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Abstract: The problem of jointly designing the estimation structure and algorithm to infer
all or some composition in a six-component distillation column with temperature measure-
ments is addressed. The structure design involves the choices of: (i) modeled and unmodeled
compositions, (ii) the number of measurements and their location, and (iii) the innovated-
noninnovated state partition. The algorithm is the dynamic data processor that performs the
estimation task. The application of the geometric estimation approach (GE), in the light of
the column characteristics, yields a tractable procedure to draw the solution of the estimation
structure-algorithm design problem, with an estimation scheme that is considerably simpler
than previous ones with extended Kalman Filter (EKF). The proposed methodology is applied
to a representative six-component case example through simulations, finding that the estimation
task can be performed with a three-component reduced model.
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1. INTRODUCTION

Distillation is an important energy-intensive industrial op-
eration where many substances are separated and purified.
The development of estimation schemes with temperature
measurements for multicomponent distillation columns
is motivated by: (i) the need of developing monitoring
systems and (supervisory, advisory, and feedback) con-
trollers with applicability-oriented requirements on reli-
ability, tractability and maintenance cost, and (ii) the
availability of reasonable and reliable multicomponent dis-
tillation models, including commercial packages.

The extended Kalman Filter (EKF) (Jazwinsky (1970))
has been by far the most widely used estimation technique
in chemical process systems engineering in general, and
in multicomponent distillation columns in particular, with
successful simulations and experimental implementations
for continuous and batch column operations, mostly for
binary (Baratti et al. (1995); Yang and Lee (1997)) and
ternary systems (Baratti et al. (1998)), and up to four-
component systems (Venkateswarlu and Kumar (2006)).
Even though adequate multicomponent column models are
available, the related EKF construction and implemen-
tation for multicomponent systems still rises reliability,
complexity, and development-maintenance cost concerns
among industrial practitioners, because: (i) the dimension-
ality of the EKF grows rapidly with the number of stages
and components (n(n+1)

2 +n), (ii) the tuning of the covari-
ance gains of the Riccati equation is a rather complex task,
and (iii) due to the lack of formal connections between

estimator tuning and functioning, the implementation of
the EKF requires extensive testing.

Recently, the geometric estimation (GE) approach (Al-
varez (2000)), which does not require the on-line inte-
gration of Riccati equations, has been redesigned with
the following features (Alvarez and Fernandez (2008)):
(i) the obstacle of high order Lie derivations has been
removed and replaced by Jacobian model-based gain com-
putations, enabling the consideration of staged systems,
(ii) the equivalence between the GE and the EKF has
been identified, (iii) the estimation model, its (innovation-
noninnovation) detectability structure, and the sensor lo-
cations are regarded as structural design degrees of free-
dom, and (iv) a simple tuning scheme is coupled with
a robust convergence criterion. The general-purpose GE
approach has been successfully tested with experimental
binary columns with complete (Tronci et al. (2005); Fer-
nandez and Alvarez (2007)) or reduced models (Alvarez
and Fernandez (2008)), and ternary columns (Pulis et al.
(2006)), yielding estimation schemes which are consider-
ably simpler than the EKF-based ones. These consider-
ations motivate the present study on the six-component
distillation column problem.

In this work, the problem of simultaneously designing the
estimation structure and algorithm to infer all or some
composition in a six-component distillation column with
temperature measurements is addressed. By structure de-
sign we mean the choices of: (i) modeled and unmodeled
compositions, (ii) the number of measurements and their
locations, and (iii) the innovated-noninnovated composi-



tion state partition which, in conjunction with the model-
sensor choice, determines the data assimilation versus
error propagation mechanism. By algorithm it is meant
the dynamic data processor that performs the estimation
task, according to the estimation structure and a suitable
gain tuning scheme. The application of afore discussed
GE approach, in the light of the six-component column
characteristics, yields a tractable procedure to solve the
structure-algorithm problem, with an estimation scheme
that is considerably simpler than previous EKF-based
ones. The proposed methodology is applied to a represen-
tative six-component case example through simulations,
finding that the estimation task can be performed with a
three-component reduced model, a single-stage innovation
with passive structure, and without the need of online
integrating Riccati equations. The study can be seen as
an inductive step towards the consideration of columns
with more than six components.

