Preprints of the

9th International Symposium on Advanced Control of Chemical Processes
The International Federation of Automatic Control

June 7-10, 2015, Whistler, British Columbia, Canada

MoM1.2

Distributed Economic Model Predictive
Control of a Catalytic Reactor: Evaluation
of Sequential and Iterative Architectures

Timothy L. Anderson* Matthew Ellis*
Panagiotis D. Christofides ***:!

* Department of Chemical and Biomolecular Engineering, University of
California, Los Angeles, CA, 90095-1592, USA.
** Department of Electrical Engineering, University of California, Los
Angeles, CA, 90095-1592, USA.

Abstract: The development and application of distributed economic model predictive control
(DEMPC) methodologies to a catalytic reactor is considered. Two DEMPC methodologies are
designed for sequential and iterative implementation, respectively. The DEMPC architectures
are evaluated on the basis of the closed-loop performance and on-line computation time
requirements compared to a centralized EMPC approach. For the catalytic reactor considered,
DEMPC proves to be a viable option as it is able to give similar closed-loop performance while
reducing the on-line computation time requirements relative to a centralized EMPC strategy.
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1. INTRODUCTION

Operating chemical processes in an economically-optimal
manner while maintaining closed-loop stability and satis-
fying the process constraints is an important issue within
chemical process control. To accomplish this objective,
model predictive control (MPC) has proven to be an
attractive way in many industrial applications (e.g., Qin
and Badgwell (2003)). MPC is a control methodology that
accounts for performance criterion by optimizing a cost
function over a finite-time prediction horizon subject to
a process model (to predict the future behavior of the
process), process constraints, and stability constraints.
Traditionally, the cost function used within MPC is a
quadratic cost that is positive definite with respect to an
operating steady-state of a process.

Given that MPC is implemented in a receding horizon
fashion (i.e., an optimization problem is solved on-line
at each sampling time to compute the control actions),
significant computation delay may result when computing
control actions for process systems of high dimension (i.e.,
many states and inputs) which may affect closed-loop sta-
bility and performance. In the context of control of large-
scale nonlinear chemical process networks, an alternative
is to employ a distributed MPC (DMPC) architecture
(e.g., Christofides et al. (2013)). DMPC has the ability
to control large-scale multiple-input multiple-output with
input and state constraints while remaining computation-
ally feasible to be implemented on-line through a dis-
tributed implementation of the computations. Numerous
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formulations, implementation strategies, and theoretical
results have been developed within the context of standard
tracking DMPC (e.g, Liu et al. (2009, 2010); see, also, the
reviews of Scattolini (2009); Christofides et al. (2013) and
the references therein).

To integrate process (dynamic) optimization and control,
economic MPC (EMPC), which optimizes a general cost
function that represents the process economics instead of
a quadratic cost function, has been proposed as a con-
trol methodology that may help to enable future man-
ufacturing tasks like demand-driven process operations
(e.g., Huang et al. (2011); Angeli et al. (2012); Heidarine-
jad et al. (2012); see, also, the review Ellis et al. (2014)
and the references therein). Recently, significant effort
within the control community has focused on (centralized)
EMPC. Since EMPC may use a general (nonlinear) eco-
nomic cost function and may dictate a time-varying oper-
ation strategy, the on-line computation required to solve
EMPC may be significant especially for large-scale process
networks. Thus, distributed EMPC (DEMPC) may be
one choice to significantly reduce the on-line computa-
tional burden. To date, only a limited amount of work on
DEMPC for linear systems [Driessen et al. (2012); Miiller
and Allgower (2014)] and for nonlinear systems [Chen
et al. (2012); Lee and Angeli (2012)] has been completed.
While these works on distributed EMPC (DEMPC) have
shown some promising results on DEMPC, more work in
this direction is in order.

