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Abstract: Motivated by the need of developing stochastic nonlinear model-based methods to 

characterize uncertainty for chemical process estimation, control, identification, and experiment design 

purposes, in this paper the problem of characterizing the global dynamics of single-state nonlinear 

stochastic system is addressed. An isothermal CSTR with Langmuir-Hinshelwood kinetics is considered 

as representative example with steady state multiplicity. The dynamics of the state probability 

distribution function (PDF) is modeled within a Fokker-Planck’s (FP) global nonlinear framework, on the 

basis of FP’s partial differential equation (PDE) driven by initial state and exogenous uncertainty. A 

correspondence between global nonlinear deterministic (stability, multiplicity and bifurcation) and 

stochastic (PDF stationary solution and mono/multimodality) characteristics is identified, enabling the 

interpretation of tunneling-like stationary-to-stationary PDF transitions, and the introduction of a 

bifurcation diagram with the consideration of stochastic features in the context of the CSTR case 

example.   
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1. INTRODUCTION 

The study of stochastic nonlinear systems is motivated by the 

need of characterizing the effect of model uncertainty for 

model-based applications such as chemical process modeling, 

system identification, experiment design, estimation and 

control purposes, process safety assessment. While the 

deterministic approaches for nonlinear chemical processes 

are a rather mature field, the development of nonlinear 

stochastic approaches lags far behind. Deterministic 

descriptions suffice for chemical processes described by 

nonlinear models over the neighborhood of a steady-state (or 

nominal motion) for a continuous (or batch) process, but the 

same cannot be said for processes which evolve over ample 

(nonlocal) state-space domains, where nonlinearities become 

significant, and consequently, the inexorable presence of 

uncertainty due to measurement and modeling errors and its 

effect on the stability, observability and controllability 

features must be regarded within a stochastic global nonlinear 

framework. In chemical processes, the combination of 

measurement errors with high-frequency unmodeled 

dynamics manifests itself as random-like uncertainty, which 

imposes limits of estimation and control behavior.  

In most of previous studies in chemical process engineering, 

the issue of uncertainty characterization has been performed 

with the so-called model sensitivity analysis with respect to 

initial values and/or parameters (Morbidelli and Varma, 

1989, Dutta et al., 2001), on the basis of a linear model 

truncation. The drawback of this approach is that it does not 

allow the assessment of the combined effect of the 

uncertainties caused by the neglected nonlinear dynamics, 

which manifest itself when testing or implementing the 

model with the data generated by the actual nonlinear process  

(Horenko et al., 2005).   

In the nonlinear systems theory field, there are rather well 

established approaches to address the model uncertainty 

problem for multi-state nonlinear processes, with rigorous 

probability distribution function (PDF) evolution descriptions 

in terms of a set of Fokker-Planck (FP) partial differential 

equations (Risken, 1996). In fact, the nonlinear EKF 

estimator design can be seen as a second-order statistics 

approximation of the FP equation approach. However, in 

spite of being the EKF the most widely used estimation 

technique in chemical process systems engineering, its 

employment for uncertainty assessment purposes has been 

rather limited, and the consideration of the full nonlinear 

statistics FP equation approach has been circumscribed to a 

rather limited set of studies.  

While the rigorous FP equation approach has been 

successfully applied in a diversity of problems in applied 

science, including physics, medical sciences (Mei et al., 

2004; Lo, 2007), biology (Soboleva and Pleasants, 2003; 

Huang et al., 2008) and electronic circuits (Hanggi and Jung, 

1988), in the chemical process systems engineering field only 

a few chemical reactor studies have been performed 

according to the FP equation approach. In a pioneering work, 

Pell and Aris (1969) studied the local-stochastic behavior of a 



 

 

     

 

chemical reactor on the basis of a linear model truncation. In 

spite of the limited nature of the local results, recognized by 

the authors themselves, this work evidenced the benefit and 

possibilities of modeling the presence of random fluctuations 

within a stochastic framework. Later, Rao et al. (1974) 

addressed the same problem with a numerical algorithm to 

solve the associated nonlinear equation drawing nonlocal 

results and establishing that the linearization approach breaks 

down when the system is close to a saddle-node bifurcation.  

