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Abstract: A process optimization method based on partial least squares (PLS) has been used in
pharmaceutical processes. However, its applicability and performance are limited because PLS
cannot cope with nonlinearity and changes in process characteristics. In this research, a new
process optimization method based on locally weighted PLS (LW-PLS) is proposed. To solve a
nonlinear optimization problem based on LW-PLS, in which any global model is not constructed,
self-adaptive differential evolution (jDE) is adopted. The validity of the proposed method is
demonstrated through a numerical example and an industrial case study of a pharmaceutical
granulation process.
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1. INTRODUCTION

Quality by Design (QbD) has become important in the
pharmaceutical industry since a report and guidelines were
issued by FDA and ICH (Lawrence (2008)). The guidelines
(US FDA et al. (2006)) state that “The aim of pharma-
ceutical development is to design a product quality and its
manufacturing process to consistently deliver the intended
performance of the product” and also “Quality cannot be
tested into products, i.e., quality should be built in by
design”. For this purpose, it is crucial to understand a
relationship between quality attributes and input variables
such as material attributes and process parameters. Fur-
thermore, an optimization method is required to derive
process parameters that make final quality attributes reach
desired values.

A process optimization method based on partial least
squares (PLS) has been used in pharmaceutical processes
(Muteki et al. (2011)). In this method, a PLS model was
built to relate final tablet attributes with raw material
attributes and process parameters. Then the process pa-
rameters were optimized by using sequential quadratic
programming (SQP). The result was demonstrated that
the PLS-based optimization method counteracted the ef-
fect of raw material variability by changing the process
parameters and achieve the desired final tablet attributes.

⋆ This work was partially supported by Japan Society for the
Promotion of Science (JSPS), Grant-in-Aid for Scientific Research
(C) 24560940.

However, applicability and performance of the PLS-based
optimization method are limited because PLS cannot cope
with nonlinearity and changes in process characteristics.
To overcome such weaknesses, locally weighted PLS (LW-
PLS) was proposed and has been applied to various
industrial processes (Kim et al. (2011); Nakagawa et al.
(2012); Kim et al. (2013a)). LW-PLS is a kind of just-in-
time (JIT) modeling methods, in which local PLS models
are built on demand by using a database. A local PLS
model is developed from past input-output data around
a query i.e., a new sample, when an output estimation
is required. Since local models built adaptively, LW-PLS
can cope with changes in process characteristics as well as
process nonlinearity.

This present work proposes a new optimization method
based on LW-PLS. To solve a nonlinear optimization
problem based on LW-PLS, in which any global model
is not constructed, we adopt evolutionary computing. The
famous algorithms are particle swarm optimization (PSO)
(Kennedy (2010)) and differential evolution (DE) (Storn
and Price (1997)) in this field. PSO has been applied to
many practical problems since the algorithm is easy to
understand; in contrast, it has been demonstrated that
DE is superior to PSO in convergence properties through
some benchmark functions (Vesterstrom and Thomsen
(2004)). DE is a simple yet powerful algorithm for global
optimization. However, it is not easy to tune parameters of
DE, which are kept fixed throughout the entire evolution-
ary process. To deal with the problem, self-adaptive DE
(jDE) was proposed; its effectiveness was demonstrated
through some benchmark functions (Brest et al. (2006)).
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The algorithm controls two of three parameters of DE
every evolutionary process. In this work, jDE is adopted
to solve the global optimization problem.

In the following sections, modeling methods and opti-
mization methods are explained. Then, the optimization
method based on LW-PLS and jDE is described; the va-
lidity of the proposed method is demonstrated through
a numerical example and an industrial case study of a
pharmaceutical granulation process.

2. MODELING METHODS

2.1 Partial Least Squares (PLS)

PLS is the most widely used method in chemometrics for
multivariate calibration and finds increasing interest also
in other areas (Varmuza and Filzmoser (2008)). It is a
linear regression method and can be executed through
several algorithms. PLS2 for multiple output systems is
described here.

Let assume that we have N measurements of M input
variables and L output variables. In PLS2, an input
variable matrixX ∈ ℜN×M and an output variable matrix
Y ∈ ℜN×L are decomposed by using R latent variables.

