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Abstract: This paper deals with a design problem of an adaptive predictive control for uncertain
multi-rate sampled systems. In the proposed method, an adaptive predictive control using a
simple adaptive output estimator, which has been previously proposed for single-rate sampled
system, will be expanded to a multi-rate sampled system. A robust and model-free design method
of feedforward compensators for designing the adaptive output estimator for predictive control
and for setting an input constraint, “almost strictly positive real (ASPR) constraint” for stable
control system will also be provided for the considered multi-rate systems. The effectiveness of
the proposed method will be confirmed through an experiments of two-tank process control.
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1. INTRODUCTION

Predictive control, including MPC and GPC, has been rec-
ognized as one of the advanced control scheme on practical
process control and it has been widely used in industry due
to its understandable underlying idea and powerful control
performance than standard PID controls (Clarke et al.,
1987; Garcia et al., 1989; Mayne et al., 2000; Maciejowski,
2002). However, in most practical cases, unfortunately,
it might be difficult to obtain an exact model of the
controlled system because of the existence of some kind
or another uncertainty in the practical systems. Since the
predictive control schemes require the accurate model of
the considered system, the performance of the obtained
predictive control system is significantly affected by the
accuracy of the given model. The adaptive controls have
attracted a great deal of interest as a method to solve the
problem on model uncertainties and adaptive type predic-
tive controls have been investigated as in Yoon and Clarke
(1994); Nicolao et al. (1996); Fukushima et al. (2007), in-
cluding an adaptive GPC with a recursive least squares pa-
rameter estimator(Yoon and Clarke, 1994), a constrained
receding horizon predictive control based adaptive predic-
tive regulator(Nicolao et al., 1996) and an adaptive model
predictive control based on a robust MPC method with the
comparison model(Fukushima et al., 2007). In those meth-
ods, however, in order to attain good parameter estimation
for uncertain systems, the structure and the order of the
controlled system had to be known. In many practical
cases, it is also difficult to obtain the information of the
structure and the order of the controlled system, and in the
case where the order of the system was relatively higher,
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the adaptive algorithm might become complex with a
large number of parameters to be estimated. With this in
mind, a novel adaptive predictive control using an adaptive
output predictor with a simple structure for uncertain
controlled systems has recently been proposed(Mizumoto
and Fujimoto, 2012). In this adaptive predictive control,
one can design an adaptive output estimator with a simple
structure provided that the system is minimum-phase and
has a relative degree of 1, and the stability can be guaran-
teed by considering a control input constraint based on the
virtual ASPR (almost strictly positive real) based output
feedback input. However, this method was only applicable
to single-rate sampled systems.

In digital control systems, a system with different output
sampling periods and input updating rate is recognized
as a multi-rate system and one can see such a multi-rate
system in many industries because hardware limitations
on sensoring and actuating result in different sampling
periods. It is valuable to expand the method to multi-rate
systems.

In this paper, we expand the method in Mizumoto and Fu-
jimoto (2012) to multi-rate sampled systems. By expand-
ing the adaptive output estimator provided in Mizumoto
et al. (2010c, 2011) to adaptive output predictor for multi-
rate systems, an adaptive predictive controller with the
adaptive output predictor will be proposed. Furthermore,
by setting an “almost strictly positive real (ASPR) input
constraint”, it will be shown that a stable adaptive predic-
tive control can be designed for multi-rate sampled systems
as well as single-rate sampled systems. The difficulty is to
realize a virtual fast-rate control system which satisfies the
given assumptions using the information from the multi-
rate system. We will also provide an approximated and
model-free design method of compensators which realize
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Fig. 1. Considered multi-rate system

the given assumptions on the virtual fast-rate system.
Finally, the efffectiveness of the proposed method will be
confirmed through numerical simulations.

2. PROBLEM STATEMENT

Consider a multi-rate system for which the input is up-
dated with a fast uniform updating period of T and the
output is slowly sampled with a uniform sampling period
of nT .

For this multi-rate system, suppose that a virtual fast-rate
sampled system with a virtual output sampling period of
T can be represented as

x(k + 1) = Ax(k) + bu(k)
y(k) = cTx(k)

(1)

where x(k) := x(kT ) and y(k) := y(kT ) denote the state
and virtual fast-rate output of the multi-rate system at a
time instant kT .