In a subsequent study, Ratto (1998) applied the FP equation 

approach to the linearization of a stable closed-loop reactor 

with PI temperature control subjected to measurement noise, 

sufficiently away from the possibility of Hopf bifurcations 

(whose consideration is a central point of the present study). 

This study evidenced the advantages of the FP equation-

based theoretical approach (with quasi-analytical solutions), 

with respect to Monte Carlo methods (Ratto and Paladino 

2000, Paladino and Ratto 2000, Sherer and Ramkrishna, 

2008; Hauptmanns, 2008).  

In the context of a combustion engineering science problem, 

Oberlack et al. (2000) studied the stationary solution of the 

FP equation associated to a multistable homogeneous 

adiabatic flow reactor described by a one-dimensional 

deterministic system. In spite of having addressed only the 

steady-state aspect of the problem, this study further 

evidenced the capabilities and possibilities of the FP 

equation-based approach to tackle the chemical reactor 

stochastic modeling problem. These considerations on the 

employment of the FP equation-based approach for the 

treatment of dynamical nonlinear systems, in general, and of 

chemical reactor, in particular, motivate the present study on 

the global-stochastic dynamical behavior of chemical reactors 

with emphasis on: the presence of multistability, transient 

behavior and the connection between deterministic and 

stochastic modeling approaches. 

As an inductive step towards the development of nonlocal, 

global, nonlinear stochastic uncertainty characterization 

methodology, in this work the problem of characterizing the 

concentration stochastic dynamical behavior of single-state 

nonlinear isothermal CSTR with Langmuir-Hinshelwood 

kinetics as representative case example with multistability 

phenomena has been addressed. The problem is treated 

within a global-nonlinear framework by combining 

deterministic multiplicity and bifurcation analysis tools with 

a FP equation-based stochastic behavior characterization, in 

the light of the particular system characteristics. The 

stochastic dynamical behavior is studied by looking at the 

response solution of the dynamic FP partial differential 

equation (PDE) to: (i) initial state uncertainty and (ii) 

modeling error described as a white noise exogenous input 

injection. As a result, a correspondence between stochastic 

features (mono or multimodality, potential, quasi-stability, 

and escape time) and deterministic features (stability, 

multiplicity and bifurcation) is established, enabling a better 

understanding of the nonlinear stochastic behavior and 

opening the possibility of extending the approach to multi-

state chemical processes. 

 

2. THE STOCHASTIC MODEL  

Consider the single-state (x) nonlinear stochastic dynamical 

system: 

x
.
 = f[x, u(t)] + w(t),  x(0) = xo,  w(t) ~ N[0, q(x)]      (1) 

       x ! X = [0, !) 

 

with exogenous deterministic input u, and driven by input 

uncertainty modeled as white noise with intensity q(x). In the 

absence of noise, with w(t) = 0, the (single or multiple) 

steady-states satisfy, for the nominal input 

! 

u ,  the static-

algebraic equation 

! 

f x ,u ( ) = 0 . Due to the nonlinearity of 

f(x), the deterministic system (i.e. when w(t)=0) can show 

structural instability, meaning the existence of steady-state 

bifurcation points as system parameters or inputs are varied. 

In the one-dimensional case, the more generic bifurcation is 

the saddle-node, which may imply the presence of 

multistability regions. This means that the deterministic 

system reaches one of the stable equilibrium points, 

depending on initial conditions and system input (Wiggins, 

1990). Assuming the noise intensity q(x) is constant for a 

fixed value of the input, u(t) = u- , the dynamics of the 

concentration (normalized) probability density function 

(PDF) p(x,t) is governed by the Fokker-Planck partial 

differential equation (Risken, 1996): 

pt(x, t) = [d px(x, t)]x-{f(x, u- ) p(x, t)}x, 0 ! x < !, t > 0 (2a) 

x = 0: d px(0, t) - f(0, u- ) p(0, t) = 0,     x = !: px(!, t) = 0 (2b-c)  

t = 0: p(x, 0) = p0(x),                  d = q
2
/2 (2d)   

 

where d is the “diffusion constant” set by the noise intensity, 

(2b)-(2c) is the boundary condition pair and (2d) is the initial 

condition with initial PDF po. Condition (2b) establishes that 

x can have only positive values (Gardiner, 1997), in the 

understanding that this condition is easily met by writing the 

chemical process states in suitable scales.  