X = TP T +E =
R∑

r=1

trp
T
r +E (1)

Y = UQT + F =
R∑

r=1

urq
T
r + F (2)

where T =
[
t1 t2 · · · tR

]
∈ ℜN×R andU =

[
u1 u2 · · · uR

]
∈ ℜN×R are latent variable matrices (score matrices)
of X and Y , P =

[
p1 p2 · · · pR

]
∈ ℜM×R and Q =[

q1 q2 · · · qR
]
∈ ℜL×R are loading matrices of X and Y ,

and E and F are error matrices. The score matrices are
expressed as

T =XW (3)

U =Y C (4)

where W ∈ ℜM×R and C ∈ ℜL×R are weighting matrices
of X and Y . In addition, T and U are related by

U = TD +H (5)

where D ∈ ℜR×R is a regression coefficient diagonal
matrix and H is error matrix.

For any new sample xq, a score vector τq =
[
τ1 τ2 . . . τR

]T
and an estimated input variable x̂q can be computed as

τT
q = xT

q W (6)

x̂T
q = τT

q P T . (7)

To verify the validity of the model for the new sample,
the Hotelling’s T 2 and the squared prediction error Q are
often used.

T 2
q =

R∑
r=1

τ2r
σ2
tr

(8)

Qq = ||xq − x̂q||2 (9)

where σtr is a standard deviation of tr.

2.2 Locally Weighted PLS (LW-PLS)

LW-PLS is a JIT modeling method, which can cope with
changes in process characteristics as well as nonlinearity. In
LW-PLS, a local PLS model is built from past data around
a query only when an output estimation is required.

Assume that input and output variable matrices X and Y
are stored in a database. A local PLS model is constructed
by weighting samples with a similarity matrix

Ω = diag(ω1, ω2, . . . , ωN ) ∈ ℜN×N (10)

where similarity ωn depends on a weighted euclidean
distance dn between a query xq and samples xn.

ωn = exp

(
−dnφ

σd

)
(11)

dn =
√
(xn − xq)TΘ(xn − xq) (12)

Θ=diag(θ1, θ2, . . . , θM ) ∈ ℜM×M (13)

where σd is a standard deviation of {dn}, φ is a localization
parameter,Θ is a weight matrix, and θm is a weight for the
m-th input variable. Since LW-PLS derives a local model
from past samples similar to a query, the similarity should
be appropriately defined to realize accurate estimation
(Nakagawa et al. (2012); Kano and Fujiwara (2013); Kim
et al. (2013b)). LW-PLS is equivalent to PLS when the
localization parameter is set as φ = 0; it includes PLS as
a special case. Therefore, estimation performance of LW-
PLS is better than or at least the same as that of PLS.

Given a query xq, the LW-PLS algorithm using singular
value decomposition is described as follows.

1) Determine the number of latent variables R and set
r = 1.

2) Calculate the similarity matrix Ω based on Eqs. (10)-
(13).

3) Calculate Xr, Yr, and xq,r;

Xr =X − 1N [x̄1 x̄2 · · · x̄M ] (14)

Yr =Y − 1N [ȳ1 ȳ2 · · · ȳL] (15)

xq,r = xq − [x̄1 x̄2 · · · x̄M ]
T

(16)

x̄m =

∑N
n=1 ωnxnm∑N

n=1 ωn

(17)

ȳl =

∑N
n=1 ωnynl∑N
n=1 ωn

(18)

where 1N ∈ ℜN is a column vector with all its entires
equal to 1.

4) Set ŷq = [ȳ1 ȳ2 · · · ȳL]T .
5) Set left and right singular vectors of XT

r ΩYr as wr

and cr respectively, which correspond to the maximum
singular value.

6) Derive the r-th latent variables of X and Y , and the
r-th regression coefficient;

tr =Xrwr (19)

ur =Yrcr (20)

dr =
tTr Ωur

tTr Ωtr
. (21)
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7) Derive the r-th latent variable of xq;

tq,r = xT
q,rwr (22)

uq,r = drtq,r. (23)

8) Derive the r-th loading vectors of X and Y ;

pr =
XT

r Ωtr
tTr Ωtr

(24)

qr =
Y T
r Ωur

uT
r Ωur

. (25)

9) Update ŷq = ŷq + uq,rqr.
10) If r = R, end. Otherwise, calculate Xr+1, Yr+1, and

xq,r+1;

Xr+1 =Xr − trp
T
r (26)

Yr+1 =Yr − trdrc
T
r (27)

xq,r+1 = xq,r − tq,rpr. (28)

Then set r = r + 1, and go to step 5.

3. OPTIMIZATION METHODS

3.1 Differential Evolution (DE)

DE is a simple yet powerful algorithm for global opti-
mization (Storn and Price (1997)). DE has become pop-
ular because good convergence properties were demon-
strated through some benchmark functions (Vesterstrom
and Thomsen (2004)). There are several variants of DE;
a DE/best/1/bin strategy, which is more robust than
the other strategies (Mezura-Montes et al. (2006)), is de-
scribed here. Mutation, crossover, and selection are the
important processes to generate next generation vectors.
By iterating these processes, DE searches for an optimum
solution. It is noted that the DE algorithm cannot guar-
antee optimality.

