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Abstract: In actual chemical processes, the fact that some essential variables cannot be directly
measured makes the production quality out-of-control and even results in large economic losses.
In this study, a novel sample clustering extreme learning machine (SC-ELM) model is developed
to achieve timely and accurate measurement. SC-ELM is a fast training algorithm with an
excellent generalization performance, and the combined sample clustering approach solves the
non-optimal input weights of ELM. The network structure is designed by a fast leave-one-
out cross-validation (FLOO-CV) method. Meanwhile, the validity of SC-ELM model is firstly
tested by two classical regression datasets. With the comparison of other ELM models, SC-ELM
is proved to be an effective model in both modeling accuracy and network structure. Then, SC-
ELM is applied in measuring the quality index of a high-density polyethylene (HDPE) process
running in a chemical plant, and the experiment results demonstrate that SC-ELM model can
achieve quality estimation with higher measuring accuracy and less training time.

Keywords: Extreme learning machine, Density based K-means clustering algorithm, Fast
leave-one-out cross-validation method, Soft-sensing, High-density polyethylene process.

1. INTRODUCTION

In actual chemical processes, some essential variables that
relate to the optimization and control performance are
unable or difficult to be directly detected by sensors. To
address these issues, the researches of soft-sensing tech-
niques for on-line estimation are extended in past few
years. Currently, some researchers focus on the soft-sensing
methods based on the process mechanism analysis or state
estimation. These methods require precise mathematical
equations of the system, which are often unavailable in
practice. In contrast, due to its application of the easily
obtained operational data, artificial neural network (ANN)
based soft-sensing method is much more suitable for the
complex chemical process. However, during the practical
application, ANN still exposes a series of questions includ-
ing the long training time, multiple local minima, and need
for tuning of parameters, etc.

Recently, Huang et al. (2006, 2012) invented a fast training
algorithm for a single hidden layer feedforward neural
network (SLFN), referred as an extreme learning machine
(ELM). In comparison with other traditional neural net-
works, ELM has following advantages: (1) Easy to use and
no parameters need to be tuned except predefined network
structure; (2) Most ELM network training is accomplished
in seconds (so does the large-scale application), which is

⋆ This project is supported by the National Natural Science Founda-
tion of China (No.61104131, No.61473026) and the Fundamental Re-
search Funds for the Central Universities (No.YS1404, No.JD1413).

hundreds of times faster than other traditional training
algorithms; (3) ELM has no local minima issues, and it
possesses similar approximation performance as BP and
SVM; (4) A wide range of activation function, even includ-
ing some piecewise continuous functions, can be applied
in ELM. Even though ELM overcomes the limitations of
traditional neural networks, it still has some issues worthy
of further study, especially in the chemical application.

One of the essential studies is about the random choosing
of input weights and biases. These parameters do not
contain any prior knowledge of the inputs and easily cause
the hidden layer output matrix not full column rank. This
singular hidden layer output matrix sometimes makes the
linear system that is used to train output weights unsolv-
able and also lowers the predicting accuracy. To solve this
problem, Miche et al. (2010) proposed an optimally pruned
ELM algorithm to remove the redundancy of hidden neu-
rons, Xu and Shu (2006) utilized the global searching abil-
ity of particle swarm optimization algorithm to adaptively
optimize the input weights, and Feng et al. (2012) updated
the ELM by reassigning the hidden neurons with larger
weight. However, all of these improvements are just from
mathematical calculation, and they ignore the character-
istics of training samples. In general, the original data
includes some domain knowledge of the modeled object,
and the clustering is one of effective ways for extracting
domain knowledge. The clustering mechanism establishes
groups within the data, assuring that these groups are
homogeneous with regard to the output variable. The
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homogeneity eventually orient the training mechanism into
right direction and accelerate the learning itself.

In addition, the preliminary ELM does not provide an
effective solution for network structure. In most cases, the
optimal number of hidden neurons is selected by a trial
and error with the target of minimum training error. This
ELM network may perform very well on a similar testing
dataset, but when the testing data with subtle differences
are introduced, the errors start to dramatically increase.
To solve this problem, some cross-validationmethods, such
as hold-out, K-fold cross-validation (K-CV) and leave-one-
out cross-validation (LOO-CV), have been used to find
out the optimal ELM structure (see Suresh et al. (2009)).
Comparing with the hold-out and K-CV methods, the
LOO-CV method can exclude the effects of stochastic
variables, and its generalization error estimation is near-
ly unbiased. Nevertheless, these cross-validation methods
have a relatively high computational cost, restricting their
applications in some large-scale datasets.