 

2.1 Stationary probability density function  

The stationary solution of (2) is given by: 

 

! 

p
s
(x) = N

0
e
"
# x( )
d ,     

! 

"(x) = # f (s)ds
x

$   (3a-b) 

where N0 is the integration constant associated to the 

normalization of ps(x) and "(x) is the potential function.  

From the examination of the stationary solution (3) in the 

light of multiplicity features of the deterministic system, the 

next conclusions follow. When the deterministic system has a 

unique global attractor  x- # X, the potential function  "(x) has 

a single well shape with minimum at x-, and the stationary 

PDF ps(x) is monomodal with maximum at x-, meaning that 

the solution x- is the more probable state over X. As noise 

intensity decreases (d tends to zero) the monomodal PDF 

tends to the Dirac Delta function $(x - x-) about  x-. When the 

deterministic system has multiple steady state x-1, …, x-m # X, 



 

 

     

 

with domains of attraction X1,…, Xm such as %
i = 1

m

  Xi = X: (i) 

the potential function "(x) has a multi well shape potential 

with minima at x-1,…, x-m, (ii) the multivalued stationary PDF 

ps(x) has maxima at x-1,…, x-m, (iii) the most probable steady 

state solution is the one with the deepest potential well "(x-m) 

and therefore with the largest maximum, and (iv) the 

difference among PDF maxima grows exponentially with the 

decrease of d. As a consequence of (iv), at low d values the 

distribution appears monomodal and tends to a Dirac Delta 

when the noise intensity tends to zero. Multimodality is 

maintained, even at low d values, when the potential minima 

are equal and in this case the limit as d tends to zero is a multi 

Dirac Delta.  

 

2.3 Probability distribution function evolution 

The right hand side of (2a) can be written as follows: 

pt = d pxx – f(x, u- )  px – fx(x, u- ) p (4) 

 

evidencing that: (i) the shape of the PDF over time is due to a 

source/sink mechanism –fx p combined with two transport 

mechanisms, one diffusive d pxx and one convective –f px, 

and (ii) the PDF temporal evolution is obtained by giving an 

initial value p(x,0) = p0(x) and integrating numerically the FP 

equation. If the deterministic system has a unique global 

attractor, the potential function has a single minimum, and 

the PDF reaches asymptotically a monomodal distribution, 

regardless the initial PDF shape. Otherwise, when there is 

deterministic steady-state multiplicity with multiple potential 

minima, the PDF evolution may exhibit some behaviors, 

which seem atypical from a deterministic nonlinear system 

perspective. In fact, the PDF settles at some multimodal PDF 

with largest maximum at (probability around) the attractor x-1, 

then after some time, the PDF eventually starts moving and 

reaches another multimodal shape with a different largest 

maximum at (probability around) the attractor x-2. In fact, for 

the case of steady-state multiplicity with an asymptotic 

(stationary) bimodal PDF, the time necessary for a state x at 

the steady state x = x-1, with domain of attraction X1, to escape 

to the steady-state x=x-2, with domain of attraction X2, is 

approximated by the formula (Gardiner, 1997): 

T & exp[("(x-2)-"( x-1))/d] (5) 

 

which resembles Arrhenius’ equation in chemical kinetics. 

Thus stationary-to-stationary (x-1-to-x-2) state transition 

probability is favored by: i) a small well potential difference 

["(x-1)-"x-2)] and (ii) a well potential with large minima. When 

the minima have the same ordinate, there is not a dominant 

attractor and the probability of leaving one of the wells is the 

same.  

