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Abstract: Based on the direct synthesis approach, a simple and effective design method of centralized 

proportional integral (PI) controller for non-square processes is investigated in this paper. With the help 

of desired closed-loop diagonal transfer function to reduce interaction between individual loops, 

analytical expressions for PI controller, through the steady and dynamic information of the open-loop 

transfer function, are derived for the first order plus time delays model which often arises in the chemical 

production process. Compared with the existing direct synthesis approaches, the proposed controller 

design method requires no approximation of the pseudo-inverses of process. Example is introduced to 

show the effectiveness and simplicity of the proposed technique. 
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

1. INTRODUCTION 

With the high demand on product quality and energy 

integration, most modern industrial processes take the forms 

of multi-input and multi-output (MIMO) (Balaguer & 

Romero, 2012; Gigi & Tangirala, 2013; Luan, Chen & Liu, 

2014). There are two types of MIMO systems on the basis of  

the number of input and output variables. When the number 

of inputs is equal to that of outputs, we call this kind of 

systems as square systems. If the input number is unequal to 

the output number, the systems are called as non-square 

systems. A simple way of controlling the non-square systems 

is to find ways to transform them to square systems by 

adding or removing appropriate inputs or outputs (Luo, Liu, 

Cai, Jia, Jia & Song, 2012; Quan, Jin & Wang, 2011; Ren, 

Luo, Liu & Xu, 2012). However, adding variables will 

increase the control cost, while deleting variables may reduce 

the control performance because of the missing information. 

Therefore, superior performance can be achieved by finding 

ways to tackle the original non-square systems directly 

(Davison, 1983; Treiber & Hoffrnan, 1980). 

In designing the non-square systems, the interactions between 

different loops are the main obstacle. In order to eliminate the 

interactions, multi-loop control and centralized control are 

the most common control strategies in practice. In 

decentralized control, we can decompose the multivariable 

processes firstly into multiple single-input and single-output 

(SISO) loops. Then the controllers are designed directly for 

SISO processes (Sarma & Chidambaram, 2013; Loh, 1997). 

Although multi-loop control has less tuning parameters, it is 

only applicable to the systems with modest interactions. 

In some situations that the interactions among channels are 

strong, it is necessary to design centralized controller to 

eliminate the interactions. In recent years, many researchers 

adopted centralized control strategy for non-square systems 

with time-delays. To deal with the multiple time-delays 

existing in non-square control systems, reference (Sharma & 

Chidambaram, 2003) proposed a method of Smith delay 

compensator to design centralized PI controller for non-

square systems using the pseudo inverse of the steady-state 

gain matrix. To simplify the calculation process of pseudo 

inverse for non-square systems, reference (Seshagiri & 

Chidambaram, 2006) proposed a static decoupling PI control 

technique for non-square systems. Only using the steady-state 

information of the systems will lead to the limitation of 

control performance. Hence reference (Chen, He & Xin, 2011)    

developed a new method to compensate dynamically for 

shortcomings caused by static decoupling. In order to 

consider simultaneously the steady and dynamic information 

of the system and get better control performance, reference 

(Jing, Guo, etc., 2010) presented the internal model control 

(IMC) design technique for a class of non-minimum phase 

non-square systems by calculating the pseudo inverse of the 

model. However, it is difficult to obtain a reasonable solution 

for the pseudo inverse of process model because the solution 

may very complicated. Therefore, (Shen, Sun & Xu, 2014) 

proposed the equivalent transfer function (ETF) based 

method to replace the calculation of pseudo inverse of the 

process model. Nevertheless, the approximation way to 

obtain ETF inevitably has modeling errors. 

Motivated by the aforementioned reasons, this paper presents 

a novel technique to investigate the PI control design for non-

square processes with more inputs than outputs, which often 

arises in chemical process. By exploring the desired closed-

loop diagonal transfer function (DCDTF) to reduce 

interactions among different loops, the relationship between 

the steady and dynamic information of open-loop transfer 

function and the tuning parameters of centralized PI 

controller are directly derived. Compared with the existing 
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non-square control design methods, the proposed method 

requires no approximation of the pseudo-inverses of process 

and the process of calculation is also simple. Simulation 

studies are used to show the effectiveness and advantages of 

the proposed design approach. 

