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Abstract: A Bayesian algorithm is developed for estimating parameters in nonlinear stochastic 

differential equation (SDE) models. The proposed algorithm uses prior information about parameters and 

builds on the approximate expectation maximization (AEM) algorithm (Karimi and McAuley, 2014a). A 

nonlinear continuous stirred tank reactor (CSTR) model is used to compare the effectiveness of the 

Bayesian algorithm to that of the AEM algorithm. For the CSTR example studied, the proposed method 

provides more accurate parameter estimates, especially for small data sets. 
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1. INTRODUCTION 

Fundamental dynamic models are derived using material, 

energy and momentum balances. Stochastic terms are 

sometimes introduced on the right-hand sides of the resulting 

differential equations to account for disturbances and model 

mismatch (Jones et al., 1989). The resulting equations are 

called stochastic differential equations (SDEs). In this paper, 

we consider Multi-Input Multi-Output (MIMO) nonlinear 

SDE models of the form:  

)()),(),(()( tttt ηθuxfx   ,         (1.a) 

00 )( xx t ,     (1.b) 

)()),()()( ,,,, jrmjrmjrmjrm tttt εθu,g(xy  ,  (1.c) 

where X
Rx  is the vector of state variables, t is time, 

XPUX
RRRR :f  is a vector of nonlinear functions, 

U
Ru  is the vector of input variables and P

Rθ  is the 

vector of unknown model parameters. 
X

Rt )(η  is a 

continuous zero-mean stationary Gaussian white-noise 

process with covariance matrix E{η(t1)η(t2)}=Q δ(t2-t1), 

where Q is the corresponding diagonal power spectral density 

function : 
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The matrix of power spectral density function sometimes 

referred to as the process disturbance intensity matrix 

(Varziri et al., 2008). δ(.) is the Dirac delta function and 
X

R0x  is a vector of initial conditions for the state 

variables. Some of these initial conditions may be known to 

the modeler and others may be unknown values that require 

estimation along with the model parameters. 
Y

Ry  is the 

vector of measured output variables. The times at which 

measurements are available for the rth response (r=1…Y) are 

denoted by tm r,j (j = 1…Nr) where Nr is the number of 

measurements for the rth response. 
Y

Rg is a vector of 

nonlinear mappings and Y
Rε  is a vector of zero-mean 

random variables. If the measurement errors are independent, 

the corresponding covariance matrix has the following form: 
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Consider the vector Ym that contains the stacked measured 

value T

,1,,111,11 )]()()()([
1 YNYmYYmYNmm tytytyty mY

and 
T

,1,,111,11 )]()()()([
1 YNYmYYmYNmm txtxtxtx mX  

which contains the stacked values of the state variables at the 

measurement times. Um and εm are corresponding vectors for 

the input variables and random errors, respectively so that:  

 

mmmm εθ)UXGY  ,,( .    (4) 

where G is G=[g, …, g]
T

1×NY. The index m for a variable 

indicates that the values of that variable are taken at 

measurement times. The existence of a solution of an SDE is 

ensured when globally Lipschitz, linear growth and 

boundedness conditions are satisfied (Liptser and Bishwal, 

2000). Since )(tη does not have a simple mathematical 

interpretation, SDEs are often written in the differential form 

(Liptser and Shiryaev, 2000):  

WQθuxfx ddttt  )),(),((d ,   (1.d)                                                                      
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whrere W(t) is a Wiener process. Modelers often have 

knowledge about the accuracy of their measurements (i.e., the 

diagonal elements of ), but do not have knowledge about the 

values of the diagonal elements of Q, (i.e., Qd=[Q1,…,QX]
T
). 

Let 
TTT

0

T
],,[ dQxθζ u be the vector of unknown parameters 

in the SDE model where 
u0

x is a vector of the unknown 

initial conditions. SDE models are used for simulation, 

design and optimization of chemical processes and for model 

predictive control (McLean and McAuley, 2012). Therefore, 

accurate and reliable parameter estimation techniques for 

SDE models are beneficial for chemical engineers. Maximum 

likelihood estimation (MLE) methods are commonly used to 

estimate parameters in SDE models because of their 

asymptotic efficiency and consistency (Casella and Berger, 

1990).  