Now define y[k] := y(nk), and denote virtual fast-rate
outputs with sampling period of T within the sampling
interval of y[k] and y[k+1] by (see Fig. 1)

y[k](i) = y(nk + i) (i = 0, 1, · · · , n) , (2)

y[k](0) = y[k]

y[k](n) = y[k+1] = y[k+1](0). (3)

Note that the output y[k](i) for i = 1, 2, · · · , n−1 can not be
measured practically. Further, denoting the state and the
input at a time instant (nk + i)T by x[k](i) and u[k](i), we
have the following virtual fast-rate system representation
of the considered multi-rate sampled system:

x[k](i+1) = Ax[k](i) + bu[k](i)
y[k](i) = cTx[k](i)

(4)

The objective of this paper is to provide an adaptive out-
put predictor for the given multi-rate system and propose
an stable adaptive predictive control design method with
the adaptive output predictor.

3. BASIC DESIGN OF ADAPTIVE PREDICTIVE
CONTROL SYSTEM

3.1 Adaptive output estimator for a multi-rate system

Firstly, we consider an adaptive output estimator which
estimate unmeasured outputs y[k](i), i = 1, · · · , n − 1
within the output sampling interval based on the output
estimators proposed in Mizumoto et al. (2010c),Mizumoto
et al. (2011),Mizumoto and Fujimoto (2013).

We impose the following assumption on the virtual fast-
rate system (1) (or (4)).

Assumption 1. For the virtual fast-rate system (1) (or
(4)), there exists a known stable parallel feedforward
compensator (PFC):

xfe(k + 1) = Afexfe(k) + bfeu(k)
yfe(k) = cTfexfe(k)

(5)

such that the resulting augmented system:

xae(k + 1) = Aaexae(k) + baeu(k)
yae(k) = cTaexae(k) = y(k) + yfe(k)

(6)

xae(k) =

[
x(k)
xfe(k)

]
, Aae =

[
A 0
0 Afe

]
, bae =

[
b
bfe

]
,

cTae =
[
cT cTfe

]
is minimum-phase and has relative degree of 1.

Under Assumption 1, there exists an appropriate nonsin-
gular transformation [yae(k),ηae(k)

T ]T = Φxae(k) such
that the augmented virtual fast-rate system (6) can be
transformed into the following canonical form (Isidori,
1995):

yae(k + 1) = a∗yyae(k) + b∗yu(k) + cTη η(k)
ηae(k + 1) = Aηη(k) + bηyae(k)

(7)

The zero dynamics of the system (7) is stable from
Assumption 1, i.e. Aη is a stable matrix.

Using the expression defined in (2), the system’s output in
(7) can be represented by

yae[k](0) = a∗yyae[k−1](n−1) + b∗yu[k−1](n−1)

+cTη η[k−1](n−1) (8)

yae[k−1](i) = a∗yyae[k−1](i−1) + b∗yu[k−1](i−1)

+cTη η[k−1](i−1) (9)

Furthermore, from (8) and (9), the sampled output yae[k](0)
can be expressed by using measured outputs and inputs as

yae[k](0) = b∗yu[k−1](n−1) + b∗y

n−1∑
i=1

a∗yiu[k−1](n−1−i)

+a∗ynyae[k−1](0) + cTηnη[k−1](0) (10)

with

a∗yj = a∗y(j−1)a
∗
y + cTη(j−1)bη , a

∗
y0 = 1

cTηj = a∗y(j−1)c
T
η + cTη(j−1)Aη , c

T
η0 = 0T

(j = 1, · · · , n)

Taking the expressions in (9) and (10) in to account, the
output estimator is designed as follows:

ŷae[k](0) = b̂y[k]u[k−1](n−1)

+b̂y[k−1]

n−1∑
i=1

âi[k]u[k−1](n−1−i)+ ân[k]yae[k−1](0)

ŷae[k](1) = â1[k]yae[k](0) + b̂y[k]u[k](0) (11)

ŷae[k](i) = â1[k]ŷae[k](i−1) + b̂y[k]u[k](i−1) ,

(i = 2, · · · , n− 1)
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by neglecting the signal η[k−1](n−1) from the stable zero

dynamics. Where âi[k] and b̂y[k] are estimated values of
a∗yi and b

∗
y respectively, and are estimated by the following

parameter adjusting law with a period of nT .