In the present work, sequential and iterative distributed
EMPC strategies are developed and applied to a bench-
mark catalytic reactor where time-varying operation of
the reactor gives greater yield of the product compared
to steady-state operation. A description of the DEMPC
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implementation strategies is provided. Several closed-loop
simulations are performed to evaluate the approaches. Two
key performance metrics are considered in the evaluation:
the closed-loop economic performance under the various
DEMPC strategies and the on-line computation time re-
quired to solve the EMPC optimization problems.

1.1 Class of Nonlinear Systems

The class of nonlinear systems considered are described
by the following system of first-order ordinary differential
equations:

@(t) = f(z(t),ur(t), ..., um(t), w(t)) (1)
where z(t) € R™ denotes the state vector, u;(t) € R™: for
1 =1, ..., m denotes the ith manipulated (control) input
vector, w(t) € R™ denotes the disturbance vector. The
(full) input vector has been divided into m input vectors
given that m distributed controllers will be designed to
control each of the m input vectors. The input vectors
are bounded in a convex set denoted as U; := {u; €
R™i | Wijmin < Uij < Uijmax, J = 1, ..., Ny} for i =
1, ..., m where u;j min and u;; max denote the minimum
and maximum bound on the jth element of the 4th
input vector, respectively. Additionally, the disturbance
vector is assumed to be bounded: w(t) € W := {w €
R | |lw| < 6} where § > 0 bounds the norm of the
disturbance vector. The vector field of the system of Eq. 1
is assumed to be a locally Lipschitz vector function of its
arguments, and the origin of the unforced system is the
equilibrium point of Eq. 1 (i.e., f(0,0,...,0,0) = 0). A
state measurement of the system of Eq. 1 is assumed to
be available synchronously at sampling instances denoted
as ty := to + kA where tg is the initial time, k € I> and
A > 0 is the sampling period.

1.2 Economic Model Predictive Control

In a centralized approach, one can design an EMPC system
that computes control actions for all m input vectors.
EMPC, implemented in a centralized approach for the
system of Eq. 1, is formulated as follows:

NA
/O LG (), w1 (1), . um (7)) dr (2a)
7um(7—)70) (2

maximize
U yeey U ES(A)

subject to  Z(7) = f(&(7),u1(7),... b)
Z(0) = z(tg) (2¢)
’LLZ‘(T) elU;, V1 ¢€ [O,NA) (2d)
NA
| @) ir <o (20)

where ¢ = 1,...,m and the notation S(A) denotes the
family of piecewise constant functions with period A, Z(7)
denotes the predicted state trajectory under the piecewise
constant input profiles, ui(7), ..., u;,(7), which are the
decision variable of the dynamic optimization problem, A
is the sampling period of the EMPC, and N is a positive
integer that denotes the prediction horizon (i.e., number of
sampling periods in the prediction horizon). To distinguish
between real-time and the prediction time of the EMPC, ¢
denotes the real (continuous) time, ¢; denotes the discrete
sampling instances where state feedback is obtained, and
7 € [0, NA) denotes the predicted time in the controller.
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The stage cost lo(z, u1,. .., Uy,) of the EMPC is one of the
design/tuning elements of the EMPC. It is chosen to reflect
the process economics and need not be a quadratic stage
cost like that typically used with standard tracking MPC.
The stage cost of the EMPC is referred to as the economic
cost function. The computed input profile optimizes the
economic cost (2a) over the prediction horizon while ac-
counting for the following constraints. The constraint (2b)
is the dynamic model of the process initialized with a state
measurement (2c) received at sampling instance t;. The
nominal dynamic model predicts the future behavior of
the process under any input trajectories u1 (1), ..., um(7)
for 7 € [0, NA) and allows for the EMPC to compute the
optimal input trajectories. The optimal input trajectories
are denoted: uj(7ltr), ...,ul (7|tx) for 7 € [0, NA). The
bounds on the inputs are given by the constraints of (2d).
Lastly, the constraint (2e) represents economics-based con-
straints which are typically integral constraints.