Figure 1 illustrates the mutation process in A = 2 di-
mensions. In the DE algorithm, a vector operated in the
following processes is called a target vector. For the target
vector xi,g ∈ ℜA, which is the i-th and g-generation vector,
a mutant vector vi,g+1 is generated as

vi,g+1 = xbest,g + F (xr1,g − xr2,g) (29)

where r1, r2 (r1 ̸= r2 ̸= i) ∈
[
1, NP

]
are index numbers

chosen randomly, NP denotes the number of the target
vectors, F ∈

[
0, 2

]
is an amplification factor, and xbest,g

is the best vector, which minimizes an objective function
value in g-generation.

Figure 2 illustrates the crossover process in A = 6
dimensions. The target vector xi,g is mixed with the
mutant vector vi,g+1 to yield a trial vector ui,g+1 =[
ui1,g+1 ui2,g+1 . . . uiA,g+1

]T
given by

uij,g+1 =

{
vij,g+1 randij ≤ CR or j = jr
xij,g otherwise

(30)

where CR ∈
[
0, 1

]
is a crossover control parameter,

randij ∈
[
0, 1

]
is a uniform random number, and jr ∈[

1, A
]
is an index number generated randomly. By intro-

ducing jr, it ensures that the trial vector takes over from
the mutant vector at least one element.

x 
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Fig. 1. Mutation process in A = 2
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Fig. 2. Crossover process in A = 6

The selection process is used to generate the next target
vector.

xi,g+1 =

{
ui,g+1 J(ui,g+1) ≤ J(xi,g)
xi,g otherwise

(31)

where J(·) is an objective function to minimize.

3.2 Self-Adaptive DE (jDE)

Tuning three control parameters of DE, i.e., F , CR, and
NP , is not easy and usually conducted by trial and error;
therefore it is time-consuming. To improve the efficiency
of DE, jDE controls F and CR every evolutionary process.

In jDE, the amplification factor F and the crossover
control parameter CR are controlled (Brest et al. (2006)).

Fi,g+1 =

{
Fl + rand1 × Fu rand2 < τ1
Fi,g otherwise

(32)

CRi,g+1 =

{
rand3 rand4 < τ2
CRi,g otherwise

(33)

where Fl, Fu, τ1, τ2 are control parameters of F and CR,
and randi ∈ [0, 1] (i = 1, 2, 3, 4) is a uniform random
number. In general, these parameters are set as Fl = 0.1,
Fu = 0.9, and τ1 = τ2 = 0.1 (Brest et al. (2006)). The
mutant vector vi,g+1 and the trial vector ui,g+1 is yielded
by using Fi,g+1 and CRi,g+1.

vi,g+1 = xbest,g + Fi,g+1(xr1,g − xr2,g) (34)

uij,g+1 =

{
vij,g+1 randij ≤ CRi,g+1 or j = jr
xij,g otherwise.

(35)

4. OPTIMIZATION BASED ON LW-PLS AND JDE

LW-PLS can cope with changes in process characteristics
as well as nonlinearity, and a problem of model mainte-
nance can be solved. jDE has an important advantage
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over standard optimization methods; it is not necessary
to derive a gradient of a global objective function J(·) in
evolutionary computation.

In this research, a new process optimization method based
on LW-PLS and jDE is proposed. Given raw material
attributes xraw, the optimization problem to find the best

process parameters z =
[
z1 z2 · · · zI

]T
is formulated as

min
z

J(z) = (ydes − ŷ)TΛ(ydes − ŷ)︸ ︷︷ ︸
Jq(z)

+ λTz︸︷︷︸
Jo(z)

(36)

subject to

ŷ = f(x)
yl,min ≤ ŷl ≤ yl,max

T 2 ≤ T 2
max

x =
[
xT
raw zT

]T
zi,min ≤ zi ≤ zi,max

Q ≤ Qmax

(37)

where Jq denotes a sum of weighted squared errors between
desired product quality attributes ydes and estimated
values ŷ, Jo denotes an operational cost, f(x) is a LW-
PLS model that is built every time when x is given, Λ is
a weight matrix, λ is a weight vector, and the subscripts
min and max denote the lower limit and the upper limit,
respectively. T 2

max and Qmax of each LW-PLS model are
derived in the following procedure.