b̂y[k] = σ̄b̂y[k−1]−σ̄γbu[k−1](n−1)ϵae[k](0)+pb[k] (12)

âi[k] = σ̄âi[k−1] − σ̄γaib̂y[k−1]u[k−1](n−1−i)ϵae[k](0)

+pai[k] (i = 1, · · · , n− 1) (13)

ân[k] = σ̄ân[k−1]−σ̄γanyae[k−1](0)ϵae[k](0)+pan[k] (14)

γai, γb > 0 , σ̄ =
1

1 + σ
, 0 < σ

where pb[k], pai[k] are parameter projections which are
given by

pb[k] =

{
0 if by ≤ b̂y[k] ≤ b̄y
σ̄γbu[k−1](n−1)ϵae[k](0) otherwise

pai[k] =


0 if i ̸= 1 or ay ≤ â1[k] ≤ āy
σ̄γa1b̂y[k−1]u[k−1](n−2)ϵae[k](0)

otherwise
(15)

pan[k] =

{
0 if n ̸= 1 or ay ≤ â1[k] ≤ āy
σ̄γa1yae[k−1](0)ϵae[k](0) otherwise

with ay, āy, by and b̄y such that

ay ≤ a∗y ≤ āy , by ≤ b∗y ≤ b̄y

and ϵae[k](0) = ŷae[k](0)−yae[k](0) is an estimate error which
can be generated using the available signals as follows
without causality problem:

ϵae[k](0) =
{
σ̄b̂y[k−1]u[k−1](n−1)

+b̂y[k−1]

n−1∑
i=1

σ̄âi[k−1]u[k−1](n−1−i)

+σ̄ân[k−1]yae[k−1](0) − yae[k](0)

}
/
{
1 + σ̄γbu

2
[k−1](n−1)

+b̂y[k−1]

n−1∑
i=1

σ̄γaib̂y[k−1]u
2
[k−1](n−1−i)

+σ̄γany
2
ae[k−1](0)

}

Concerning the boundedness of the obtained output es-
timator, the following lemma is obtained (Mizumoto and
Fujimoto, 2013).

Lemma 1. Under Assumption 1, all the signals in the
designed output estimator are bounded with bounded
inputs and outputs.

3.2 Adaptive Output Predictor for a multi-rate system

Based on the proposed output estimator (11), we design
i-step adaptive output predictor, at a time instant knT ,
as follows:

ŷ[k](1) = â1[k]yae[k](0) + b̂y[k]u[k](0) − yfe[k](1)

ŷ[k](i) = â1[k]ŷae[k](i−1) + b̂y[k]u[k](i−1) − yfe[k](i)

= âi1[k]yae[k](0) + b̂y[k]

i∑
j=1

âi−j
1[k]u[k](j−1)

−cTfeA
j
fexfe[k](0)+

i∑
j=1

cTfeA
i−j
fe b∗feu[k](j−1)(16)

Therefore, 1-step to αn-step future predicted output from
a time instant knT can be obtained by

ŷ[k] =
[
ŷ[k](1) · · · ŷ[k](αn)

]T
=
(
yae[k]â[k] −Aestxfe[k](0)

)
+
(
b̂y[k]Â[k] −Best

)
u[k] (17)

with

â[k] =

 â1[k]...
âαn1[k]

 , u[k] =

 u[k](0)
...

u[k](αn−1)



Â[k] =


1 0 · · · 0

â1[k] 1
. . .

...
...

. . .
. . . 0

âαn−1
1[k] · · · â1[k] 1

 , Aest =


cTfeAfe

cTfeA
2
fe

...
cTfeA

αn
fe



Best =


cTfebfe 0 · · · 0

cTfeAfebfe
. . .

. . .
...

...
. . .

. . . 0
cTfeA

αn−1
fe bfe · · · cTfeAfebfe cTfebfe


3.3 Basic Design of Adaptive Predictive Control via
Adaptive Output Predictor

We consider designing a predictive control based on the
designed adaptive output predictor by minimizing the
following cost function over a finite prediction horizon.