EMPC, like standard tracking MPC, is implemented
in a receding horizon fashion. At a sampling instance
tr, the controller receives the current state measure-
ment xz(tx), computes the optimal input trajectories
ui(Tlty), ..., um(7|tr) for 7 € [0, NA) (which corre-
sponds from ¢ to tp4+n), and implements the control
action computed for the first sampling period in the
prediction horizon on the process: w;(t) = u}(0|ty) for
t € [tg,tx+1). The process is repeated at the next sampling
time by rolling the horizon one sampling period.

2. CATALYTIC REACTOR EXAMPLE

A catalytic reactor example is considered to evaluate vari-
ous DEMPC implementation strategies. A non-isothermal
continuous stirred tank reactor (CSTR) where ethylene
is catalytically converted to ethylene oxide is considered.
Besides the oxidation reaction, two combustion reactions
occur that consume ethylene and ethylene oxide. The three
reactions are given by:

1 r
CoHy + 502 LRY CoH4O (Rl)
CyHy + 304 3 2C0O5 + 2H50 (RQ)
C,H,0 + gog ™8 2C0, 4 2H,0 (R3)

The reactor has a cooling jacket to remove the heat
generated by the three exothermic reactions. The catalytic
reactor has three manipulated inputs: the volumetric flow
rate of the reactor feed, the ethylene concentration in the
reactor feed, and the coolant jacket temperature.

The gaseous mixture contained in the reactor is assumed
to be an ideal gas. By employing other standard modeling
assumptions, a dynamic model can be developed for the
catalytic reactor, and the resulting dynamic model has
four states: the reactor gas mixture density, the reactor
ethylene concentration, the reactor ethylene oxide con-
centration, and the reactor temperature. The states are
denoted as 1, x2, T3, and x4, respectively, and the inputs
are denoted uj, w2, and wug, respectively (dimensionless
variable form is used for all variables). The complete
model can be found in Ozgililgen et al. (1992) which uses
the nonlinear Arrhenius reaction rate laws of Alfani and
Carberry (1970). The admissible input values are given by
the following sets:
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up € Uy = [0.0704,0.7042] ,
uy € U := [02465,24648] s
ug € Ug := [0.6, 1.1] .

The economic performance is characterized by the average
yield of ethylene oxide which is given by:

Jo i (t)xa(t)es(t) dt -
7
Jo" ua(Bua(t) dt
where tf is the length of operation of the catalytic reactor
(t = 0 is taken to be the initial time of operation). The

average molar flow rate of ethylene that may be fed to the
reactor is fixed owing to practical considerations:

IS

> uy (t)u
The economic cost used within EMPC is:

le(x,u) = w1423 (5)

which only consists of the numerator of the yield (3) given
that the denominator is fixed by the constraint (4). The
steady-state 27 = [0.998 0.424 0.032 1.002] correspond-
ing to a steady-state input of ul = [0.35 0.5 1.0] is within
the range of operation of interest, satisfies constraint (4),
and is open-loop asymptotically stable (i.e., stability is not
an issue within the range of operation and the objective
of applying EMPC is used to optimize the average yield).
In all the simulations below, the process was initialized at
the initial condition:

=[0.95 0.50 0.21 1.00]

Y(ty) =

5(t) dt = 0.175 . (4)

3. EVALUATION OF DEMPC METHODS TO THE
CATALYTIC REACTOR

Several implementation strategies (centralized and dis-
tributed) are applied to the catalytic reactor. Studying
the benefits of applying EMPC to the catalytic reactor
has already been considered. In Ellis and Christofides
(2014), improved average yield of ethylene oxide resulted
by applying EMPC to the process compared to operating
the reactor at steady-state as well as operating the reactor
with an open-loop optimal periodic switching of the inputs
uy and ug considered in Ozgiilgen et al. (1992). The closed-
loop simulations below were programmed using C++ on a
desktop computer with an Ubuntu Linux operating system
and an Intel® Core™ i7 3.4 GHz processor. To recursively
solve the catalytic reactor dynamic model, the explicit
Euler method was used. A step size of 0.00001 was used
to simulate the closed-loop dynamics of the reactor, while
a step size of 0.005 was used to solve the model within the
EMPC problem; both led to stable numerical integration.

