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Abstract: In this paper, an identification algorithm for the non-uniformly Wiener systems
with dead-zone nonlinearities is proposed. Firstly, a uniform model of the Wiener system
is reformulated with the help of the lift technique and a switching function. Then, a least
squares based iterative recursive algorithm with variable forgetting factor is presented using
the auxiliary model and iterative method. Simulation results indicate the effectiveness of the
proposed method.
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1 INTRODUCTION

Hard nonlinearity is a common phenomenon existing in
the industrial plants, which includes preload, dead-zone,
saturation, saturation and dead-zone, piecewise-linear and
their composition etc.(Bai, 1998). As input output para-
metric models (I.J. Leontaritis, 1985), how to identify pa-
rameters of this system is a challenging issue. Because this
kind of system cannot be written as a polynomial form.
So the existing methods, such as the maximum likelihood
estimation (Hagenblad et al., 2008), the multi-innovation
stochastic gradient algorithm (Ding, 2013), gradient-based
and least squares-based iterative methods (Ding et al.,
2013), the NARMAX methodology (S.A.Billings, 2013),
cannot be directly used to estimate the parameters. Fur-
thermore, most of the achievements focus on the single-
rate systems and ignore the general multi-rate sampled
characteristics except the dual-rate sampled Hammerstein
systems with preload nonlinearity (J. Chen, 2013; X. L. Li,
2014).

In order to estimate the non-uniformly sampled Wiener
models with dead-zone nonlinearities, an online iteratively
recursive algorithm is proposed in this paper. Firstly, the
Wiener model with hard nonlinearity is transformed into
an analytic form using an appropriated switching function.
Then, an iterative recursive least squares algorithm is
proposed to estimate the parameters of the system directly.
In order to improve the identification accuracy and the
ability of anti-jamming, a variable forgetting factor is
introduced. The proposed algorithm is formulated as a
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recursive form with iterating the estimation of parameters
into information vector.

The paper is organized as follows. Section 2 depicts the
non-uniformly sampled Wiener systems with dead-zone
nonlinear characteristic. Then, the proposed algorithm is
derived in section 3 and the performance of the algorithm
is analyzed in Section 4. Section 5 provides an illustrative
example. Finally, conclusions are summarized in Section
6.

2 PROBLEM FORMULATION

Consider a non-uniformly sampled Wiener system with
dead-zone nonlinearity (shown in Fig.1)

H
τ cP TS

1( )ju kT t
−

+ ( )u t ( )y t ( )y kT T+
( )x kT T+

y

x

1m

2m
1r

2r

( )v kT T+

( )y kT T+

Fig. 1. The structure of non-uniformly sampled-Wiener
system

where u(kT + tj−1) and y(kT + T ) are the input and
output of the system, ȳ(kT + T ) and x(kT + T ) are
the input and output of the nonlinear part, respectively.
v(kT + T ) is a white noise with zero mean. Hτ is a
non-uniformly zero-order holder with irregularly sampled
intervals {τ1, τ2, . . . , τm}, the input updating frequency is
set as kT+tj−1, j = 1, 2, ..., m(t0 = 0, tj := τ1+τ2+...+τj).
Pc is the linear dynamic block and ST is the sampler with
frame period T := τ1 + τ2 + ...+ τm = tm. Using the lifting
technology, Hτ is formulated as follows:
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u(t)=



u(kT ), kT ≤ t < kT + t1

u(kT + t1), kT + t1 ≤ t < kT + t2

...

u(kT + tm−1), kT + tm−1 ≤ t < kT + T

(1)

Pc is assumed as the state-space model

Pc :=

{
ẋ(t) = Acx(t) + Bcu(t)

ȳ(t) = Cx(t) + Du(t)
(2)

where x(t) ∈ Rn is the state vector, ȳ(t) ∈ R, u(t) ∈ R
are the output and input of Pc, respectively. Ac ∈ Rn×n,
Bc ∈ Rn, C ∈ R1×n and D ∈ R are parameter matrices.
Discretizing Eq.(2) with the frame period T (X. L. Li,
2002; F. Ding, 2009; L. Xie, 2010), the linear part is written
as