(1) Calculate the similarity matrix Ω for a query xq.
(2) Compose a new input variable matrix Xs ∈ ℜS×M

using S samples from a database in descending order
of similarity, where S (S≤N) is a parameter for
determining T 2

max and Qmax.
(3) Set T 2

max and Qmax as the maximum values of T 2 and
Q of Xs.

The optimization procedure based on LW-PLS and jDE is
as follows.

1) Set g = 1 and generate initial target vectors x1,1,
. . ., xNP,1 ∈ S, where S is a subset satisfying the
constraints given by Eq. (37).

2) Evaluate the initial target vectors based on Eq. (36)
and determine the best vector xbest,1.

3) Generate mutant vectors v1,g+1, . . ., vNP,g+1 based on
Eqs. (32) and (34).

4) Generate trial vectors u1,g+1, . . . ,uNP,g+1 based on
Eqs. (33) and (35).

5) Generate next generation target vectors x1,g+1, . . .,
xNP,g+1 based on Eq. (31).

6) Evaluate the next generation vectors based on Eq. (36)
and determine the best vector xbest,g+1.

7) Set g = g + 1. If g = gmax, where gmax denotes a
maximum generation value, set a solution as xbest,gmax

and end. Otherwise, go to step 3.

5. CASE STUDIES

In this section, the proposed optimization method based
on LW-PLS is applied to a numerical example, which is
a well-known benchmark function, and a pharmaceutical
granulation process. It is noted that all input and output
variables were normalized so that each variable has zero
mean and unit variance. To evaluate estimation perfor-
mance, root mean squared error of prediction (RMSEP) is
used.
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Fig. 3. Rastrigin function g(x)

RMSEP=

√√√√ 1

N

N∑
n=1

(ynl − ŷnl)2 (38)

where ynl is a measured value of the n-th sample of the
l-th output variable and ŷnl is an estimated value of ynl.

5.1 Numerical Example

In this example, Rastrigin function

g(x) = 20 +
2∑

i=1

x2
i − 10 cos(2πxi) (39)

xi ∈
[
−1, 1

]
(i = 1, 2)

is used to test optimization performance. Figure 3 shows
Rastrigin function g(x), which has the minimum:

gmin(x
∗) = 0, x∗ = 0. (40)

Modeling PLS and LW-PLS models were built from
10000 samples, which were generated randomly in the
domain of the Rastrigin function. The similarity matrix Θ
was set as a unit matrix. The parameters of PLS and LW-
PLS were tuned by using leave-one-out cross validation
(LOOCV); the numbers of latent variables of PLS and
LW-PLS were set as 1 and 2, and localization parameter
of LW-PLS was set as φ = 130.

Optimization Muteki et al. (2011) formulated the op-
timization problem based on PLS and its problem was
solved by SQP; the approach was adopted when PLS was
used. On the other hand, jDE was adopted as the optimiza-
tion method when LW-PLS was used. In this numerical
example, the optimization problem was formulated as

min
x

J1(x) = (ydes − ŷ)2 (41)

subject to

ŷ = f(x)

ymin ≤ ŷ ≤ ymax xm,min ≤ xm ≤ xm,max

T 2 ≤ T 2
max Q ≤ Qmax

where f(x) was a PLS or LW-PLS model.

The desired value was set as ydes = 0. The parameters
of jDE are shown in Table 1. The number of samples
for the constraints of LW-PLS was set as S = 100. The
optimization results are shown in Table 2, where J1t is
a true objective function value calculated using the true
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Table 1. Parameters of jDE in numerical ex-
ample

NP gmax Fi,1 CRi,1 Fl Fu τ1 τ2

100 1000 0.7 0.95 0.1 0.9 0.1 0.1

Table 2. Optimization results in numerical
example

Model J1(x) J1t(x) x1 x2

PLS 20.269 2.025 -0.983 1.000
LW-PLS 0.000 0.021 -0.009 0.005

Table 3. Input variables x and output variables
y in granulation process

Variable Name

x1 Inlet air temperature [G]
x2 Inlet air volume 1 [G]
x3 Inlet air volume 2 [G]
x4 Spray rate [G]
x5 Spray air volume [G]
x6 Inlet air temperature [D]
x7 Inlet air volume [D]
x8 Product temperature [D]
y1 Maximum moisture content
y2 Specific volume (Static)
y3 Specific volume (Dynamic)
y4 Particle size 1
y5 Particle size 2
y6 Particle size 3

function y = g(x) instead of f(x). The optimization
performance was significantly improved by using LW-PLS
in comparison with PLS, because g(x) was nonlinear.
We can conclude that optimization based on LW-PLS is
superior to the method based on PLS.