2. ESTIMATION PROBLEM

2.1 Six-component distillation column

Consider a continuous multicomponent column with N
stages and C components. Under standard assumptions
(energy balance neglected on each tray, constant vapor
and liquid flows, holdup dynamics neglected, tight reboiler
and condenser level control, and stage liquid-vapor equilib-
rium), the column dynamics are described by the following
set of nonlinear differential equations (Skogestad (1997);
Baratti et al. (1998)):

Reboiler (i = 1, j = 1, . . . , C − 1)

ċj1 =
(R+ F )cj2 − V εj(c1, P1)−Bcj1

M1
= f j

1 (c1, c
j
2) (1a)

Stripping section (2 ≤ i ≤ NF − 1, j = 1, . . . , C − 1)

ċji =
(R+ F )(cji+1 − c

j
i )− V (εj(ci, Pi)− εj(ci−1, Pi−1))

Mi
(1b)

= f j
i (ci−1, ci, c

j
i+1)

Feed tray (i = NF , j = 1, . . . , C − 1)

ċjNF
=
R(cjNF +1 − c

j
NF

) + F (cjF − c
j
NF

)
MNF

(1c)

− V (εj(cNF
, PNF

)− εj(cNF−1, PNF−1))
MNF

= f j
NF

(cNF−1, cNF
, cjNF +1, cF )

Enriching section (NF + 1 ≤ i ≤ N − 1, j = 1, . . . , C − 1)

ċji =
R(cji+1 − c

j
i )− V (εj(ci, Pi)− εj(ci−1, Pi−1))

Mi
(1d)

= f j
i (ci−1, ci, c

j
i+1)

Condenser (i = N , j = 1, . . . , C − 1)

ċjN =
V εj(cN−1, PN−1)−RcjN −Dc

j
N

MN
= f j

N (cN−1, c
j
N )

(1e)

Temperature measurements (i = 1, . . . ,m)

Tsi
= β(csi

, Psi
) (1f)

where m is the number of sensors along the column and si

is the location of the i-th sensor, cji is the composition of
the component j at i-th stage, ci = [c1i . . . c

C−1
i ]

T
is the

composition vector at i-th stage, Tsi and Psi are respec-
tively the temperature and the pressure at si-th stage, F is
the feed flow rate with composition cF = [c1F . . . cC−1

F ]
T

,
D, B, R, and V are respectively the distillate, bottom,
reflux and vapor flow rate (V is proportional to reboiler
duty Q through the heat of vaporization λ), Mi is the
holdup at i-th stage, εj is the liquid-vapor equilibrium
function that determines the vapor composition of the
component j, and β is the bubble-point implicit function
that sets the temperature. The components cCi are deter-
mined by the (mass conservation) condition

∑C
j=1 c

j
i = 1,

where i = 1, . . . , N . Henceforth, column system (1), will be
referred to as the complete six-component column system,
which in compact vector notation is written as follows:

ẋP = fP (xP , uP , dP ) yP = hP (xP ) (2)

where xP = [c1T . . . cN
T ]T , ci = [cC2

i cC3
i cIC4

i cNC4
i cIC5

i ]T ,
uP = [RV ]T , dP = [F cF T ]T , and yP = [Ts1 . . . Tsm

]T

are respectively the states, the inputs, the disturbances,
and the outputs. The disturbances dP are assumed to be
constant and known.