ȳ(kT ) =

m∑
j=1

Bj(z−1)

A(z−1)
u(kT + tj−1)

= [1 − A(z−1)]ȳ(kT ) +
m∑

j=1

Bj(z−1)u(kT + tj−1)

(3)

with

A(z−1) = 1 + a1z
−1 + a2z

−2 + ... + anaz−na

B(z−1) = b10 + b11z
−1 + b12z

−2 + ... + b1nb
z−nb

Bj(z−1) = bj1z
−1 + bj2z

−2 + ... + bjnb
z−nb , j = 2, 3, · · · ,m

where z−1 is the backward shift operator: z−1x(kT ) =
x(kT − T ). The hard nonlinear part (shown in Fig.2) is
formulated as
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Fig. 2. The dead-zone characteristic

x(kT ) =


m1(ȳ(kT ) − r1), r1 ≤ ȳ(kT )

0, r2 ≤ ȳ(kT ) ≤ r1

m2(ȳ(kT ) − r2), ȳ(kT ) ≤ r2

(4)

where m1 and m2 are slopes of the corresponding linear
segment. r1 > 0 and r2 < 0 are the constants for the
dead-zone points. Since nonlinear parameters is unknown,
a switching function h(·) is introduced (M.C. Kung, 1984)

h(ȳ(t)) :=

{
0, ȳ(t) > 0

1, ȳ(t) ≤ 0
(5)

Based on the switching function, Eq.(4) is re-written as

x(kT ) =m1h(r1 − ȳ(kT ))(ȳ(kT ) − r1)

+ m2h(ȳ(kT ) − r2)(ȳ(kT ) − r2)
(6)

Similarly, ȳ(kT ) becomes

ȳ(kT ) =h(r1 − ȳ(kT ))ȳ(kT ) + h(ȳ(kT ) − r2)ȳ(kT )

+ h(ȳ(kT ) − r1)h(r2 − ȳ(kT ))ȳ(kT )
(7)

Substituting Eq.(7) into Eq.(6), then

x(kT ) = ȳ(kT ) − h(r1 − ȳ(kT ))ȳ(kT ) − h(ȳ(kT )

− r2)ȳ(kT ) − h(ȳ(kT ) − r1)h(r2 − ȳ(kT ))ȳ(kT )

+ m1h(r1 − ȳ(kT ))(ȳ(kT ) − r1) + m2h(ȳ(kT )−
r2)(ȳ(kT ) − r2)

(8)

The system output is formulated as

y(kT ) = x(kT ) + v(kT ) = ȳ(kT ) − h(r1−
ȳ(kT ))ȳ(kT ) − h(ȳ(kT ) − r2)ȳ(kT ) − h(ȳ(kT )−
r1)h(r2 − ȳ(kT ))ȳ(kT ) + m1h(r1 − ȳ(kT ))(ȳ(kT )−
r1) + m2h(ȳ(kT ) − r2)(ȳ(kT ) − r2) + v(kT )

(9)

Define an internal variable

y′(kT ) := y(kT ) + h(r1 − ȳ(kT ))ȳ(kT ) + h(ȳ(kT )−
r2)ȳ(kT ) + h(ȳ(kT ) − r1)h(r2 − ȳ(kT ))ȳ(kT )

(10)

Substituting Eq.(3) and Eq.(9) into Eq.(10), y′(kT ) is
reformulated as

y′(kT ) = [1 − A(z−1)]ȳ(kT ) +
m∑

j=1

Bj(z−1)u(kT + tj−1)

+ m1h(r1 − ȳ(kT ))ȳ(kT ) + m2h(ȳ(kT ) − r2)ȳ(kT )

− m1r1h(r1 − ȳ(kT )) − m2r2h(ȳ(kT ) − r2) + v(kT )

(11)

Suppose that the model order na, nb are known, and
u(kT + tj−1) = 0, y(kT ) = 0, v(kT ) = 0, j = 1, 2, . . . , m
while k ≤ 0. Define the parameter vector θ and informa-
tion vector φ(kT ) as