The purpose of this article is to introduce a sample clus-
tering extreme learning machine (SC-ELM) model for esti-
mating the immeasurable variables of chemical processes.
The sample clustering is based on a density based K-
means clustering algorithm, and the divided clustering
centers are taken as the input weights of ELM. The net-
work structure is rapidly calculated by a fast leave-one-
out cross-validation (FLOO-CV) method with the goal
of optimal generalization ability. The effectiveness of SC-
ELM is firstly verified by ‘SinC’ and abalone datasets, and
then it is used in the quality index estimation of a high-
density polyethylene (HDPE) process. The results show
that the SC-ELM efficiently enhances the modeling accu-
racy of HDPE process, thus exploits a new and effective
way to simulate and guide the industry production.

2. REVIEW OF EXTREME LEARNING MACHINE

For N distinct samples Ω = {(xi,yi) |i = 1, · · · , N ;xi =

[xi1, · · · , xin]
T
∈ Rn;yi = [yi1, · · · , yim]

T
∈ Rm}, standard

SLFN with L hidden neurons and RBF activation function
φj(xi) is mathematically modeled as

L∑

j=1

βjφj (xi)=

L∑

j=1

βjφ (µj, σj ,xi)=yi, i = 1, · · · , N (1)

where βj = [βj1, βj2, · · · , βjm]T is the weight vec-
tor connecting the jth hidden neuron and every out-
put neuron, and φj(xi) is the output of the jth hid-
den neuron, using the activation function as φj (xi) =

exp
(
−‖xi − µj‖

2
/2σ2

j

)
. µj = [µj1, µj2, · · · , µjn]

T
is the

center of the jth hidden neuron, σj is its impact width.
The above N equations can be written compactly as:

Hβ = Y (2)

where

H=




φ (µ1, σ1,x1)
...

φ (µ1, σ1,xN )

· · ·
· · ·
· · ·

φ (µL, σL,x1)
...

φ (µL, σL,xN )



N×L

=



Hx1

...
HxN


(3)

β=
[
βT
1 ,β

T
2 , · · · ,β

T
L

]T
L×m

Y=
[
yT
1 ,y

T
2 , · · · ,y

T
N

]T
N×m

(4)

ELM proposed by Huang randomly chooses the input
weights µj and σj , then the output weights β are ana-
lytically estimated as:

β̂ = H+Y (5)

where H+ is the Moore-Penrose generalized inverse of
matrix H. However, ELM algorithm still has some short-
comings in the area of process modeling:

(1) The random selection of hidden neuron center and im-
pact width is not able to incorporate prior knowledge
of the inputs and may contain non-optimum. Thus,
the modeling accuracy is decreased.

(2) The number of hidden neurons is determined by the
training error, and this method performs poor when
new datasets with subtle changes are introduced.

3. SC-ELM MODEL

In this section, some measures are taken to overcome
the above shortcomings of ELM. Firstly, a density based
K-means clustering algorithm is set up to partition the
training samples into clusters and select the clustering
centers as the input weights of ELM. Then, the training
set is divided into N groups, and a fast network structure
selection method (FLOO-CV) is used to select the optimal
number of hidden neurons. Based on the two methods, we
conclude the integrated steps of SC-ELM model.

3.1 Density based K-means clustering algorithm

In general, a neural network with higher accuracy requires
clusters distributing uniformly while revealing the struc-
ture of training samples. Nevertheless, the traditional K-
means clustering algorithm is easy to achieve a local opti-
mal solution. A consequence of this local optimality is that
L clustering centers (L is the number of clusters, equals
to the number of hidden neurons) are randomly initialized
from training samples, which may result in some centers
stuck in nearer regions and never move to where they
are needed. Meanwhile, if we choose L training samples
with the farthest distance as initial centers, sometimes we
will get noisy points, and then it will affect the effect of
clustering. In a data space, high-density areas are usually
divided by low-density areas, and it is generally accepted
that objects in low-density areas are the noisy points.

To avoid getting the noisy points, we select L training
samples with the farthest distance in high-density set as
the initial clustering centers, where the high-density set is
defined as:

Definition 1: ε-neighborhood. The ε-neighborhood is an
area of round, which takes the training sample as the
center and the distance ε as the radius.

Definition 2: Density of each training sample.