 

 

3. STOCHASTIC MODEL OF AN ISOTHERMAL CSTR  

3.1 CSTR with Langmuir-Hinshelwood kinetics 

As a representative example in catalytic reactors, let us 

consider an isothermal CSTR with Langmuir – Hinshelwood 

kinetics, with the corresponding mass balance being 

described by the nonlinear differential deterministic system:  

x
.
 = f(x, Da, '), x(0) = xo,  (6) 

f(x, Da, ') = (1 - x) – Da(1 + ')
2
 x/(1 + 'x)

2
   

x = c/ci,   (= t/(VR/Q),    Da = (VR/Q)k/(1 + ')
2
, '=" ci. 

 

x is the dimensionless concentration (referred to the feed 

concentration ci), t and ( are, respectively, the actual and 

dimensionless time, Q the volumetric feedrate, VR the reactor 

volume, k the reaction-rate constant, K the equilibrium 

adsorption constant and Da the Damkohler number. In spite 

of its simplicity, the above single-state system exhibits a 

rather rich behavior over the parameter space pair (Da, '), 

showing multiple steady-states for a specified range of 

parameter values. In the case of multiplicity, there are two 

(low and high concentration) stable steady-states and one 

(intermediate concentration) unstable steady-state. Moreover 

system (6) captures the important nonlinearities which 

underline the lack of global and local observability at the 

value x = 1/' (where the reaction rate is maximum), in the 

understanding that this feature makes difficult the design of 

nonlinear observers and controllers of an important class of 

chemical reactors with nonmonotonic kinetics (Schaum et al., 

2008).  

The stochastic system associated to the deterministic reactor 

(6) is given by (1) replaced by f(x,Da,'), and the 

corresponding stationary PDF is given by: 

! 

p
s
(x) = N

0
exp "

1

d
"x +

x
2

2
+
Da 1+#( )

2

# 2 1+#x( )
+
Da 1+#( )

2

ln 1+#x( )
# 2

$ 

% 
& 
& 

' 

( 
) 
) 

* 

+ 

, 
, 

- 

. 

/ 
/ 
. (7) 

 

3.1 Deterministic nonlinear dynamics  

The bifurcation analysis of system (6) evidences the 

occurrence of saddle-node bifurcation when Da > 0 (see 

Figure 1) and, on the parameter space (Da, '), the 

deterministic reactor steady-state (SS) exhibits either: (i) a 

unique global attractor x- with domain of attraction X[0, 1], or 

(ii) three-SS multiplicity, with two (low and high 

concentration) stable and one (intermediate concentration) 

unstable steady-state.  

In the multiplicity case, there are two basins of attraction (X1 

and X2), one per attractor. Thus, in the single SS case any 

state motion x(t) beginning in x0 # X remains in X, and 

asymptotically converges to the steady state  x- in X (see 

Figure 2a):   

xo # X = [0, 1]  )   x(t) # X,  x(t) * x-      )   
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In the three-SS case (with two stable attractors x- i, i = 1, 2 

with domain of attraction Xi) any state motion x(t) beginning 

in xo # Xi remains in Xi, and asymptotically converges to the 

steady-state x- i in Xi, this is (see Figure  2b): 

xo # Xi = [0, 1]  )   x(t) # Xi,  x(t) * x- i, i = 1, 2 

  

Figure 1: a) bifurcation diagram of system (6) and b) 

corresponding solution diagram at '=20. 

In particular, for ' = 20, the deterministic reactor system (6) 

exhibits: (i) a low (or high) concentration unique global 

attractor for 0 < Da < Da
-
  "  0.172 (or Da > Da

+ 
" 0.277), 

(ii) three steady-states for Da
-
 < Da < Da

+
, and (iii) two 

saddle-node bifurcations at Da equal to Da
-
 and Da

+
 (see 

Figure 1). 

 

Figure 2: Phase diagram (a) in the single-SS case and (b) 

in the three-SS case.  