J[k] =
αn∑
i=1

(
ŷ[k](i) − ym[k](i)

)2
+

αn∑
i=1

λi−1u
2
[k](i−1)

=
(
ŷ[k] − ym[k]

)T (
ŷ[k] − ym[k]

)
+uT

[k]Λu[k] (18)

ym[k] =
[
ym[k](1) · · · ym[k](αn)

]T
Λ = diag[λ0, λ1, · · · , λαn−1] , λi > 0

where ym[k](i) is a reference signal which the output is
required to track.

Taking the expression given in (17) into account, the op-
timal control inputs u∗

[k] = [u∗[k](0), · · · , u
∗
[k](αn−1)] which

minimizes the cost function over the given prediction hori-
zon is given by
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Fig. 2. Augmented systems for adaptive output predictor

u∗
[k] =−

{
WT

[k]W[k] + Λ
}−1

WT
[k]xu[k] (19)

W[k] = b̂y[k]Â[k] −Best

xu[k] = ya[k](0)â[k] −Aestxfe[k](0) − ym[k]

The actual control input is then given by using the optimal
inputs in first frame periods of output, i.e. [u[k](0), · · · ,
u[k](n−1)] = [u∗[k](0), · · · , u

∗
[k](n−1)].

In practice, it may be difficult to obtain the virtual fast-
rate system model from the available information about
the considered multi-rate sampled system. In the following,
we propose an model-free design scheme of a PFC using the
input/output data of the considered multi-rate sampled
system.

We suppose that one can obtain an input/output data
set {y0[k](0), u

0
[k](0), u

0
[k](1), · · · , u

0
[k](n−1)} and define the ap-

proximated fast-rate output data within the sampling in-
terval by

ȳ0[k](i) =
y0[k+1](0) − y0[k](0)

n
i+y0[k](0), i = 0, · · · , n−1 (20)

with

ȳ0[k](0) = y0[k](0), ȳ0[k](n) = ȳ0[k+1](0) = y0[k+1](0)

Considering an augmented system with a PFC H(ρ) as
shown in Fig. 2, the approximated fast-rate augmented
system’s output is obtained by

ȳae[k](i, ρ) = ȳ0[k](i) +H1(ρ)[u
0
[k](i)] (21)

The objective here is to find a parameter ρ such that
the approximated fast-rate augmented system’s output
ȳae[k](i, ρ) identical to the ideal model output y∗a1[k](i)
obtained by

y∗a1[k](i) = G∗
a1(z)[u

0
[k](i)] (22)

That is, to find a parameter ρ which minimizes the
following performance function is the objective.

J(ρ) =

N∑
k=0

n−1∑
i=0

(
ȳae[k](i, ρ) − y∗a1[k](i)

)2

(23)

Practical design of the PFC is provided as follows. Firstly
define the ideal PFC output by

y∗fe[k](i) = y∗a1[k](i) − ȳ0[k](i) (24)

Suppose that the ideal PFCH∗
1 (z) is given as the following

compensator of order m.

H∗
1 (z) =

N∗
H(z)

D∗
H(z)

=
b∗1z

m−1 + · · ·+ b∗m
a∗0z

m + a∗1z
m−1 + · · ·+ a∗m

(25)

THus the ideal PFC output y∗fcan be expressed by

y∗fe[k](i) =
N∗

H(s)

D∗
H(s)

[u0[k](i)] (26)

Then, by introducing a stable filter:

F (z) =
1

zm + f1zm−1 + · · ·+ fm
(27)

of order m to the PFC given in (26), we have

y∗fe[k](i) +
D∗

H(z)− F (z)

F (z)

[
y∗fe[k](i)

]
=
N∗

H(z)

F (z)

[
u0[k](i)

]
(28)

and thus y∗fe[k](i) can be expressed by

y∗fe[k](i) =
S∗(z)

F (z)

[
y∗fe[k](i)

]
+
N∗

H(z)

F (z)

[
u0[k](i)

]
=ρ∗Tz[k](i)

(S∗(z) = F (z)−D∗
H(z)) (29)

where,

ρ∗ = [s∗0 s
∗
1 · · · s∗m b∗1 · · · b∗m]T , (z∗i = fi − a∗i )

z[k](i)=

[
zm

F (z)
[y∗fe[k](i)]

zn−1

F (z)
[y∗fe[k](i)] · · ·

1

F (z)
[y∗fe[k](i)]

zm−1

F (z)
[u0[k](i)] · · ·

1

F (z)
[u0[k](i)]

]T
Taking this expression into consideration, denote a PFC
output for any parameter ρ as

yfe[k](i, ρ) = ρTz[k](i) (30)

and consider minimizing the following performance func-
tion.

