grow until it reaches the length of the horizon
(i.e., until the batch number becomes equal to m).

An MPC with the proposed R2R model parameter esti-
mation scheme is implemented to a batch crystallization
process for the computation of the control inputs as fol-
lows:

(1) At the end of the kth batch run, the post-batch
measurements of the product qualities such as the
number of crystals and the average size and shape of
the crystals are measured.

(2) Then, the real-time measurements of the solute con-
centration in the continuous phase and the tempera-
ture in the crystallizer over the last m measurements
(i.e., moving horizon length) are used to compute Q

1
,

· · · , Q
p
that minimize the cost function, Eq. (16a).

(3) The one-step-ahead correction factors for the k + 1

batch run, Γ̂k+1, are predicted through the use of
Q

1
, · · · , Q

p
obtained from Step 2. Then, the process

model parameters are updated through Γ̂k+1 and
they are used in the model employed in the MPC
to compute a set of optimal jacket temperatures Tj

which will drive the temperature T in the crystallizer
to a desired value.

(4) Increase k by 1 and repeat Step 1 to Step 4.

We note that the real-time measurements of the solute
concentration and the temperature in the crystallizer
are assumed to be available at each sampling time. A
schematic representation of the MPC with the proposed
R2R model parameter estimation scheme is shown in Fig.
1.

4. APPLICATION OF MPC WITH R2R MODEL
PARAMETER ESTIMATION TO BATCH

CRYSTALLIZATION

One of the reasons that the control of the size and shape
distributions of crystals produced from a batch process
may be difficult is because even minor contaminations in
the feedstock container (e.g., variations in the pH and

added electrolyte concentration levels) may lead to a sig-
nificant drift of key process parameters from batch-to-
batch. Furthermore, minor contaminations in the feed-
stock container cannot be identified immediately, and thus,
their undesired effect on the product quality continues
to the next batch runs until the feedstock container is
replaced by a new one. To tackle this problem, we initially
use the proposed R2R model parameter estimation scheme
based on MHE concepts where a polynomial regression
scheme is applied in a moving horizon fashion to ap-
proximate the batch-to-batch dynamics of the drift and
adjust the MPC model parameters at the beginning of
each batch. Then, the MPC with the updated process
model parameters is used to compute the optimal jacket
temperature by suppressing the effect of the process drift
in the next batch. In the proposed estimation scheme,
we note that only post-batch measurements are used for
the parameter estimation scheme. Furthermore, process
noise (approximately 2%) due to the stochastic nature
of the crystal growth mechanisms and measurement noise
(approximately 8%) are intrinsically modeled through the
kMC simulation.

The controller performance of the MPC with the proposed
R2R model parameter estimation scheme is evaluated in
response to a process drift whose rate fluctuates from
batch-to-batch (see, e.g., Fig. 2). For comparison purposes,
the dEWMA-based MPC that captures the changes in the
rate of the process drift and properly adjusts outputs in
the process model and the MPC that uses the nominal
process model are also applied to the batch crystallization
process model. To evaluate the controller performance, the
mean squared error (MSE) of the offset (⟨α(tf )⟩i − αset)
between the measured average crystal shape after the ith

batch run and the set-point value is introduced as follows:

MSE =

n∑
i=1

(⟨α(tf )⟩i − αset)
2

n
(17)

where n is the total number of batch runs.
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Fig. 2. The evolution of the cumulative process drift where
its rate changes from batch-to-batch. Please note that
the y-axis implies how much the batch system is
perturbed from a nominal batch system (nominal
batch system corresponds to y-axis value equal to 1).

4.1 dEWMA-based model predictive control

For the sake of comparison, a double exponentially
weighted moving average (dEWMA) scheme, which is
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known for its ability to capture batch-to-batch dynamics
of the process drift Simith et al. (1998); Chen and Guo
(2001); Wang et al. (2010), is integrated with the MPC
and its closed-loop performance is presented along with
that of the MPC with the proposed R2R model parameter
estimation scheme. In the dEWMA scheme, the predicted
average crystal shape for the kth batch run can be written
as follows:

˜⟨α(tf )⟩k = ̂⟨α(tf )⟩k + êk +∆êk (18)

where ˜⟨α(tf )⟩k is the predicted average crystal shape at

the end of the kth batch, ̂⟨α(tf )⟩k is the predicted average
crystal shape using only the nominal process model that
consists of Eqs. (1)–(3) and (7)–(14), êk is the estimated
model prediction error, and ∆êk is used to compensate for
the error in the parameter estimation caused by the change
in the rate of the process drift. For a dEWMA-based MPC,
the process model used in MPC (cf. Eqs. (1)–(3) and (7)–
(14)) is not directly adjusted but its offset from the actual
process model is approximated by êk+∆êk. The following
control scheme is implemented for the computation of
inputs in the proposed dEWMA-based MPC as follows:

(1) At the end of the kth batch run, the post-batch mea-
surements of the product variables such as average
crystal size and shape of crystals are obtained.

(2) Then, the average crystal shape measured from Step
1, ⟨α(tf )⟩k, is used to compute the estimated model
prediction error, êk, and the estimated change in the
rate of the process drift, ∆êk, through the following
equation:

êk+1 = ω1

[
⟨α(tf )⟩k − ̂⟨α(tf )⟩k

]
+ (1− ω1)êk (19a)

∆êk+1 = ω2

[
⟨α(tf )⟩k − ̂⟨α(tf )⟩k − êk

]
+ (1− ω2)∆êk

(19b)

where 0 < ω1 ≤ 1 and 0 < ω2 ≤ 1 are the learning
factors.