θ := [a1, a2, . . . , ana , b10, b11, . . . b1nb
, b21, . . . , b2nb

, . . . ,

bm1, . . . , bmnb
,m1,m2, r1, r2]

T ∈ Rna+mnb+5

φ(kT ) := [−ȳ(kT − T ),−ȳ(kT − 2T ), . . . ,−ȳ(kT − naT ),

u(kT ), u(kT − T ), . . . , u(kT − nbT ),

u(kT − T + t1), . . . , u(kT − nbT + t1),

. . . , u(kT − T + tm−1), . . . , u(kT − nbT + tm−1),

h(r1 − ȳ(kT ))ȳ(kT ), h(ȳ(kT ) − r2)ȳ(kT ),

−m1h(r1 − ȳ(kT )),−m2h(ȳ(kT ) − r2)]
T ∈ Rna+mnb+5

where the superscript T denotes the matrix transform,
Eq.(11) is rewritten as a concise form

y′(kT ) = φT (kT )θ + v(kT ) (12)

Once θ is estimated, parameters of the linear and nonlinear
parts are estimated simultaneously.
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3 THE RECURSIVE ESTIMATION ALGORITHM

The challenge in parameters estimation mentioned in
Eq.(12) is that φ(kT ) contains the unknown inner vari-
ables ȳ(kT − iT ), i = 0, 1, . . . , na and unknown parame-
ters m1, m2, r1, r2. So the standard recursive least squares
cannot be used to estimate θ directly. Taking the auxiliary
model into consideration (F. Ding, 2004), an effective
solution is proposed (shown in Fig.3). The auxiliary model
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Fig. 3. The Wiener system with an auxiliary model

is

ˆ̄y(kT ) = φ̂a(kT )θ̂a (13)

φ̂a(kT ) := [−ˆ̄y(kT − T ),−ˆ̄y(kT − 2T ), . . . ,−ˆ̄y(kT−
naT ), u(kT ), u(kT − T ), . . . , u(kT − nbT ), u(kT − T

+ t1), . . . , u(kT − nbT + t1), . . . , u(kT − T + tm−1),

. . . , u(kT − nbT + tm−1)]
T ∈ Rna+mnb+1

(14)

θ̂a :=[â1, â2, . . . , âna , b̂10, b̂11, . . . b̂1nb
, b̂21, . . . , b̂2nb

,

. . . , b̂m1, . . . , b̂mnb
]
T
∈ Rna+mnb+1

(15)

φ̂a(kT ) and θ̂a are estimated values of the information vec-
tor and parameter vector in the auxiliary model. At time
KT , the unknown variables ȳ(kT − iT ) and m1,m2, r1, r2

in φ(kT ) are replaced with the output ˆ̄y(kT − iT ) of the
auxiliary model and the estimates mk−1

1 ,mk−1
2 , rk−1

1 , rk−1
2

at time KT − T , respectively. Then the parameter vector
is renamed as φ̂(kT ).

Let θ̂(kT ) and θ̂a(kT ) be the estimate of θ and θa at time
KT , separately. Minimizing the following cost function

J(θ) =
k∑

i=1

[y′(kT ) − φ̂T (kT )θ]2

In order to improve the tracking performance, a variable
forgetting factor is introduced. Then, an auxiliary model-
based iterative recursive least squares algorithm with
variable forgetting factor (VFF-AM-IRLS algorithm for
short) is derived

θ̂(kT )= θ̂(kT−T )+L(kT )[y′(kT )−φ̂T (kT )θ̂(kT−T )] (16)

y′(kT )=y(kT )+h(rk−1
1 − ˆ̄y(kT ))ˆ̄y(kT )+h(ˆ̄y(kT )−

rk−1
2 )ˆ̄y(kT )+h(ˆ̄y(kT )−rk−1

1 )h(rk−1
2 −ˆ̄y(kT ))ˆ̄y(kT )

(17)

L(kT ) =P(kT − T )φ̂(kT )

[λ(kT ) + φ̂T (kT )P(kT − T )φ̂(kT )]
−1 (18)

P(kT ) =
1

λ(kT )
[I − L(kT )φ̂T (kT )]P(kT − T ) (19)