Regarding the implementation details of the EMPC sys-
tems below, a sampling period of A = 1.0 was used. The
optimization problems were solved using the interior point
solver Ipopt (Wéchter and Biegler (2006)). To account
for real-time computation considerations, the solver was
forced to terminate after 100 iterations and/or after 100
seconds of computation time. The tolerance of the solver
was set to 107°. To satisfy the constraint on the amount of
ethylene that may be fed to the reactor, this constraint was
enforced over operating windows of length ¢, = 47, that
is the average molar flow rate of ethylene must be equal
to 0.175 at the end of each operating window. A shrinking
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Fig. 1. State trajectories under C-EMPC.
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Fig. 2. Input trajectories computed by the C-EMPC.

horizon approach was used within EMPC: at the beginning
of the jth operating window, the prediction horizon was
set to Ny :=t,/A and the horizon was decreased by one
at every subsequent sampling time (Ny = Ni_1 — 1 at the
sampling instance t;). At the beginning of the (j 4+ 1)th
operating window, the prediction horizon was set to ¢,/A.

3.1 Centralized EMPC

For this computational study, a centralized EMPC strat-
egy, which is denoted C-EMPC, was considered to com-
pare the two distributed implementation strategies and an
EMPC of the form (6) was formulated for the catalytic
reactor. The C-EMPC formulation is given by:

N A
ulrzzfgsneusz&) /0 uy(T)Za(7)Z3(7T) d7 (6a)
subject to :Z"(T) = f(@(7),u1(7), u2(7),us(7))  (6b)
)€UV 7 €[0,NpA) (6¢)
NkA

—/ (1) dr

o L [ wmwm a (6d)
to+itp

where ¢ = 1, 2, 3 and u] and u5 denote the optimal control
actions applied to the reactor from the beginning of the
current operating window to current sampling time, tj.

Figs. 1-2 depict the closed-loop state and input trajectories
under the C-EMPC scheme over ten operating windows.
Similar to the results of Ellis and Christofides (2014), the
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Fig. 3. A block diagram of the S-DEMPC 1-2 scheme.

C-EMPC distributes the ethylene in a non-uniform fashion
with respect to time to optimize the yield of ethylene oxide.
The average yield of ethylene oxide of the reactor under
the C-EMPC is 10.22%. On the other hand, the average
yield of ethylene oxide of the reactor over the same length
of operation under constant steady-state input values is
6.38%, and the average yield under EMPC is 60% better
than that of steady-state operation.

3.2 Sequential DEMPC

A sequential implementation strategy computes the con-
trol actions for the process by computing a series of dis-
tributed controllers in succession. The first controller com-
putes an input trajectory for the first input trajectory (i.e.,
up of system (1)). The input trajectory uq(t) is sent to the
next controller to solve for the input trajectory us(t). The
input trajectory ug(t) is computed by the third controller
after the input trajectories uq(¢) and wus(t) are received
from the previous controllers. The process is repeated until
control actions for all m input vectors have been computed.

For this process example, which has three inputs, a rea-
sonable choice of input grouping can be made as a conse-
quence of the integral input constraint (4) (i.e., u; and s
should be computed by the same EMPC, while it is worth
investigating if the input us can be placed on another
EMPC system). This input pairing will be used in all of the
DEMPC schemes below and the resulting EMPC system
that computes control actions for u; and wus is denoted
as EMPC-1, and the other EMPC that computes control
actions for ug is denoted as EMPC-2. The formulations
of each EMPC system follows from the centralized EMPC
formulation (6) and are omitted due to space constraints.