2. PROBLEM STATEMENT 

This article mainly focuses on the centralized controller 

design for multivariable control processes with more inputs 

than outputs (Sharma & Chidambaram, 2003). Consider an 

m -inputs and n -outputs ( )m n  open-loop stable and 

physically proper non-square system with time delays, as 

shown in Fig. 1,  
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Fig. 1. Closed-loop non-square control system 

where , =1,2
i

r i n，  are the reference inputs, 

, 1, 2,
i

e i n are the errors between feedback and reference, 

, 1, 2,
i

u i m  are the manipulated variables, 

, 1, 2,
i

y i n are the system outputs, ( )G s is the ( )n m  

process transfer function described as following: 
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where the transfer function from jth  input to ith  output is 
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and stable transfer functions, and 
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  is the corresponding 

time delay of process transmission. And ( )
c

G s  is a m n  

centralized PI controller, which is represented as 
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From Fig. 1, the closed-loop transfer function matrix between 

outputs and set-points can be determined as: 

                         1
( ) (I ( ) ( )) ( ) ( )

c c
H s G s G s G s G s


               (1) 

According to equation (1), a centralized controller is derived 

as follows: 

                           1 1 1
( ) ( )( ( ) )

c
G s G s H s I

  
                       (2) 

Whereas the exact inverse for non-square systems does not 

exist, hence Moore-Penrose pseudo inverse is proposed (Jin, 

Hao & Wang, 2013). For matrix A , the Moore-Penrose 

pseudo inverse of A  can be expressed as * 1
( )

H H
A A AA


  , 

where H
A  is the Hermitian matrix of A . 

Using the Moore-Penrose pseudo inverse, equation (2) should 

be transformed into the following form: 
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( ) ( ) ( ( ) ( ) ) ( ( ) )

H H

c
G s G s G s G s H s I

  
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where the ( )
H

G s is the Hermitian matrix of ( )G s . Assuming 

that the system is completely decoupled, the desired ideal 

closed-loop transfer function is as follows:   
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where =1, 2
ii

h i n，  are a diagonal element of ( )H s  

corresponding to the DCDTF of each loop. Then the 
1 1

( ( ) )H s I
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  can be expressed as 
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                (5) 

In multivariable systems, the required ideal structure of 

matrix ( )H s  is in diagonal form, which reveals the system is 

perfectly decoupling and that each output can track its 

reference independently. This paper aims to establish the 

relations between PI controller tuning parameters and steady 

and dynamic characteristics of open-loop system without 

calculating *
( )G s  directly. Next section will present the 

design algorithm to obtain the tuning relations for the PI 

controller. 

3. CONTROLLER DESIGN 

3.1 Design of Controller Parameters 

In this section, formulae for the calculation of PI controller 

tuning parameters are derived.  

In term of internal model control (IMC) theory, the DCDTF 

is expressed in the form of (Jin, Guo, Liu & Song, 2010) 

 
*

1

( ) , 1, 2,
1

ii
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qd s
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z se
h i n

z ss
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                 (6) 

where 
i

d  is the maximum predictive value presented in the 

ith  column of 
*
( )G s , 

k
z  is the non-minimum phase poles, 
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*

k
z is the conjugate complex of 

k
z , 

i
R  is the number of the 

same pole in the ith  column, 
i

q represent how many 

different poles exist in the ith  column of *
( )G s , 

i
  is 

adjustable parameter that provides the tradeoff between 

performance and robustness, and 
i

m  is the relative order of 

the numerator and denominator in ( )
ij

g s . 

Substituting equation (5) into equation (3) yields 

,

( )( ( ) ( ))
( ) ( )

1 ( )( ) ( )

H

H ii

c ji H

ii

h sadj G s G s
g s G s

h sG s G s



             

(7) 

Setting  

                                  ( ) ( ) ( )
H

G s G s A s                               

(8) 

So ( )A s  become a n n  square matrix and the equation (7) 

is expressed in the form of  

                  
,

( )( ( ))
( ) ( )

( ) 1 ( )
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g s G s

A s h s
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
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where ( )adj A  is the ith  row and jth  column element of the 

adjugate matrix of ( )A s , A  is the determinate of ( )A s . 