A challenge in estimating parameters in SDE models for 

chemical engineering systems is that experiments and 

measurements are often limited due to cost or difficulties in 

measuring certain variables. Performing further experiments 

is expensive and may not be feasible (McLean and McAuley, 

2012). As a result, the number of data values for parameter 

estimation may be limited and some of the states are often not 

measured. While MLE methods provide satisfactory 

solutions for parameter estimation in many SDE models, they 

provide noticeably biased parameter estimates when only 

limited data are available for parameter estimation (Casella 

and Berger, 1990; Ninness and Henriksen, 2010). 

In chemical engineering applications, prior information about 

some of the parameters is often known to the modeler (e.g., 

reasonable initial guesses and physically realistic ranges for 

parameter values). Box and Draper (1964) introduced the use 

of Bayesian methods for estimating parameters in chemical 

engineering models so that prior knowledge about parameter 

values could be accounted for. One benefit of Bayesian 

parameter estimation methods is that they can provide 

improved parameter estimates, especially when available 

datasets are small (Robert and Casella, 1999). In general, in 

Bayesian methods, the probability density function of the 

parameters given the measured data )( mY|ζp  is maximized 

to estimate the unknown parameters. This joint probability 

function is referred to as the posterior density function (Jang 

and Gopaluni, 2011). The posterior density function can be 

obtained from: 
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The numerator on the right-hand side is the product of the 

probability density function of the measurements given 

parameters )|( ζYmp and the prior distribution of the 

parameters )(ζp , which contains knowledge about the 

possible values of ζ . The likelihood function of the 

parameters given the measurements is defined as  

)|()( ζY Y|ζ mm pL  .    (6) 

The denominator in (5), which ensures that the posterior 

integrates to unity, does not depend on the parameter values. 

The prior probability )(ζp  is important when there is limited 

data available to provide reliable estimates for some of the 

model parameters. When a large quantity of informative data 

is available, the posterior probability will be dominated by 

the likelihood function In nonlinear models with unmeasured 

states, evaluation of the posterior density function is a major 

challenge requiring calculation of complicated integrals of 

probability density functions (Jang and Gopaluni, 2011; 

Ljung, 1999). Computationally intensive Markov Chain 

Monte Carlo (MCMC) algorithms (also referred to as particle 

filtering), which require very few assumptions about the 

posterior density function, have been used to compute these 

integrals (Coleman and Block, 2006; Jang and Gopaluni, 

2011; Robert and Casella, 1999). MCMC methods are used 

to approximate the posterior densities in SDE models 

(Geweke and Tanizaki, 2001; Jang and Gopaluni, 2011; 

Ninness and Henriksen, 2010), in mixed models (Gelman, 

2006) and in ordinary differential equation models (Coleman 

and Block, 2006). MCMC methods are particularly 

computationally demanding when the number of states and 

parameters is large (Gopaluni, 2010). Benefits and drawbacks 

of MCMC methods are summarized by Chen et al. (2004).   

In this article a computationally efficient algorithm is 

proposed for estimating parameters and states in nonlinear 

SDE models when the modeler has some prior knowledge 

about some of the parameters. This algorithm is developed 

using a Bayesian approach. Recently, we developed three 

approximate MLE algorithms for estimating parameters in 

nonlinear SDE models (Karimi and McAuley, 2013; Karimi 

and McAuley, 2014a; Karimi and McAuley, 2014b). These 

MLE-based methods, which do not require prior knowledge 

about parameters, are computationally efficient, but can 

provide poor parameter estimates when data sets are small.  

Here, we develop an approximate Bayesian expectation 

maximization (ABEM) algorithm that builds on our previous 

approximate expectation maximization (AEM) method 

(Karimi and McAuley, 2014a). The inclusion of prior 

information about parameters in the resulting objective 

function leads to improved parameter estimates, especially 

when data are sparse or noisy. First, an analytical expression 

for the posterior density function is derived and used to 

develop a suitable objective function for parameter 

estimation. The proposed algorithm is then tested using a 

CSTR model and results are compared with those from the 

AEM method. It is shown that the proposed ABEM method 

provides more accurate parameter estimates for the example 

studied.   