Sequential DEMPC 1-2  The first configuration consid-
ered, which is referred to as the sequential DEMPC 1-2
(abbreviated as S-DEMPC 1-2), first computes EMPC-1
for the optimal input trajectories uj(7|ty) and us(7|tx)
for 7 € [0, NyA). Then, EMPC-2 computes the input
trajectory ui(7T|ty) after receiving ui(7|tr) and uj(7|ty)
from EMPC-1. Since the input trajectory us(7) has not
been determined when EMPC-1 is computed, it is set to
be the resulting input trajectory under a PI controller
implemented in a sample-and-hold fashion over the pre-
diction horizon (other methods for the assumed profile
of ug(t) within EMPC-1 could be considered). The input
constraints are accounted for in the computed PI input
trajectory (e.g., if the PI controller computed a control
action greater than the upper bound on wug, it was set
t0 U3 max). The optimal input trajectories uj(r|ty) and
ud(7|tx) are used in EMPC-2 to predict the behavior of the
reactor over the prediction horizon (i.e., the optimization
problem of EMPC-2 is similar to (6) except the decision
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Fig. 4. State trajectories under the S-DEMPC 1-2.
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Fig. 5. Input trajectories computed by the S-DEMPC 1-2.

variable is ug only, u1(7) and us(7) are set to the values
computed by EMPC-1, and there is no integral input
constraint (6d)). A block diagram of the resulting control
architecture is given in Fig. 3.

Figs. 4-5 show the closed-loop state and input trajectories
under the S-DEMPC 1-2, respectively, and the trajectories
are similar to those under the C-EMPC (Figs. 1-2). For
this closed-loop simulation, the average yield was 10.20%
(recall, the average yield under the C-EMPC was 10.22%).
The difference between the average yield under the C-
EMPC and under the S-DEMPC 1-2 is small and likely
numerically insignificant given the solver parameters used.
Some differences in the state trajectories are observed from
Fig. 1 and Fig. 4 (e.g., z1(t) and z4(t)). It is important
to note that given the nonlinear nature of the process
considered, there is no guarantee, in general, that the
centralized EMPC and sequential EMPC scheme will lead
to the same optimal input trajectories.

Sequential DEMPC 2-1  Another sequential implemen-
tation of EMPC-1 and EMPC-2 may be considered by
reversing the execution of EMPC-1 and EMPC-2. In
this case, EMPC-2 computes its optimal input trajectory
w}(7|tg) first. The sequential DEMPC approach is referred
to as sequential DEMPC 2-1 (S-DEMPC 2-1). To solve
EMPC-2, the trajectories u;(7) and us(7) are set to the
input trajectories resulting from two PI controllers im-
plemented in sample-and-hold fashion. While the bounds
on admissible input values are accounted for in the PI
input trajectories, the input average constraint of Eq. 4 is
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Fig. 6. State trajectories under the SSDEMPC 2-1.
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Fig. 8. A block diagram of the -DEMPC scheme.

not accounted for in the PI input trajectories. The block
diagram describing this DEMPC architecture is similar
to that of Fig. 3 with communication between EMPC-
1 and EMPC-2 in the opposite direction. Figs. 6-7 are
the closed-loop state and input trajectories under the S-
DEMPC 2-1 approach. Compared to the other trajectories
more noticeable differences are observed.