ρ (i) =
Numi

πε2
(6)

where ρ (i) represents the density of the ith training
sample in set Ω, and Numi is the number of training
samples in ε-neighborhood.
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Definition 3: High-density set. The threshold ρmin is
given. If ρ (i) ≥ ρmin, the ith training sample is added
to the high-density set.

With the selected initial clustering centers, the traditional
K-means clustering algorithm is adopted to partition the
training samples, and obtain the center location of RBF
hidden neurons µj (j = 1, 2, · · · , L). What is more, the
impact width σj are described by the nearest distance
between center µj and other centers, calculating as follows:

σj = λmin ‖µj − µw‖ , w = 1, 2, · · · , L, w 6= j (7)

where λ is the tuning factor, and ranges from 1 to 2.

3.2 Fast leave-one-out cross-validation method

Due to the computational cost of traditional cross vali-
dation methods is relatively high, a FLOO-CV method
is presented to find the optimal network structure. In
FLOO-CV method, the training samples are divided into
N groups, shown in Fig.1. Each trial takes out one sample
as the validation sample, and its output is determined by
the training of the remaining samples. Thus the validation
sample, not used for training, stands for the generalization
ability of the network.

Fig. 1. Demonstration of leave-one-out cross-validation.

Suppose the sample (xi,yi) is left out for validation, and
the model is trained by remaining samples in set Ω, then
the hidden layer output and the desire output of remaining

samples areHi =
[
HT

x1
· · · HT

xi−1
HT

xi+1
· · · HT

xN

]T
(N−1)×L

and Yi =
[
yT
1 · · · yT

i−1 yT
i+1 · · · yT

N

]T
, respectively. The

connecting weight vector β̂i is firstly obtained by the min-
imal norm least square solution of equation Hiβi = Yi,
then the validation output of (xi,yi) is calculated as:

vi = Hxi
β̂i (8)

Theorem 1: Suppose there is an output vector Yvi

i =[
yT
1 · · · yT

i−1 vT
i yT

i+1 · · · yT
N

]T
, so the two equations:

Hiβ=Yi (9)

Hβ=Yvi

i (10)

have the same minimal norm least square solution.

Proof: Comparing (9), (10) has an extra linear equation:

Hxi
β = vi (11)

Suppose Θi and Θvi

i are respectively the solution space of
(9) and (10), and their relationship must be represented as

Θvi

i ⊆ Θi. What is more, vi is defined from the minimal

norm least square solution β̂i (β̂i ⊆ Θi), which has been

shown in (8), so β̂i must be the solution in space Θvi

i .

Theorem 2: In the ith trial, if there exist inequality
1 − (Hxi

H+)i 6= 0, the validation output of the left out
sample (xi,yi) is:

vi =
Hxi

H+Y − (Hxi
H+)iyi

1− (Hxi
H+)i

(12)

where (Hxi
H+)i stands for the ith element of vector

Hxi
H+.

Proof: According to the definition of vi and Theorem 1,
the following equation is obtained:

vi = Hxi
β̂i = Hxi

H+


Y −




0(i−1)×1

yi − vi

0(N−i)×1






= Hxi
H+Y −

(
Hxi

H+
)
i
yi +

(
Hxi

H+
)
i
vi

(13)

Transpose (13), then the validation output vi is as (12).

Therefore, compared with typical LOO-CV method, the
proposed FLOO-CV method is not required to undertake
N times of model training, and each validation output can
be directly calculated according to the (12).

3.3 SC-ELM model construction

Combined with the improved K-means clustering algo-
rithm and FLOO-CV method, the model of SC-ELM is
constructed. The detailed steps of constructing the SC-
ELM model is given as follows:

(1) Divide the N training samples into N groups, and
initialize the number of hidden neurons l = LL.

(2) Train the neural network with all training samples.
(3) Calculate the training performance. The network

output
{
oi |i = 1, · · · , N ; oi = [oi1, · · · , oim]

T
∈ Rm

}

has been calculated in step 2. What is more, the
performance of neural network is usually evaluated
in terms of root mean square (RMSE) criterion, so
the training performance is represented as:

RMSE T =

√√√√√
N∑
i=1

m∑
q=1

(yiq − oiq)
2

N ×m
(14)

(4) Select each validation sample s (s = s + 1 until
s > N) in turn, and calculate its validation output

vs = [vs1, · · · , vsm]T ∈ Rm. If the inequality 1 −
(Hxs

H+)s 6= 0 is satisfied, the validation output vs

is directly calculated by (12); otherwise, train the
SC-ELM with remaining samples, and obtain vs by
testing the trained SC-ELM with sample s.