2. DEVELOPMENT OF THE APPROXIMATE BAYESIAN 

EXPECTATION MAXIMIZATION ALGORITHM 

In Bayesian approaches, the posterior density function 

)|( mp Yζ  is maximized to obtain the parameter estimates. 

Maximizing )|( mp Yζ  is equal to minimizing -ln )|( mp Yζ . 

When developing the AEM methodology, we showed that 

(Karimi and McAuley, 2014a): 
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where ~x  is the vector of state estimates obtained using B-

spline basis functions:  

)()( tt BΦx ~  .     (8) 

)(tΦ is a matrix of spline functions: 































)(

)(

)(

)(
2

1

t

t

t

t

T

X

T

T

φ00

0φ0

00φ

Φ









,   (9) 

and 
T

X1 ββΒ ],,[  ,    (10) 

where βs is the vector containing cs B-spline coefficients for 

the sth state: 

T

,1, ],,[
scsss  β for       s=1,…,X.  (11) 

Since )( mp Y  is data-dependent and parameter-independent, 

(5) can be written as:  

)()|()|( ζζYYζ ppp mm  .    (12) 

Taking the logarithm of both sides gives: 

)(ln)|(lnconstant)|(ln ζζYYζ ppp mm  . (13) 

Assuming that the probability density functions of Q, x0u and 

θ are independent of each other gives:  

)()()()( 0 Qxθζ pppp u .    (14) 

Taking the logarithm of both sides of (14) and substituting 

into (13) gives: 

).(ln)(ln
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 (15) 

If the modeler assigns a Gaussian distribution to the ith 

parameter 
i  (with mean i  and variance 2

, i ) to account for 

prior knowledge: 

)
2

)(
exp(

2

1
)(

2

,

2

, i

ii

i

ip










 .   (16)  

Let 
T

1 ],...,[ Pθ  denote the vector of assigned prior 

parameter means and 
T2

,

2

1, ],...,[ P 
2
σ  denote the vector 

of assigned prior parameter variances. If the assigned values 

of the model parameters are independent:  
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The modeler may also assign a Gaussian distribution for the 

sth unmeasured initial state value x0u,s (with mean
sx  and 

variance 2

, sx ) to account for prior knowledge: 

)
2
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2

1
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Let 
T

10 ],...,[
uNu xxx  denote the vector of assigned means 

for the initial values where Nu is the number of unknown 

initial state values and 
T2

,

2

1,

2

0 ],...,[
uNxxu σ  denote the 

vector of variances assigned for these initial states. If the 

assigned initial state values are independent:  
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Since the modeler would usually have no prior information 

about Q, p(Q) in (15) can be assumed to be a uniform 

distribution (between 0 and ∞) indicating that all positive 

values are equally likely: 



 


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if
p

0

01
)(

Q
Q .   (20)                                                  

Taking the natural logarithms of both sides of (17), (19) and 

(20) and substituting these expressions and )|(ln ζYmp  from 

(7) into (15) gives: 
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Because the B-spline expressions in (8) can be readily 

integrated with respect to time, the integrand in the fifth term 

on the right-hand side of (21) becomes an algebraic 

expression. As a result, there is no need for numerical 

solution of differential equations when estimating B and θ.  

The only differences between the ABEM and AEM objective 

function derived in our past work are the four last terms in 

(21), which are related to prior information about the 

parameters and initial states. 