 

3.2 Stationary stochastic behavior  

The stationary (asymptotic) behavior of the PDF which 

satisfies the FP equation was investigated by setting ' equal 

to 20  (cf. Section 3.1), varying the value of Damkohler 

number 0 < Da < 1.0 and the noise-related diffusion 

coefficient 10
-5

< d <10
-3 

(Ratto, 1998). The normalization 

constant in (3a) was calculated through the orthogonal 

collocation method on finite elements. 

In Figure 3a (or 3b) the stationary PDF for Da = 0.226 (or Da 

= 0.231) with three SSs and two attractors, for two noise 

levels d = 5.0 10
-4

 (continuous line) and 5.0 10
-3

 (dashed line) 

is shown.  At the lowest d value only one peak is clearly 

detectable at x " 0.683 (or x "  0.0178), while the second 

peak corresponding to x "  0.018 (or x "  0.671) becomes 

evident only at the highest d value. 

In Figure 4a (or 4b) is presented the potential function "(x) 

(or stationary PDF for d = 10
-4

) at three values of Da: 0.226 

(dotted line), 0.229 (continuous line), and 0.231 (dashed 

line). In accordance with the deterministic bistability 

properties there are two attracting minima for the potential 

"(x), meaning the possibility of well-to-well steady-state 

transition with longer residence in the deepest well. As 

expected, at low diffusion value only one peak is clearly 

visible for Da = 0.226 (extinction) and for Da = 0.231 

(ignition).   When the two minima have the same value, Da "  

0.229, the stationary PDF exhibits bimodality made of nearly 

non overlapping monomodal PDFs or equivalently, a well-to-

well potential without a dominant attractor. 

  

Figure 3: Stationary PDF when a) Da = 0.226 and b) Da = 

0.231 for d = 5.0 10
-4

 (solid line) and d = 5.0 10
-3

 (dashed 

line). 

The latter case could be considered as an important 

bifurcation characteristic related to the stochastic behavior, 

and not to the deterministic one. This Damkohler critical 

number DaC is determined by the enforcement of the next 

equipotential conditions: 

! 

d"

dx
x 1;DaC( )

=
d"

dx
x 2 ;DaC( )

= 0 x 
1
# x 

2( )

" x 
1
;Da

C( ) = " x 
2
;Da

C( )

  (8) 

In conclusion, the DaC value corresponds to a transition 

between two qualitatively different behaviors of the 

stochastic reactor system. This transition appears smooth for 

high d values, meaning that a bimodal distribution is apparent 

in a wider neighborhood of DaC, and becomes sharper as the 

diffusion coefficient tends to zero. 
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Figure 4: a) Potential function and b) stationary PDF 

(d=10
-4

) for different Da values: Da=0.226 (dotted 

line), Da=0.229 (solid line), Da=0.231 (dashed line). 

 The one-dimensional manifold satisfying (8) can be derived 

by resorting to standard continuation algorithms (Doedel et 
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al., 1997), and the stochastic bifurcation diagram, over the 

(Da-') plane, was constructed and reported in Figure (5) 

together with the bifurcation diagram of (6). 

Observe that the passage from the deterministic (Figure 1a) to 

the stochastic (Figure 5) bifurcation diagram evidences: (i) 

the correspondence between the deterministic steady-state 

and stochastic stationary nonlinear features, and (ii) the kind 

of information contained in the stochastic diagram and not in 

the deterministic one.  

 

Figure 5: Diagram of the saddle-node bifurcation of the 

deterministic system (solid line) and the (DaC, ') curve 

(dashed line). 

 

3.3 Dynamic behavior  

According to the preceding developments, in a deterministic 

framework, the domain of attraction determines the steady-

state which will be reached asymptotically by the system. 

However, from a stochastic point of view it may happen that 

one of the deterministic steady states has a low or negligible 

asymptotic probability of being reached, regardless the initial 

condition.  
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Figure 6: Dynamic behavior of mean (solid line) and 

variance (dashed line) of the PDF when d = 10
-3

 at a) Da = 

0.244 and b) Da = 0.260. The time scale is logarithmic. 