(5) Calculate the validation performance. The validation
performance is defined by the following equation:

RMSE V =

√√√√√
N∑
i=1

m∑
q=1

(yiq − viq)
2

N ×m
(15)
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(6) Judge whether the criterion of early stopping is met.
If the error of RMSE V increases for a specified
number of consecutive iterations (here 5 iterations),
indicate the minimum RMSE V is found in advance,
and then turn to Step 8. Otherwise, go to next step.

(7) Judge whether the number of hidden neurons exceeds
tuning range or not. If l < LU, set l = l + 1, s = 0,
and turn to Step 2. Otherwise, go to next step.

(8) Plot RMSE V versus the number of hidden neurons,
and the plot of RMSE V will have a minimum, which
corresponds to an optimal number of hidden neurons.

(9) On the basis of the determined network structure,
re-apply the density based K-means clustering algo-
rithm to decide the RBF center µ and impact width

σ, and calculate the output weight β̂ by using eq. (5).
Thus, the model of SC-ELM is completed.

4. PERFORMANCE VERIFICATION

In this section, the performance of SC-ELMmodel is firstly
tested by two classical regression problems: the ‘SinC’
function and the abalone dataset. The abalone dataset is
from UCI machine learning repository, which includes 1
integer and 7 continuous input attributes and 1 integer
output. The ‘SinC’ dataset is generated as follows:

y(x) =

{
sin(x)/x + ε, x 6= 0
1 + ε, x = 0

(16)

where the inputs x are randomly distributed on the inter-
val (-10,10), and the noises ε are uniformly distributed in
[-0.2,0.2], adding to all training samples while remaining
testing samples noise-free. For the ‘SinC’ problem, both
the training set and testing set have 5000 samples. For
the abalone problem, the dataset are divided into 2000
training samples and 2177 testing samples.

Comparing with ELM, SC-ELM uses the prior knowledge
(the density based K-means clustering algorithm) to de-
termine the input weights, and it should have a higher
predicting accuracy. To prove the superiority of SC-ELM,
Table 1 lists the training and testing performance of the
standard ELM in the literature (see Huang et al. (2006))
and SC-ELM under the same number of hidden neurons.
As observed from Table 1, no matter in ‘SinC’ dataset
or in abalone dataset, SC-ELM obtains smaller training
and testing RMSE than ELM in both ‘SinC’ and abalone
dataset. Moreover, standard ELM conducts 50 trials, while
SC-ELM only need to train once, so SC-ELM spend less
training time than ELM.

Table 1. Comparison of training and testing
RMSE of ELM and SC-ELM

Performance
‘SinC’ Abalone

ELM SC-ELM ELM SC-ELM

Hidden neurons number 20 20 25 25
Training RMSE 0.1148 0.1166 0.0803 0.0767
Testing RMSE 0.0097 0.0074 0.0824 0.0774

Training Time (s) 0.125×50 0.561 0.0125×50 0.0878

The structure of SC-ELM model is determined by the
FLOO-CV method. Fig.2 shows the training, validation
and testing values with the variation of hidden neurons
number. For ‘SinC’ dataset, both the minimum validation

RMSE and the minimum testing RMSE occur at 11 hidden
neurons. For abalone dataset, the selected number of
hidden neurons by minimum validation RMSE is 20, and
its corresponding testing RMSE is 0.0776, which is so close
to the minimum testing RMSE occurs at 26 hidden neuron
with the value of 0.0773. Therefore, both the two datasets
demonstrate the effectiveness of FLOO-CV method.

Fig. 2. Variation in the training, validation and testing
RMSE against number of hidden neurons.

In addition, Table 2 lists the performance of many other
ELM models in the literature (see Huang et al. (2006);
Feng et al. (2012); Deng et al. (2009); Lan et al. (2010)).
Both BELM and ES-ELMmodels improve the randomness
property of input weights, and regularized ELM model im-
proves the training algorithm of output weight. Comparing
with these three models, SC-ELM has the smallest testing
RMSE and smallest hidden neurons in ‘SinC’ dataset. In
the abalone dataset, I-ELM, EM-ELM and CS-ELM mod-
els are the methods of determining the number of hidden
neurons. Aim at eliminating the influence of random input
weights, these three models conducted multiple trials, and
the listed hidden neuron numbers are the averages of
multiple trials. Furthermore, I-ELM randomly adds the
hidden neuron one-by-one without any selection method,
so its hidden neuron number reaches extremely large when
the training error becomes less than the expected one. As
observed from Table 2, the testing RMSE of SC-ELM is
only worse than CS-ELM, and the structure of SC-ELM
is only more complex than EM-ELM model. Therefore,
based on the verification of ‘SinC’ and abalone datasets, we
can conclude that the developed SC-ELM model not only
effectively raises the modeling accuracy, but also optimizes
the network structure.