Estimates of the parameters and unknown initial states for 

SDE model (1) can be determined by minimizing objective 

function )|( mp Yζ  in (21) with respect to the model 
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parameters, initial states and disturbance parameters in ζ  and 

the B-splines parameters B:  

)|(ln2minargˆˆ
mp YζΒ,ζ

Βζ,

 .                                     (22) 

3. ILLUSTRATIVE EXAMPLE: NONLINEAR TWO-

STATE CSTR MODEL 

In this section, a two-state CSTR model from Marlin (1995) 

with additive stochastic disturbances is used to illustrate the 

use of ABEM: 
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),()()( ,1,1,1 jmCjmAjmC tεtCty     (23c) 

)()()( ,1,1,1 jmTjmjmT tεtTty  .   (23d) 

The parameter estimation results obtained from the proposed 

ABEM approach are then compared to results obtained using 

AEM. Notice that stochastic disturbance terms ( )(tC  and 

)(tT ) appear on the right-hand sides of material balance 

(23a) and energy balance (23b), respectively, where  CA is the 

concentration of reactant A and T is temperature. The rate 

constant for the reaction is: 

))/1/1(/exp( refrefr TTREkk  .  (24) 

AU  is a heat transfer coefficient that depends on the coolant 

flowrate Fc: 

111
)))2(((


 pcc

b

ccp

b

cA caFFcVaFU  , (25) 

and  is: 

1
))((


 prxn cH   ,    (26) 

The true initial values for the states are CA(0)= 1.569  

kmol·m
-3

 and  T(0)=341.37 K. For illustration, it is assumed 

that the initial concentration CA(0) is perfectly known, but the 

initial temperature T(0) is measured at 343.51 K with a 

variance of 
2

TS =5.0 K
2
. Parameters that will be estimated 

using ABEM and AEM are model parameters 
T

CSTR ],,/,[ baREk refθ , the initial temperature T(0), 

disturbance intensities QC and QT and the B-spline 

coefficients . The inputs for this CSTR model are the feed 

flow rate F, the inlet concentration CA0, the inlet temperature 

T0, the coolant inlet temperature Tin and the flow rate of 

coolant to the cooling coil Fc. Known values of the model 

constants and known measurement variances 2

C  and 2

T  are 

provided in Table 1 (Marlin, 1995).  

Table 1. Model constants (Marlin, 1995) 

Model 

Constants 

Value Units 

cp 4186.8 J·kg
-1

·K
-1

 

cpc 4186.8 J·kg
-1

·K
-1

 

Tref 350 K 

V 1 m
3
 

ρ 1000 kg·m
-3

 

ΔHrxn -544.154×10
3
 J·kmol

-1
 

2

Cσ  
4×10 

-4 kmol
2
·m

-6
 

2

Tσ  
0.64 K

2
 

 

These values were used along with the true values of the 

parameters (at the top of Table 2) and the step input 

trajectories in Fig. 1 to generate 200 sets of simulated data. In 

each simulation, CA is measured nC times and T is measured 

nT times. The “ode45 solver” in MATLAB™ was used to 

generate the simulated data.  

The ABEM objective function (J) for estimating parameters 

in the CSTR model is: 
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where  refk , 2

refk , RE / , 
2

ER , 
2

a , b  and 
2

b are means 

and variances of refk , RE / , a and b, respectively.  

Each of the means was set at 70% of the true value for the 

corresponding parameter value. The corresponding standard 

deviations used in prior distributions specified in (16) were 

set at 60% of the initial guesses for the corresponding 

parameter. In the simulations, continuous white noise 

disturbances were approximated using discrete white noise 

sequences with a sampling interval of Δt=0.5 min so that in 

(27), qC = qT =128. The ABEM objective function and AEM 

objective function ((27) without the last 5 terms) were 

programed using AMPL™ and optimized using the IPOPT 

solver (Wächter and Biegler, 2006). Cubic B-splines were 

implemented with three equally-spaced knots per sampling 

interval, which was shown to be effective in our previous 

work (Karimi and McAuley, 2014b). Estimates for unknown 

parameters were obtained from 200 sets of simulated data 
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obtained using two different scenarios (100 replicate data sets 

each, obtained using different random noise, disturbance 

sequences and random initial guesses for the parameters 

chosen from a uniform distribution between 0% and 500% of 

their true values), as shown in Table 2. Medians and 

interquartile ranges (IQRs) from the 100 replicate estimates 

were used to quantify the effectiveness of the two parameter 

estimation approaches and are reported in Table 2. 