Jf (ρ) =

N∑
k=0

n−1∑
i=0

(
ρTz[k](i) − y∗fe[k](i)

)2

(31)

The parameter ρ which minimizing the performance func-
tion (31) can be obtained by

ρ =
(
ZTZ

)−1
ZTY ∗

fe (32)

with Z = [z[0](0) z[0](1) · · · z[N ](n−1)]
T and Y ∗

fe =

[y∗fe[0](0) y
∗
fe[0](1) · · · y∗fe[N ](n−1)]

T .

With the designed PFC H1(z,ρ), since the augmented
system Ga1(z) can be expressed by

Ga1(z) =G(z) +H1(z,ρ)

=G(z) +H∗
1 (z) + (H1(z,ρ)−H∗

1 (z))

=G∗
a1(z)(1 + ∆2(z)) (33)

where

∆2(z) = G∗−1
a1 (z) (H1(z,ρ)−H∗

1 (z))

Thus we have the following Lemma concernig the robust-
ness of the obtained PFC.

Lemma 2. The resulting augmented system Ga1(z) =
G(z)+H1(z,ρ) with the PFC H1(z,ρ) is minimum-phase
and has relative degree of 1 provided that

(1) G∗
a1(z) is minimum-phase and has relative degree of

1.
(2) ∆2(z) ∈ RH∞ and ∥∆2(z)∥∞ < 1.

Proof) The results can be easily confirmed through the
same argument on Theorem 1 in Mizumoto et al. (2010a).
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4. STABLE ADAPTIVE PREDICTIVE CONTROL
SYSTEM DESIGN

4.1 Adaptive Predictive Control with Constraints based on
System’s ASPR-ness

One may control the system stably with the designed ideal
control input u∗

[k], however, one can not guarantee the

stability of the obtained adaptive predictive control system
by direct use of u∗

[k] as mentioned in Mizumoto and Fu-

jimoto (2012). We consider the following input constraint
associated with ASPR property of the system on the ideal
input u∗

[k] in order to guarantee the boundedness of all the

signals in the control system under Assumptions 2 and 3.
The proposed constraint has the same structure of the one
proposed in Mizumoto and Fujimoto (2012), but for the
multi-rate systems, the estimated output is utilized for the
constraint.

Assumption 2. For system (1), there exists a stable PFC:

xf (k + 1) = Afxf (k) + bfu(k)
yf (k) = cTf xf (k) + dfu(k)

(34)

such that the resulting augmented system:

xa(k + 1) = Aaxa(k) + bau(k)
ya(k) = cTaxa(k) + dau(k)

(35)

with xa(k) = [x(k),xf (k)]
T and

Aa =

[
A 0
0 Af

]
, ba =

[
b
bf

]
, cTa =

[
cT

cTf

]
, da = df

is ASPR (or strongly ASPR Mizumoto et al. (2007),Mizu-
moto et al. (2010b)). That is, the augmented system (35)
is minimum-phase and has relative degree of 0 with da > 0.

Assumption 3. The minimum value of the output feedback
gain θpmin, such that the resulting closed-loop system is
SPR, is known.

Remark 1. Under this Assumption 2, there exists a static
output feedback gain θpmin such that for all output feed-
back u(k) = −θpya(k)+v(k) with θp ≥ θpmin, the resulting
closed-loop system is SPR (Mizumoto et al., 2007, 2010b).