3.3 Iterative DEMPC

Instead of sequential computation of the distributed
EMPC schemes, parallel computation may be employed.
Given the control actions are computed without the knowl-
edge of the control actions computed by the other dis-
tributed EMPC schemes, an iterative approach may be
used to (ideally) compute control actions closer to the
centralized solution. It is important to note that given
the nonlinearity and non-convexity of the optimization
problems, it is difficult, in general, to guarantee that an
iterative DEMPC strategy will converge to the centralized
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solution (even after infinite iterations). Moreover, there is
no guarantee that the input solution computed at each
iteration improves upon the closed-loop performance over
the previous iteration. An iterative DEMPC (I-DEMPC)
scheme is designed for the catalytic reactor and a block
diagram of the L-DEMPC control architecture is given in
Fig. 8. The computed input trajectories at each iteration
of the -DEMPC is denoted as w;“(7|tg), i = 1, 2, 3
where ¢ is the iteration number. At the first iteration,
the input trajectory us in EMPC-1 is initialized with
the sample-and-hold input trajectory computed from the
same PI controller used in the S-DEMPC 1-2 scheme, and
similarly, the input trajectories us and ug for EMPC-2
are computed from the PI controllers of the S-DEMPC
2-1 scheme. The control action applied to the reactor is
denoted as u:’f(tk\tk) for i = 1, 2, 3 where f is the
number of iterations of the iterative DEMPC scheme (f
is a design parameter of the scheme). When f = 1, the
[-EMPC scheme is decentralized in the sense that there is
no communication between EMPC-1 and EMPC-2.

For this example, no closed-loop performance benefit was
observed after iterating more than once through the I-
DEMPC scheme. In fact, using the previous iterate solu-
tion to compute the next iterative gave worse closed-loop
performance than applying the first computed iteration
to the process. One method considered to compensate
for this problem was to use the best computed input
solution over all iterations to compute the next iteration.
However, minimal closed-loop performance benefit was
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Table 1. The average yield and computation
time under the EMPC strategies.

Strategy Yield (%) Comp. time (s)
Sequential DEMPC 1-2 10.20 1.039
Sequential DEMPC 2-1 9.92 2.969
Iterative DEMPC (f = 1) 10.05 0.832
Centralized EMPC 10.22 4.244

observed with this method as well. Thus, f = 1 for this
case given that using more than one iteration did not
improve the closed-loop performance. The resulting closed-
loop trajectories are given in Figs. 9-10. The trajectories
have similar characteristics as the centralized case.

3.4 Ewvaluation of DEMPC Approaches

The average yield and average computation time required
to solve the optimization problem at each sampling time
over the entire simulation were considered for all the cases.
The sequential DEMPC computation time is computed
as the sum of the computation time of EMPC-1 and
EMPC-2 at each sampling time because the sequential
DEMPC schemes are computed sequentially. The iterative
DEMPC is computed as the maximum computation time
of any one EMPC at each sampling time (recall only
one iteration was used). The average yield and average
computation time for all the cases is given in Table 1. The
centralized EMPC, sequential DEMPC 1-2, and iterative
DEMPC schemes all gave similar closed-loop performance.
The sequential DEMPC 1-2 and iterative DEMPC result
in approximately a 70% reduction in computation time
over the centralized EMPC. The sequential DEMPC 2-
1 scheme not only had the worst performance of all the
strategies considered (albeit still better than steady-state
operation), but also, required a comparable amount of
time to solve the optimization problems as the centralized
case, thereby implying a strong dependence of closed-loop
performance on controller calculation sequence. DEMPC
was able to yield comparable closed-loop performance
while substantially reducing the on-line computation time.
This demonstrates that a distributed implementation may
allow EMPC to be used on processes where centralized
control is not feasible due to the solve time.

This example illustrates another key point within the con-
text of DEMPC. Specifically, the inclusion of integral con-
straint in EMPC may be an important consideration for
input selection in DEMPC. From the sequential DEMPC
results, the computed ug profile is impacted by the as-
sumed input profiles u; and us (Fig. 7), while u; and us
are not affected as much by the assumed profile ug (Fig. 5)
compared to the centralized EMPC case (Fig. 2). This
behavior may be due to the enforcement of the integral
input constraint, and for this example, there may only be
one method to distribute a fixed amount of ethylene to
the reactor that maximizes the yield that is independent
of us.
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