In Scenario A, CA and T were measured once every 0.5 min, 

so that 128 concentration measurements and 128 temperature 

measurements are available for parameter estimation. 

Table 2. True parameter values, median values and IQRs for the estimates based on 100 Monte Carlo runs for two 

scenarios. 

Parameter 
  

kref (E/R)/ 10
3
 a/10

6
 b T(0) QC QT 

Unit 

  

min
-1

 K 

  

K kmol
2
·m

-6
·min

-1
 K

2
·min

-1
 

True 

Value 
  

0.461 8.3301 1.678 0.50 341.38 0.0010 4.0 
Scenario 

A ABEM Median 0.434 8.2171 1.486 0.49 343.30 0.010 5.1 

  
IQR 0.017 0.2058 0.394 0.10 1.89 0.004 1.4 

 
AEM Median 0.435 8.2210 1.481 0.50 343.05 0.010 5.1 

  
IQR 0.018 0.2142 0.520 0.12 1.78 0.004 1.3 

B ABEM Median 0.432 8.1753 2.081 0.44 343.17 0.001 10.1 

  
IQR 0.039 0.8863 0.440 0.08 1.83 0.000 2.3 

 
AEM Median 0.417 8.1546 4.666 0.00 343.23 0.001 10.4 

  
IQR 0.075 1.2818 2.773 0.18 1.94 0.000 3.5 
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Fig. 1. Input trajectories for the CSTR (Varziri et al., 2008)  

As expected, there is no significant difference between the 

estimates of parameters obtained from ABEM and AEM 

because there is a large dataset available for parameter 

estimation. Estimated trajectories (CA~ and T~) for one of the 

simulated data sets are shown in Fig. 2, along with the true 

state trajectories and the corresponding data values when 

ABEM is used for parameter estimation. As expected, the 

estimated state trajectories follow the true trajectories closely. 

In Scenario B, only 10 equally-spaced concentration 

measurements and 10 equally-spaced temperature measure-

ments were available for parameter estimation. Estimates of 

model parameters obtained from ABEM are significantly less   

 

biased than those obtained from AEM. The estimates of b 

obtained in Scenario B are almost zero using AEM. The 

estimates of QC and QT obtained from ABEM are similar to 

those obtained from AEM. The reason for this similarity is 

that no prior information for QC and QT was specified. The 

estimates of QC and QT in both ABEM and AEM are biased 

because the data set is not informative enough to estimate 

them with good accuracy. Note that the widths of the IQRs 

obtained using AEM are larger than those obtained using 

ABEM in both Scenarios A and B. The results in Table 2 

reveal that the ABEM parameter estimation algorithm was 

more effective than AEM for the CSTR example studied. 

Results in Table 2 suggest that ABEM has superior 

performance when there are small datasets and prior 

information is available for some parameters. In future, it will 

be important to test ABEM using larger-scale models.  

4. CONCLUSIONS 

A Bayesian method for estimating parameters and process 

disturbance intensities in nonlinear SDE models is proposed 

when the modeler has prior knowledge about some of the 

parameters. This approximate Bayesian expectation 

maximization (ABEM) method builds on the approximate 

expectation maximization (AEM) algorithm (Karimi and 

McAuley, 2014a) and uses prior information about 

parameters. The new ABEM method permits modelers to 

estimate model parameters and the magnitude of process 

disturbances in SDE models even when the size of the 

datasets are small. A two-state nonlinear CSTR model with 

stochastic disturbances and measurement noise was used to 

test the ABEM methodology. Parameter and disturbance 

intensity estimates were compared with those from the AEM 

method. The resulting ABEM parameter estimates are less 

biased and more precise than the corresponding estimates 

obtained using ABEM, especially in the case where the data 

set was small.  
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Fig. 2. Measured, true, and predicted concentration and temperature responses for the ABEM method for one dataset in 

scenario A (• simulated data, ----- response with true parameters and true stochastic noise, ___ABEM response). 
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