2.2 Estimation problem

The estimation problem consists in jointly designing the
estimation structure (i.e. estimator model, sensor location,
innovated states and data assimilation mechanism), and
the estimation algorithm (i.e., the dynamic data proces-
sor), to infer some of or all the effluent compositions of
the six-component distillation column (2) on the basis of
a reduced model (to be designed) in conjunction with tem-
perature measurements, according to a specific estimation
objective. In virtue of the general-purpose GE approach
(Alvarez and Fernandez (2008)) and its applications to
binary (Fernandez and Alvarez (2007); Alvarez and Fer-
nandez (2008)) and ternary columns (Pulis et al. (2006)),
in the present six-component column estimation study, the
emphasis will be placed on: (i) the design of a reduced-
component model for estimation, (ii) the employment of
a robustness-oriented single-stage innovation scheme with
passive structure (Pulis (2007)), (iii) the corresponding
decision on the innovated components, meaning the com-
ponents of the measurement stage with information and
error injection, and (iv) the estimation of the effluent (dis-
tillate and bottom) impurity compositions as estimation
objective.

2.3 Case example

As a representative industrial case example, consider the
T110 distillation column located at SARAS refinery (Sar-
roch, Italy) with N = 37 stages and C = 6 compo-
nents: a C3-C4 (propane-butane) splitter fed with propane
(C3), iso-butane (IC4), and n-butane (NC4), as well as
ethane (C2), iso-pentane (IC5), and n-pentane (NC5) as
secondary components (with compositions less than 1%).



The column has a kettle reboiler (1-st stage), a total
condenser (37-th stage), 35 nutter float valve trays, the
feed is introduced at 19-th stage, the tray spacing is 61
cm, the column diameter is 2 m, and the pressure changes
linearly along the column, with the top and bottom pres-
sure being 16.3 Kg·cm−2 and 16.6 Kg·cm−2, respectively.
This case example represents a sufficiently important class
of industrial columns, where two or three main components
to be split are present, together with other secondary
components in a much smaller amount.

The behavior of the “actual” six-component system (2)
was numerically simulated with MATLAB, in the un-
derstanding that the same task can be performed with
commercial packages (say ASPEN). The thermodynamics
was simulated with ideal equilibrium (Reid et al. (1998)).
The feed flow and compositions, as well as the reflux flow,
and reboiler duty are given in Table 1. In all simulations,
the initial conditions for the complete column system cor-
respond to the steady-state determined by the data listed
in Table 1.

Table 1. Input values for feed flow and compo-
sitions, reflux flow and reboiler duty

F (m3·h−1) 82.9 C2 molar fraction 0.0036
R (m3·h−1) 69.7 C3 molar fraction 0.281
Q (BTU) 19819000 IC4 molar fraction 0.236

NC4 molar fraction 0.4746
IC5 molar fraction 0.004
NC5 molar fraction 0.0008

3. STRUCTURAL ANALYSIS

Motivated by the GE detectability measure-based sensor
location criterion employed in previous binary (Tronci
et al. (2005); Fernandez and Alvarez (2007); Alvarez
and Fernandez (2008)) and ternary columns (Pulis et al.
(2006)) as well as by their interpretation in terms of ther-
modynamic diagrams (Pulis et al. (2006)), in this section
the sensor location and innovated composition structure
is analyzed on the basis of stage-to-stage temperature
gradients and their component-wise contributions.

3.1 Model reduction

The stage-to-stage temperature gradient about a certain
operation condition is approximated as follows:

∆Ti = Ti+1 − Ti ≈
C∑

j=1

∂Ti

∂cji

∣∣∣∣
ci

∆cji =
C∑

j=1

∆Tcj
i

(3)

where ∆cji = cji+1 − c
j
i , ∆Ti is the temperature gradient

at the i-th stage, and ∆Tcj
i

is the contribution of the
i-th gradient due to the component j. The idea which
underlies the model reduction criterion is to set a data
assimilation scheme with a favorable compromise between
data assimilation and error propagation: (i) the stages with
large temperature gradients are candidates for robustness-
oriented single-stage (i.e. passive) innovation, and (ii)
the compositions with large contributions to the overall
gradient are candidates for being both modeled states and
innovated states.