5.2 Pharmaceutical Granulation Process

The target of this case study is a commercial scale phar-
maceutical granulation process. The objective is to derive
process parameters, which make granule attributes achieve
nearly their target values and reduce the operational cost
simultaneously.

Modeling Input variables and output variables are listed
in Table 3, where [G] and [D] denote a granulation step
and a dry step in the granulation process. In this case
study, six output variables were estimated by using eight
input variables. There were 40 samples; 30 samples were
used for modeling and the other 10 samples were used for
validation.

The similarity matrix Θ was set as a unit matrix. The
parameters of PLS and LW-PLS were determined through
LOOCV; the numbers of latent variables of PLS and LW-
PLS were set as 4 and 3, and localization parameter
of LW-PLS was set as φ = 1.2. The estimation results
are shown in Table 4, where R denotes the correlation
coefficient between the measured values and the estimated
values. The scatter plots between the measurements and
the estimates of PLS and LW-PLS are shown in Fig. 4. Due
to the limit of the available pages, we show only y1 and

Table 4. Estimation performance of PLS and
LW-PLS in granulation process

y1 y2 y3 y4 y5 y6

PLS RMSEP 0.58 0.60 0.70 0.41 0.35 0.55
R 0.82 0.92 0.84 0.92 0.87 0.71

LW-PLS RMSEP 0.45 0.62 0.66 0.54 0.35 0.42
R 0.90 0.90 0.84 0.83 0.88 0.93

Table 5. Parameters of jDE in granulation
process

NP gmax Fi,1 CRi,1 Fl Fu τ1 τ2

2000 200 0.7 0.95 0.1 0.9 0.1 0.1

y2. The mean of RMSEP of LW-PLS (0.51) is smaller than
that of PLS (0.53); LW-PLS outperforms PLS in terms of
the estimation performance.

Optimization The eight process parameters are opti-
mized to keep the six granule attributes closer to their
target values and to achieve the lower operational cost
by the proposed method. The objective function in this
problem is as follows.

min
x

J2(x) = α1J2q(x) + α2J2o(x) (42)

J2q(x) = (ydes − ŷ)TΛ(ydes − ŷ)

J2o(x) = λx4

Λ=diag(60, 10, 10, 30, 30, 30) λ = 21.78

subject to

ŷ = f(x)

yl,min ≤ yl ≤ yl,max xm,min ≤ xm ≤ xm,max

T 2 ≤ T 2
max Q ≤ Qmax

where J2q denotes a sum of weighted squared errors, J2q
denotes an operational cost, and α1 and α2 are weights for
J2q and J2o.

The parameters of jDE are shown in Table 5. The number
of samples for the constraints of LW-PLS was set as
S = 10. Two solutions changing α1 are shown in Table 6
(Ex1:

[
α1 α2

]
=

[
100 1

]
, Ex2:

[
α1 α2

]
=

[
10000 1

]
). When

α1 = 100, the objective focused on the operational cost
J2q; it was demonstrated that the cost was smaller that the
cost of another solution. On the other hand, the objective
focused on the quality attributes when α1 = 10000; the
obtained parameters made the estimated values reach the
desired values closely.

6. CONCLUSION

In the present work, a new optimization method based on
LW-PLS and jDE was proposed. It was demonstrate that
the proposed method is superior to the conventional PLS-
based method through a numerical example. In addition,
its optimization method was applied to the commercial
scale pharmaceutical granulation process, in which the
process parameters were optimized. Then the granule
attributes reached the desired values and the operational
cost was minimized simultaneously.
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Fig. 4. Scatter plots between measurements and estimates of PLS and LW-PLS in granulation process

Table 6. Optimization results based on LW-
PLS and jDE in granulation process (Ex1:[
α1 α2

]
=

[
100 1

]
, Ex2:

[
α1 α2

]
=

[
10000 1

]
)

min max ydes Ex1 Ex2

J(x) - - - 2405 2818
J2q(x) - - - 0.092 0.037
J2o(x) - - - 2396 2445
x1 90 90 - 90 90
x2 6 8 - 6.85 6.81
x3 8 10 - 8.34 8.51
x4 110 180 - 110 112
x5 120 180 - 165 168
x6 90 90 - 90 90
x7 6 8 - 6.76 6.73
x8 50 50 - 50 50
y1 3.10 4.80 4.00 4.00 4.00
y2 3.12 3.93 3.50 3.50 3.50
y3 2.40 3.03 2.75 2.75 2.75
y4 62.0 145 100 101 100
y5 152 300 205 204 204
y6 287 654 365 363 365
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