φ̂(kT ) := [−ˆ̄y(kT − T ),−ˆ̄y(kT − 2T ), . . . ,−ˆ̄y(kT − naT ),

u(kT ), u(kT − T ), . . . , u(kT − nbT ),

u(kT − T + t1), . . . , u(kT − nbT + t1), . . . ,

u(kT − T + tm−1), . . . , u(kT − nbT + tm−1),

h(rk−1
1 − ˆ̄y(kT ))ˆ̄y(kT ), h(ˆ̄y(kT ) − rk−1

2 )ˆ̄y(kT ),

− mk−1
1 h(rk−1

1 − ˆ̄y(kT )),−mk−1
2 h(ˆ̄y(kT ) − rk−1

2 )]T

(20)

where I is an identity matrix. P(kT ) is the covari-
ance matrix, and λ(kT ) avoids the data being saturated.
When λ(kT ) is set a small value, the algorithm has a
strongly tracking capability. Meanwhile, the VFF-AM-
IRLS is more sensitive to noise interference, and brings
large variation of parameter estimation, simultaneously.
On the contrary, the large value of λ(kT ) leads to a small
parameter estimation error (PEE), less sensitivity and a
slowly convergence rate as well.

In order to increase the convergence rate, improve the anti-
jamming performance, and reduce the PEE, a modified
form of forgetting factor is proposed

λ(kT ) = λmin + (1 − λmin)2
R(kT )

s.t.

{
R(kT ) = NINT (ρ|ξ(kT )|)
ξ(kT ) = y′(kT ) − φ̂T (kT )θ̂(kT − T )

(21)

where λ(kT ) is the forgetting factor at time , λmin is
the minimum of λ(kT ), and 0 ≤ λmin ≤ 1. ρ is a gain
coefficient, which makes λ(kT ) tend to 1. ξ(kT ) is the error
of output between the system and its estimation. NINT (·)
is defined as the nearest integer. It can be seen that the
magnitude of λ(kT ) is determined by the prediction error.
When the prediction error increases, it is necessary to
initiate the data discounting mechanism. The bigger ξ(kT )
is, the smaller λ(kT ) is, the faster tracking ability of the
algorithm is. Otherwise, the algorithm is not sensitive to
noise and has low PEE simultaneously.

The proposed VFF-AM-IRLS algorithm is summarized as
follows.

Step1: Let k = 1, set θ̂(0), ˆ̄y(0) and P(0) as

θ̂(0) = 1/p0, ˆ̄y(0) = 1/p0,P(0) = p01
where 1 is a column vector with appropriate dimension,
whose entries are all 1 and p0 = 106.

Step2: Collect {u(kT + tj−1), y(kT ) : j = 1, 2, . . . m},
form φ̂a(kT ) using Eq.(14), and calculate ˆ̄y(kT ) as shown
in Eq.(13). Then separate parameter of mk−1

1 ,mk−1
2 ,

rk−1
1 , rk−1

2 from θ̂(kT − T ) and form φ̂(kT ) according to
Eq.(20).

Step3: Calculate y′(kT ), λ(kT ), L(kT ), P(kT ) using
Eq.(17), Eq.(21), Eq.(18), Eq.(19) separately.

Step4: Update θ̂(kT ) on the basis of Eq.(16).

Step5: Let k = k + 1, and go to step3.

When λmin = 1, the algorithm is simplified to the auxiliary
model-based iterative recursive least squares (AM-IRLS)
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algorithm. When λ(kT ) is constant, the algorithm is de-
formalized to the auxiliary model-based iterative recursive
forgetting least squares (AM-IRFLS) algorithm.

4 CONVERGENCE ANALYSIS

Lemma 1.Given the VFF-AM-IRLS algorithm mentioned
in Eq.(16)-Eq.(21) and the system in Eq.(12), if φ̂(kT ) is
persistent excitation (PE), i.e. exist constants 0 < α ≤
β < ∞ and an positive integer N ≥ n such that the
following PE condition holds:

(A1)αI ≤ 1
N

N−1∑
i=0

φ̂(kT + iT )φ̂T (kT + iT ) ≤βI a.s., k > 0

Then, for 0 < λmin < 1, P(kT ) satisfies

P−1(kT ) ≥ λN−1
min

1 − λmin
αI + λk

min[P−1(0) − α

1 − λmin
I]

Canetti and Espana (R.M. Canetti, 1989), Ding (F. Ding,
2005) proved the Lemma 1.