The standard PI controller is given by  

,

, ,
( )

I ji

c ji C ji

k
g s k

s
                           

(10) 

According to equation (9) and equation (10), it can be 

obtained that  

                
,

,
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Multiplying both sides of (11) by s , we have  
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Taking the derivative of both sides of equation (11), it yields 
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where 
qp

a   is the first derivative of 
qp

a . 

Letting 0s   and solving equation (12) and equation (13), 

the controller parameters can be directly calculated as  

,
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where   
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ji
adjK  ,

jq
adjK  and

pi
adjK  are simplified as a single formula 

using subscripts x  and y , which are defined as 

1,1 1, 1 1, 1 1,

1,1 1, 1 1, 1 1,

1,1 1, 1 1, 1 1,

,1 , 1 , 1 ,

( 1)

x x m

y y x y x y mx y

xy

y y x y x y m

m m x m x m m
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adjK

k k k k

k k k k

 

     

     

 

   

where 
xy

k  is the steady gain of open loop transfer function of 

A . 

Remark: From equations (14)-(15), it can be seen that tuning 

relations for PI controller parameters are directly derived 

according to the desired closed-loop output response. 

Different from the existing direct synthesis method, the 

proposed design method need not use equivalent transfer 

function to approximate *
( )G s  so that better performance 

can be achieved through more accurate controller tuning 

relations. What’s more, there is no need to compute the 

inverse of the process model. The straightforward design 

procedure makes it easier to compute and understand by 

engineers and applicable to practical applications. 

3.2 Performance and robustness of control system 

To analyze the performance of control system, the integral 

square error ( ISE )criteria  (Lin, Jang & Shieh, 1999) is used 

as follows. We can choose two outputs system as an example 

and a unit step change in 
1

r , the ISE value corresponding to 

1
y  is 

1 1

2

1

0

(1 ( ))
y r

ISE y t dt




  . From the interactive response, 

the ISE  value is 
2 1

2

2

0

(0 y ( ))
y r

ISE t dt




  . In the same way, 

as for the unit step change in 
2

r , the corresponding ISE  

values are presented as 
2 2

2

2

0

(1 y ( ))
y r

ISE t dt




   and the 

ISE  value for 
1

y  is
1 2

2

1

0

(0 y ( ))
y r

ISE t dt




  . Therefore, the 

sum of ISE  values are expressed as: 

              
1 1 2 1 1 2 2 2y r y r y r y r

ISE ISE ISE ISE ISE
   

     
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There is an inverse relationship between the ISE  and the 

performance of the system, the performance is better when 

the ISE is smaller. 

 

Finally, to investigate the robust stability of the resulting 

control system, a well-known way (Vu & Lee, 2010) is used. 

The output multiplication uncertainty can be used to examine 

the robust stability of the controlled system, since it is often 

less restrictive than input uncertainty in term of control 

performance (Vu & Lee, 2010). For a system with an output 

uncertainty as ( ) ( )[ ( )]
o o

G s G s I s    , where ( )
o

s  

represents the multiplicative output uncertainties. The closed-

loop system is stable if  

              1
1 ( ( ) ( )) ( ) ( )

c c
I G jw G jw G jw G jw 


  
 

 

where   represents the degree of robust stability,  is 

maximum singular value. It should be noted that a control 

system with a larger   means more robust stability. For a fair 

comparison,  Should be the same as or large than that of the 

other methods in the simulation. 

4. SIMULATION STUDIES 

To verify the effectiveness and superior of the proposed  

method, the following shell( 2 3 ) control problem in 

chemical process (Liu, Chen, Yu & Tan, 2014) is considered. 

The transfer function matrix is expressed as: 
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According to equation (5), the DCDTF matrix is expressed  
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where , 1, 2

i
i   are the adjustable parameters that provide 

the tradeoff between performance and robustness in tuning 

the controller parameters, which is adjusted to obtain the 

same value of   or lager than that of others. The results 

developed by References (Chen, He & Xin, 2011; Shen, Sun 

& Xu, 2014) are employed here for comparison and the 

values of 
i

 , 1, 2i  can be calculated by obtaining the same 

valve of  . According to equation (14) and equation (15), the 

controller parameters are obtained and listed in Table 1. 