Under Assumptions 2 and 3, with the output feedback:

uk(i) =−θpminya[k](i) + v[k](i)

=−θ̃pminỹa[k](i) + ṽk(i) (36)

ỹak(i) = cTaxa[k](i), θ̃pmin =
θpmin

1 + daθpmin
,

ṽk(i) =
1

1 + daθpmin
vk(i)

the resulting closed-loop system:

xa[k](i+1) = Aacxa[k](i) + bacṽ[k](i)
ya[k](i) = cTacxa[k](i) + dacṽ[k](i)

(37)

is SPR. Where

Aac =Aa − θ̃pminbac
T
a , bac = ba

cac =
1

1 + daθpmin
ca , dac = da

Pump

y(t)

Tank2
u(t)

Tank1

150

110

200

160

2
5
0

Fig. 3. Outline installation drawing of the two-tank system

Then, adaptive predictive control with ASPR constraints
is designed as follows (Mizumoto and Fujimoto, 2012):

u[k](i) =

{
ψA[k](i) if |ê[k](i)| > δ
ψB[k](i) if |ê[k](i)| ≤ δ

(38)

ψA[k](i) =



min
{
ψ
[k](i)

, ψ[k](i)

}
if u∗[k](i) ≤ min

{
ψ
[k](i)

, ψ[k](i)

}
max

{
ψ
[k](i)

, ψ[k](i)

}
if u∗[k](i) ≥ max

{
ψ
[k](i)

, ψ[k](i)

}
u∗[k](i) otherwise

(39)

ψB[k](i) =


umax if u∗[k](i) ≥ umax

−umax if u∗[k](i) ≤ −umax

u∗[k](i) otherwise
(40)

ψ[k](i) = −θ̃pmax
ˆ̃eak(i), ψk(i)

= −θ̃pmin
ˆ̃eak(i)

ˆ̃eak(i) = ˆ̃yak(i) − ymk(i) , ˆ̃yak(i) = ŷ∗[k](i) + cTf xf [k](i)

ŷ∗[k](i) =

{
y[k](i)
ŷ[k](i) (i = 1, 2, · · · , n− 1)

where umax is a maximum value of the input for an input
saturation constraint and θ̃pmax is any upper bound of the

gain such as θ̃pmin < θ̃pmax < 1/da. ψA[k](i) represents
ASPR feedback constraints on the designed predictive
control.

Then, we have the following theorem concerning the
boundedness of all the signals in the proposed adaptive
predictive control system.

Theorem 1. Under Assumptions 1 to 3, designing the
adaptive predictive controller as in (38) with (19) and
adaptive predictor (16) with parameter adjusting laws
(12), (13) and (14), all the signals in the obtained control
system are bounded.

Proof: The proof can be done by following the results in
Mizumoto and Fujimoto (2012, 2013).

5. VALIDATION THROUGH EXPERIMENTS

The effectiveness of the proposed method is confirmed
through experiments of the two-tank system (See Fig. 3).

The step response of the controlled system is shown in
Fig. 4, and we suppose that the system is unknown but
the input and output data of the step response given in
Fig. 4 is available.

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 1044



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

10

20

30

40

50

60

Time[s]

Re
sp

on
se

 

 

step response

Fig. 4. Step response of the controlled system
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Fig. 5. Simulation result: proposed adaptive predictive
controller with model-free PFCs for multirate system
with n = 5

Using the given input/output data, we designed PFCs for
output predictor and ASPR realization by setting ideal
augmented systems as

G∗
a1(z) =

0.4

z − 0.99
for output predictor (41)

G∗
a2(z) ==

2.036z − 1.5

z − 0.99
for ASPRness (42)

The obtained PFCs are as follows:

H1(s) =
0.3734z2 − 0.7275z + 0.3535

z3 − 2.870z2 + 2.744z − 0.974
(43)

H2(s) =
2.036z3 − 5.224z2 + 4.411z − 1.223

z3 − 2.814z2 + 2.636z + 0.8211
(44)

The design parameters in the adaptive predictive con-
troller were set as follows:

α = 2, γai = 10−5, γb = ×10−5

σ = 10−7, δ = 3, umax = 7

Λ = I, θ̃min = 0.3929, θ̃max = 0.4912

Figure 5 shows the simulation results by proposed method
with model-free designed PFCs for a multirate system with
n = 5. Pretty good control performance was shown.

6. CONCLUSIONS

In this paper, we proposed an adaptive predictive control
scheme for multi-rate sampled systems. By designing adap-
tive output predictor for multi-rate systems based on the
first order representation of the system, a simple adaptive
predictive controller with the adaptive output predictor

was designed so as to minimize the given cost function.
Furthermore, by setting an “almost strictly positive real
(ASPR) input constraint”, it was shown that a stable
adaptive predictive control can be designed for multi-rate
sampled systems.
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