Table 2. Performance comparison in ‘SinC’ and
abalone dataset

‘SinC’ dataset Abalone dataset

Models
Hidden Testing

Models
Hidden Testing

Neurons RMSE Neurons RMSE

ELM 20 0.0097 ELM 25 0.0824
BELM 16 0.0139 I-ELM 1799.8 0.0822
ES-ELM 16 0.0134 EM-ELM 11.5 0.0794
RELM 20 0.0078 CS-ELM 20.8 0.0771
SC-ELM 11 0.0054 SC-ELM 20 0.0776
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5. HDPE PROCESS APPLICATION

5.1 Description of HDPE process

HDPE cascade reaction (Zhu et al. (2012)) is a polymeriza-
tion process from high-purity ethylene monomer to high-
density polyethylene under the condition of low-pressure
and hexane slurry. It consists of two slurry reactors, post
reactor and recycle unit, in which the two slurry reactors
are connected by flash tank in series. The flowchart of the
polymerization process is shown in Fig.3.

Fig. 3. The flowchart of HDPE cascade reaction process.

In the first slurry reactor, temperature and pressure are
firstly set up, and then hexane solvent, catalyst and co-
catalyst with suitable ratio, and hydrogen and high-purity
ethylene mixed by dehydration and impurity removal are
injected. By regulating the feed flow, controlling the ra-
tio between hydrogen and ethylene, and using the effect
of catalyst, slurry polymerization is made in the hexane
solvent system. Moreover, the heat of polymerization is
removed by the latent heat of vaporization of hexane
solvent, cooler water in the jacket and external reflux of
slurry. The product from the reactor 1 is flash-evaporated
to recycle some micromolecule hydrocarbon, and then, is
collected into the second reactor to make further poly-
merization. In the second slurry reactor, hexane solvent,
catalyst and cocatalyst need to be supplied under definite
temperature and pressure, and then 1-butene is added to
regulate the density of the polymer. By regulating the feed
flow, controlling the ratio between hydrogen and ethylene,
and the ratio between 1-butene and ethylene, new slurry
polymerization is made in the hexane solvent system.
Later, the polymer suspension is sent to post reactor. In
the post reactor and feed vessel, products and solvents are
separated, and the final HDPE products are extracted.

The product specification of polyethylene is measured by
the melt index of reactor 1 MI1, the melt index of reactor
2 MI2, and the density of reactor 2 ρ. As lack of on-
line measurement methods in the actual production, the
off-line laboratory analysis of the three quality indicators
exist a long time delay, which directly influence the control
performance of production system as well as polyethylene
quality examination and on-line optimization. To address
the problem, the proposed SC-ELM model is exploited to
on-line estimate the values of three quality indicators.

5.2 Selection of variables

Here three SC-ELM models have been constructed, and
three quality indicators, MI1, MI2, and ρ, are the output
of each model.

Based on the sensitivity analysis in the literature (see
Zhu and Lang (2011)), the input variables of MI1 are
mainly seven variables in reactor 1: feed flow of ethylene
x1, feed flow of catalyst x2, temperature x3, pressure x4,
partial pressure of ethylene x5, partial pressure ratio of
hydrogen and ethylene x6, and feed flow of hydrogen x7.
Similarly,MI2 mainly depends on following six variables in
reactor 2: feed flow of ethylene x8, feed flow of catalyst x9,
temperature x10, pressure x11, partial pressure of ethylene
x12, and partial pressure ratio of hydrogen and ethylene
x13. In addition, two other variables, the pressure in flash
tank x14 and the melt of index 1 (because the polymer
in the reactor 2 is re-produced from the polymer in the
reactor 1), also influence the magnitude of MI2.

In the HDPE production process, the density of reactor 1
do not need to be predicted since the key material 1-butene
is only injected in reactor 2. The density of reactor 2 ρ is
regulated not only by the process variables x8, x9, x10,
x11, x12, x13 and x14 used in the model of MI2, but also
by the following three variables in reactor 2: feed flow of
1-butene x15, recycle flow of 1-butene x16, and percentage
of gas phase butene x17.

5.3 Modeling and experiment result

In this section, the verified SC-ELM is used in the real
HDPE process modeling of grade 9455F running in a
Chinese petrochemical company.