  Table 1. Controller parameters 

Method Loop 
,C ij

k     
,I ij

k     
,C ij

k     
,I ij

k   
1
  

2
        

1j    1j    2j    2j    

Proposed 1i    0.06992 0.00046 -0.08000 -0.00005 

90 20 0.9 2i    -0.16744 -0.00196 0.35147 0.00443 

3i    0.06337 0.00127 -0.03332 -0.00130 

Chen 1i    0.03910 0.00058 -0.00190 -0.00002 

134.5 134.5 0.9 2i    -0.16607 -0.00246 0.16377 0.00201 

3i    0.10711 0.00159 -0.04798 -0.00059 

Shen 1i    0.04938 0.00047 -0.06992 -0.00004 

0.060 0.0125 0.9 2i    -0.21862 -0.00202 0.21276 0.00344 

3i    0.09712 0.00130 -0.02183 -0.00101 

 

Using these controller settings, the response and interactive 

response of the non-square system is shown by adding a unit 

step change in 
1

r  and 
2

r  in Fig. 2. From Fig. 2, it can be seen 

that the proposed method shows  

 

better response and less interaction. Sum of ISE values 

corresponding to the response of 
1

y  and 
2

y  for a step change 

in 
1

r  and 
2

r  are demonstrated in Table 2. From the Table 2, 

the proposed method shows lower ISE values.
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Fig. 2. Response and interactive response in step change in 
1

r and
2

r  
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    Table 2. ISE values for example 

Method Step input in ISE values for 

output 
1

y  

ISE values for 

output 
2

y  

Sum of ISE 

values 

Proposed 
1

r  128.56 0.36 128.92 

2
r  0.07 56.45 56.52 

Chen 
1

r  139.64 0.50 140.14 

2
r  0.05 105.71 105.76 

Shen 
1

r  125.64 0.86 126.5 

2
r  0.78 72.18 72.96 

 

To further investigate the robustness in comparison to 

different methods, perturbation uncertainties of 30% are 

inserted in the time constants and time delays respectively. 

From Fig. 3 to Fig. 4, they show the servo response and 

corresponding interactive response respectively. Sum of ISE 

values corresponding to the response for perturbation are 

given in Table 3. As seen from Table 3, the smallest ISE 

values verify that the proposed controller has a good robust 

performance. 
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Fig. 4. Response and interactive response of a step change in 

1
r  and 

2
r  for +30% time constants perturbation 
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Fig. 5. Response and interactive response of a step change in 

1
r  and 

2
r  for +30% time delays perturbation 

 Table 3 ISE values for the perturbation of +30%

Method Step input in  ISE values for 

output 
1

y  

ISE values for 

output 
2

y  

Sum of 

ISE 

values 

Perturbation of +30% in each time constant 

Proposed 
1

r  135.89 0.51 136.40 

2
r  0.05 61.28 61.33 

Chen 
1

r  149..45 0.54 149.99 

2
r  0.06 119.88 119.96 

Shen 
1

r  132.71 0.39 133.10 

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 505



 

 

     

 

2
r  0.97 81.74 82.71 

Perturbation of +30% in each time delay 

Proposed 
1

r  151.06 0.75 151.81 

2
r  0.16 72.75 72.91 

Chen 
1

r  163.43 0.45 163.88 

2
r  0.07 117.72 117.79 

Shen 
1

r  148.03 1.90 149.93 

2
r  1.37 83.77 85.14 

From Figs. 3-5 and Table 3, we can see that the proposed 

technique has better robustness than the compared methods. 

5. CONCLUSION 

A simple effective method to design centralized PI controller 

for non-square system with multiple time-delays is 

investigated in this paper. By applying the IMC theory, we 

can get the desired closed-loop transfer function. Analytical 

expressions for PI controller, through the steady and dynamic 

information of the open-loop transfer function, are derived 

directly. Simulation examples for typical industrial processes 

demonstrate that the proposed controller design has relatively 

good control performance and robust performance. 
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