Let P−1(0) satisfies

P−1(0) ≥ αI
1 − λmin

, orp0 ≤ 1 − λmin

α
(22)

Then, for k ≥ N , Eq.(23) is obtained

P−1(kT ) ≥ λN−1
min α

1 − λmin
I,

or P(kT ) ≤ 1 − λmin

λN−1
min α

I, 0 < λmin < 1
(23)

Lemma 1 displays that P(kT ) in the VFF-AM-IRLS
algorithm has the finite upper bounds under the PE
condition.
Theorem 1. For the system in Eq.(12), {v(kT )} is the
independent white noise with zero mean and variance σ2

v
under the condition A1, i.e. v(kT ) satisfies:

(A2)E[v(kT )] = 0

(A3)E[v2(kT )] ≤ σ2
v < ∞

Let E[||θ̃(0)||2] = E[||θ̂(0) − θ||2] = δ0 < ∞, θ̂(0) is
independent of v(kT ), θ̃(kT ) = θ̂(kT ) − θ(kT ) is the
parameter error vector. Therefore, for k ≥ N , the VFF-
AM-IRLS algorithm in Eq.(16)-Eq.(21) has the following
upper bounds:

E[||θ̃(kT )||2] ≤ α−2p−2
0

k∏
j=1

λ2(jT )λ−2(N−1)
min (1 − λmin)2δ0

+
n(1 − λmin)

αλN−1
min

σ2
v =: fu(λmin, kT )

The proof of Theorem 1 can be seen in the literature
(F. Ding, 2005; Ding, 2014).

Furthermore, if p0 is set as p0 = 1−λmin
α , the fu(λmin, kT )

can be rewritten:

fu(λmin, kT ) =
k∏

j=1

λ2(jT )λ−2(N−1)
min δ0 +

n(1 − λmin)
αλN−1

min

σ2
v

The measurement input data {u(kT − gT + tj−1)}, g =
0, 1, ..., nb, j = 1, 2, ...,m, k = 1, 2, ..., L is collected from
physical systems or experiments, and the output of auxil-
iary model {ȳ(kT − hT )}, h = 1, 2, ..., na is obtained from
auxiliary model, so φ̂(kT ) is known and α, β are computed
according to (A1). Therefore, as k → ∞, the error upper
bound fu(λmin, kT ) approximates a finite constant, i.e.

fu(λmin, kT ) → n(1 − λmin)
αλN−1

min

σ2
v

where n = na + mnb + 5 is the dimension of θ(kT ) which
is known, and σ2

v cannot be gained in practice. So, σ2
v is

replaced with its estimation σ̂2
v

σ̂2
v =

1
L

L∑
i=1

[y′(iT ) − φ̂T (iT )θ̂(LT )]2

5 AN EXAMPLE

The non-uniformly sampled Wiener system (shown in
Fig.1) was expressed as follows:

ȳ(kT ) =

m∑
j=1

Bj(z−1)

A(z−1)
u(kT + tj−1)

= [1 − A(z−1)]ȳ(kT ) +
m∑

j=1

Bj(z−1)u(kT + tj−1)

(24)

where

A(z−1) = 1 − 1.529z−1 + 0.7408z−2

B1(z−1) = 0.1234 + 0.06899z−1 + 0.01538z−2

B2(z−1) = 0.0421z−1 + 0.08506z−2

and the parameters of dead-zone nonlinearities were m1 =
1.2,m2 = 1.1, r1 = 0.8, r2 = −0.9. Then the parameter
vector was obtained