In order to construct the SC-ELM model, historical on-
line measured input data and off-line analyzed output
data of grade 9455F with 10 minutes sample intervals are
collected. The data-preprocessing technology, including
the methods of handling missing value, data filtering and
steady-state identification, is firstly applied to eliminate
errors, noises, in-consistent data or missing data. Then, the
correlation coefficient matrix (Kashani and Shahhosseini
(2010)) is carried out to find the lag time between the out-
put variables and input variables. As a result, the relation
between the process variables and three outputs at time
t can be described as MI1(t) = f(X1(t − 1)), MI2(t) =
f(X2(t−2),MI1(t−1)) and ρ(t) = f(X2(t−3), X3(t−3)),
whereX1 ∈ {1, 2, 3, 4, 5, 6, 7},X2 ∈ {8, 9, 10, 11, 12, 13, 14}
and X3 ∈ {15, 16, 17}. Through the above two steps, 626
instances for melt index of reactor 1, 521 instances for melt
index of reactor 2 and 351 instances for density of reactor
2 are collected, and these instances of each indicator are
divided into training set and testing set in a 2:1 proportion.
Moreover, the input weights of SC-ELMs are trained by
the density based K-means clustering algorithm, and the
network structures are determined by FLOO-CV method.

Fig.4 carries out the variation of validation error with
the number of hidden neurons. In Fig.4, the minimum
validation RMSE of MI1, MI2 and ρ occurs at the 32, 27
and 29 hidden neurons. Therefore, the model structures of
melt index of reactor 1, melt index of reactor 2 and density
of reactor 2 are 7-32-1, 8-27-1 and 10-29-1, respectively.
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Fig. 4. Variation of validation RMSE against number of
hidden neurons.

Fig. 5. Regression analysis between desire and predicted
values.

Fig.5 shows the regression analysis between the desire
and predicted values in the test set. The regression plot
measures the strength of correlation between the predicted
network output and the desire network output, and the
correlation coefficient (R2) is calculated as follows:

R2 =

[ ∑
N (oi − oave)(yi − yave)√∑

N (oi − oave)2
√∑

N (yi − yave)2

]2

(17)

where N is the number of instances, oi is the predicted
output values, yi is the desired output values, and oave
and yave are the average value of oi and yi. As it is evident
from Fig.5, both the slopes and the correlation coefficients
are close to 1, pointing out the three SC-ELM models are
feasible to estimate the HDPE production quality.

Table 3 compares the performance of RBF, ELM and SC-
ELM. As seen from Table 3, the generalization relative
errors of MI1, MI2 and ρ caused by SC-ELM are 1.11%,
2.21% and 0.010% respectively, obviously better than the
error caused by RBF or ELM. For the training time, SC-
ELM also runs much faster than RBF or ELM in each
indicator. Therefore, this result proves that SC-ELM is
more suitable to be the model of dynamic and nonlinear
HDPE process. After off-line proving, these established
SC-ELM models are then used to calculate the three
quality indicators on-line by inputting the field measured
data of grade 9455F.

Moreover, the established SC-ELM models are only avail-
able for the grade 9455F. If the process grade changes, the
property and working point of HDPE are also moving. At
this point, new SC-ELMs should be modeled for the new
process grade.

Table 3. Performance Comparison between
RBF, ELM and SC-ELM

Model
Generalization relative error Training time (s)
MI1 MI2 ρ MI1 MI2 ρ

RBF 2.34% 3.29% 0.015% 7.39 5.53 3.86
ELM 1.17% 2.67% 0.012% 1.09 0.89 0.91

SC-ELM 1.11% 2.21% 0.010% 0.95 0.63 0.38

6. CONCLUSION

To solve the immeasurable variables in complex chemical
process, a SC-ELM model has been presented, in which
the density based K-means clustering algorithm employs
the samples spatial distribution to determine the input
weights, and the FLOO-CV method optimizes the neural
network structure in a fast and efficient way.

Two classical regression problems, ‘SinC’ function and
abalone age predictions, have been firstly used to evaluate
the efficiencies of SC-ELM. With the comparison of other
ELM models, SC-ELM is proved to have a fast learn-
ing speed, self-organized network structure and excellent
modeling accuracy. After certification, SC-ELM model has
been applied in the quality index soft-sensing of HDPE
process. The estimation result is obviously better than
ELM and RBF models with higher accuracy and less
training time, thus providing a new way to enhance the
production efficiency and ensure the polyethylene quality.
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