Figure 6 represents the transient of mean and variance of the 

probability distribution function when d = 10
-3

, and the initial 

condition is a Gaussian distribution with mean equal to 0.6 

and variance equal to 0.02, at Da = 0.244 (Figure 6a) and Da 

= 0.260 (Figure 6b). In both cases, the absolute minimum of 

the potential function is positioned on the lower branch of the 

solution diagram, but the initial distribution is inside of the 

basin of attraction of the other solution, meaning that the 

probability that the initial condition is outside the weaker 

attractor is almost negligible.  

The responses of the PDF show that during the transient, the 

mean of the distribution does not directly move towards its 

steady state value in the ignited zone, but first approaches the 

higher solution. It should be noted that, at Da = 0.244 (Figure 

6a), mean and variance are almost constant for a wide 

interval of time (the time scale in Figure 6 is logarithmic), 

looking as if a stable stationary solution was definitely 

reached. Thus, the high concentration solution appears as a 

quasi-stationary solution. In other words, only after a long 

transient the system departs from the extinction steady-state 

and eventually reaches the ignited region. The variance 

reaches a maximum during the transition from the quasi-

stationary to the stationary solution, implying that the PDF 

becomes bimodal with its two peaks corresponding to the two 

deterministic attractors. As time elapses, one of the peaks 

becomes negligible and the other one finally prevails. When 

Da = 0.260 (Figure 6b), the system again moves first towards 

the solution contained in the attraction basin where the initial 

distribution is centered (low conversion solution), but after a 

while the mean starts decreasing towards its stationary value. 

Some snapshots of the evolving probability distribution are 

shown in Figure 7 for Da = 0.244. It must be pointed out that 

the quasi-stationary condition duration can range from 

several to orders of magnitude the reactor natural 

deterministic dynamics (set by the residence time), depending 

on the noise intensity, and this is a fact that must be carefully 

accounted for in long-term prediction assessments, with 

applicability in safe process design. 

 

Figure 7: Snapshots of the PDF at (=0 (solid line), ( =100 

(dashed line), ( =3.0 10
8
 (dashed-dotted line) and ( =5.0 

10
9
 (dotted line). 

The duration of the quasi-stationary state can be related to 

the escape time, evaluated by means of (5). Calculating the 

escape time for Da = 0.244 and Da = 0.260 we found, 

respectively, T1=4.3 10
8
 and T2=8.4 10

3
. These results 

establish that stationary conditions are reached for a time 

greater than the calculated escape time, as confirmed by the 

simulation. The decreasing of the escape time as Da 

approaches the bifurcation value reflects the fact that the 

relative minimum is less and less deep until it disappears at 

the bifurcation point.  
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6. CONCLUSIONS 

The global-nonlinear stochastic behavior of the concentration 

in an isothermal CSTR reactor with multistability has been 

characterized on the basis of standard deterministic tools in 

conjunction with FP equation theory. In addition to issues 

considered in previous studies in chemical reactor (Pell and 

Aris, 1969; Ratto 1998) and combustion engineering 

(Oberlack, 2000), in this study the presence of multistability, 

transient behavior, and the connection between deterministic 

and stochastic modeling approaches were considered. In 

particular, the interplay between the stochastic (mono or 

multimodality, potential, quasi-stability, and escape time) and 

deterministic (stability, multiplicity and bifurcation) features 

was identified. The stationary analysis revealed that, even 

when multistability was expected for the deterministic model, 

the probability distribution function usually appeared as 

monomodal, indicating that there is one dominant attractor, 

with higher probability of being reached asymptotically. 

However, the occurrence of multi-stabilities in the 

deterministic model did affect the behavior of the transient 

dynamics and the system could stay in a neighborhood of the 

weaker attractor for a long time interval, thus appearing as a 

quasi-stationary state. 

The results of this paper constitute a point of departure: (i) to 

study the multi-state nonlinear stochastic system case, and (ii) 

to explore the implications and applications for global 

nonlinear estimation, control, and safe process designs.  
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