θ =[a1, a2, b10, b11, b12, b21, b22,m1,m2, r1, r2]
T

=[−1.529, 0.7408, 0.1234, 0.06899, 0.01538, 0.0421,

0.08506, 1.2, 1.1, 0.8,−0.9]T

Take m = 2, τ1 = 1s, τ2 = 1.5s, then t0 = 0s, t1 = τ1 = 1s,
t2 = τ1+τ2 = 2.5s = T . In this case, u(kT ) and u(kT +t1)
were taken as PE signal sequence with zero mean and unit
variance. When the noise variance σ2 = 0.1, the VFF-
AM-IRLS (with ρ = 2, λmin = 0.95) algorithm was used
to estimate the parameters of system(24). The parameters
estimation and their errors δ = ||θ̂(kT ) − θ||/||θ|| × 100%
were shown in Table 1. It could be seen that the PEE
became smaller with quantity of data increasing, and
tended to be stable after 1000 periods.

Table 1 The VFF-AM-IRLS estimates and errors with
σ2 = 0.1
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k 100 200 500 1000 2000 3000 4000 true

a1 -1.21378 -1.24413 -1.49611 -1.50554 -1.54760 -1.53978 -1.53572 -1.52900

a2 0.48726 0.52605 0.70172 0.71649 0.75210 0.74718 0.74498 0.74080

b10 0.05866 0.13211 0.12628 0.12494 0.12301 0.12239 0.12164 0.12340

b11 -0.01754 0.12587 0.08638 0.06998 0.06579 0.06819 0.06775 0.06899

b12 0.09026 0.09825 0.00070 -0.00571 0.00179 0.00647 0.00804 0.01538

b21 0.01073 0.02086 0.03497 0.03579 0.03919 0.04044 0.04055 0.04210

b22 0.13136 0.16383 0.10563 0.09253 0.09067 0.08808 0.08707 0.08506

m1 0.75316 0.81348 1.14586 1.22548 1.20082 1.20274 1.21126 1.20000

m2 0.81880 0.89518 1.08917 1.12283 1.14096 1.12416 1.09914 1.10000

r1 0.57820 0.84796 0.77022 0.80268 0.77708 0.78057 0.79090 0.80000

r2 0.08136 -0.55251 -0.86628 -0.88968 -0.90779 -0.89092 -0.86527 -0.90000

δ(%) 45.85271 25.56411 3.51762 2.05729 2.05862 1.36170 1.48340 0.00000

In order to test the performance of VFF-AM-IRLS algo-
rithm, δ against k were shown in Fig.4 with different λmin

and ρ. Without forgetting factor, the method was stable
during the estimating process. However the accuracy was
lower, as shown in Fig.4 with the blue solid line (PEE
was about 9%). Introducing the variable forgetting factor,
the algorithm had fast convergence velocity. As a result,
the estimated precision was improved greatly, as shown
in Fig.4 with the green dosh-dot line (PEE was nearly
2%). Moreover, with ρ increasing, the convergence rate
was more sensitive, and there was an evident wavelike at
the early state of the estimation (shown in Fig.4 with the
purple dot line).

500 1000 1500        k

 
λ

min
=0.9,ρ=2(VFF−AM−IRLS)

λ
min

=0.9,ρ=3(VFF−AM−IRLS)

λ
min

=1,ρ=2(AM−IRLS)

Fig. 4. The parameter estimation errors δ versus k

Set σ2 = 0.1 and 0.2, the result was presented in Fig.5.
It revealed that the estimated parameters were unstable
with a larger σ, while VFF-AM-IRLS algorithm had high
ability to eliminate interferences as well as accuracy.

6 CONCLUSIONS

A VFF-AM-IRLS algorithm is developed for a non-
uniformly sampled Wiener systems with dead-zone nonlin-
earities. The proposed algorithm can estimate the system
parameters directly by using the auxiliary model method
and iterative method. Moreover, a variable forgetting fac-
tor is introduced to improve convergence velocity and anti-
jamming ability. The simulation results demonstrate the
effectiveness of the proposed algorithm. The method can
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Fig. 5. The comparison of the true and estimates of the
VFF-AM-IRLS and AM-IRFLS with different σ

be extended and used for other hard nonlinear Hammer-
stein, Wiener or Hammerstein-Wiener systems, other non-
uniformly sampled systems, and multivariable systems.
However, the selection of λmin and ρ is very challenging
and worth further investigate.
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