(3) Then, the predicted average crystal shape for the k+1

batch run, ˜⟨α(tf )⟩k+1, that accounts for the change
in the rate of the process drift is obtained by,

˜⟨α(tf )⟩k+1 = ̂⟨α(tf )⟩k+1 + êk+1 +∆êk+1 (20)

and is used in the model employed in the MPC to
compute a set of optimal jacket temperatures Tj

which will drive the temperature T in the crystallizer
to a desired value.

(4) Increase k by 1 and repeat Step 1 to Step 5.

Please note that the first equation, Eq. (19a), is used
to estimate the offset in the average crystal shape (i.e.,
output) and the second equation, Eq. (19b), is used to
capture an additional offset in the average crystal shape
due to the change in the rate of the process drift.

4.2 Sensitivity to process drift

In this section, we consider a complicated drift. As is shown
in Fig. 2, the rate of this process drift changes rapidly
from batch-to-batch (e.g., the system drifts from 1 to 0.9
over the first 4 batch runs), and 5 inflection points (i.e.,
a point of a curve at which a change in the direction of
the curvature occurs) are introduced in order to model

a significant fluctuation in the rate of the process drift.
In Fig. 3, it is evident that the MPC with the proposed
R2R model parameter estimation scheme is able to handle
the process drift described in Fig. 2, and as a result the
production of crystals whose shapes are relatively closer to
a desired set-point is compared to those achieved under the
dEWMA-based MPC and MPC with the nominal process
model. We summarize the performance of three different
control schemes in response to the process drift described
in Fig. 2 by comparing their MSE values in Table 1.

0 5 10 15 20

batch number k

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

<
 α

 >

set-point

dEWMA-based MPC
MPC with no parameter estimation

MPC with R2R model parameter estimation

Fig. 3. The evolution of the average crystal shape ob-
tained from the kMC simulations from batch-to-batch
under different control schemes, for the process drift
described in Fig. 2.

Control Schemes MSE

MPC with R2R model parameter estimation 3.62× 10−4

dEWMA-based MPC 4.45× 10−4

MPC with no parameter estimation 1.25× 10−3

Table 1. Comparison among different control
schemes in response to the process drift de-

scribed in Fig. 2.

Furthermore, the quantile plot indicates that the average
of the points obtained under the proposed MPC with
R2R model parameter estimation scheme is very close to
a desired set-point value, ⟨αset⟩ = 0.88. Therefore, the
process drift described in Fig. 2 was properly modeled
by the proposed R2R model parameter estimation scheme
based on MHE concepts with a 3rd order polynomial for
the moving horizon length of 5.

Finally, for the purpose of a test of the control performance
with respect to unmodeled uncertainty in the nucleation
rate from a controller point of view, the nucleation rate
in the kMC simulation is dropped by 10% by multiplying
0.9 to Eq. 1. Since this uncertainty is not modeled in the
process model used in the parameter estimation scheme
(Eq. (16)), the other parameters Γ=[γ110 γ101 γs γα γV ]
have to be adjusted to compensate for the unmodeled
uncertainty in the nucleation rate. As a result, it is shown
in Fig. 4 that the controller model parameters are appro-
priately adjusted and thus the effect of the unmodeled
uncertainty to the control performance is properly sup-
pressed achieving the production of crystals with a shape
which is close to the desired set-point. The remaining offset
from a desired set-point is sometimes expected because of

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 917



0 5 10 15 20

batch number k

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98
<

 α
 >
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uncertainty in nucleation

no uncertainty in nucleation

Fig. 4. The evolution of the average crystal shape obtained
from the kMC simulations from batch-to-batch under
the MPC with the proposed R2R model parameter
estimation scheme for two cases when there is an
unmodeled uncertainty in the nucleation rate vs. no
uncertainty in the nucleation rate, for the process
drift described in Fig. 2. The desired set-point is
⟨αset⟩ = 0.88.

the nonlinear nature of the unmodeled uncertainty in the
nucleation rate. The crystal shape distribution obtained
by the proposed R2R model parameter estimation scheme
in Fig. 5 is closer to the desired set-point than that of
case when there is an unmodeled uncertainty. To deal with
this problem, a correction factor for the uncertainty in
the nucleation rate can be directly introduced in order
to improve the robustness of the MPC with the proposed
R2R model parameter estimation scheme with respect to
unmodeled uncertainties.
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Fig. 5. The normalized crystal shape distributions at t =
20000 seconds obtained from the kMC simulations
under the MPC with the proposed R2R model pa-
rameter estimation scheme. The desired set-point is
⟨αset⟩ = 0.88.

5. CONCLUSIONS

In this work, we proposed an R2R model parameter esti-
mation scheme based on a moving horizon approach in
order to model batch-to-batch parametric drift using a
polynomial regression scheme. Then, the MPC with the
proposed estimation scheme is applied to a kMC simula-
tion of a batch crystallization process used to produced
HEW lysozyme crystals. Lastly, for comparison purposes,
the performance of the MPC with the proposed R2R
model parameter estimation scheme was favorably com-
pared with those of the MPC based on the nominal process
model and dEWMA-based MPC.
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