Table 2. Feed compositions for the reduced
model

C3 molar fraction 0.2838
IC4 molar fraction 0.2388
NC4 molar fraction 0.4774

On the basis of the steady-state solution of the com-
plete system (2) in conjunction with the total and per-
component temperature gradient formula (3), the diagram
presented in Figure 1 was obtained, showing that: (i) with
respect to stage-to-stage temperature change, the most
sensitive zone is the enriching section around the 32-nd
stage, (ii) in general, the temperature gradients are due
to C3, IC4 and NC4 composition changes, (iii) the IC5,
and NC5 components have a rather small contribution
to the temperature gradient, and (iv) at the top of the
column (around the condenser stage) the C2 has a rather
important influence on temperature.

Fig. 1. Complete model-based temperature gradient and
its per-component contributions

From the examination of the stage-to-stage temperature
gradient and the per-component contributions to such
gradient, the following structural conclusions are reached:
the reduced model is obtained by retaining the C3, IC4,
and NC4 components with appreciable manifestation in
the temperature gradient, and discarding the three other
ones (C2, IC5, and NC5) with comparatively small man-
ifestation. Thus the reduced model is given by (1) with
C = 3. In vector notation, the reduced model is written as
follows:

ẋ = f(x, u, d) y = h(x) (4)

where x = [cC3
1 cIC4

1 . . . cC3
N cIC4

N ]T , u = [RV ]T , d =
[FcC3

F cIC4
F ]T , and y = [Ts1 . . . Tsm ]T are respectively the

states, the inputs, the disturbances, and the outputs. The
reduced model (4) was set with the feed compositions
presented in Table 2.

The behaviors of the reduced three-component model (4)
and complete six-component system (2) are presented in
Figure 2, showing that the model reduction error has an
appreciable (or negligible) manifestation in the distillate
(or bottoms) concentrations, and the same is true for
the enriching (or stripping) section. This signifies that:
(i) the bottom composition can be adequately estimated,
without measurement injection, by means of a reduced
model-based open-loop observer, and (ii) the distillate
compositions can be estimated with a reduced model-
based estimator with one temperature measurement, as



the temperature measurement before the top of the column
basically reflects C3 and IC4 changes.

Fig. 2. C3 and IC4 composition and temperature profiles
along the column with (six-component) complete and
(three-component) reduced models

3.2 Sensor location and innovated states

On the basis of the steady-state solution of the reduced
model (4) in conjunction with the total and per-component
temperature gradient formula (3), the diagram presented
in Figure 3 was obtained, showing that: (i) in the stripping
(or enriching) section, the largest temperature gradient,
or equivalently, the richest-in-information zone, is located
below the feed (or top) tray, and (ii) in the stripping (or
enriching) section, the smallest temperature gradient, or
equivalently, the poorest-in-information zone, is located
above the reboiler (or feed) tray.

From the preceding comments and the findings of Subsec-
tion 3.1, the next conclusions on sensor location follow:
(i) one temperature measurement should be placed in
the stripping section, located at the richest-in-information
region (between 29-th and 33-rd stages) with the largest
temperature gradient, and (ii) no temperature measure-
ment is needed in the stripping section, as the bottom
compositions can be adequately estimated using just the
reduced model (without measurements). According to Fig-
ure 3, the C3 component has the largest contribution
to the temperature gradient in the richest-in-information
zone, meaning that the C3 component is an innovated
state candidate for a robustness-oriented GE with passive
structure (Pulis et al. (2006)).

Fig. 3. Reduced model-based temperature gradient and its
per-component contributions

3.3 Candidate estimation structures

According to the preceding developments, the two-effluent
composition estimation task for the six-component system
(2) can be performed using the reduced three-component
model with one temperature sensor located between 25-
th and 33-rd stages, with the C3 component as innovated
state in a robustness-oriented GE with passive structure
(Pulis et al. (2006)). To preclude unduly bottom-to-top
model and measurement error propagation, no measure-
ment in the stripping section is placed. To have a fa-
vorable balance between data assimilation and model-
measurement error propagation from the measurement to
distillate effluent composition estimate, a measurement
should be located in the tray interval between stages 29
and 33, and not in any of the two top trays (stages 35 and
36) as shown in Figure 1. Thus, the preceding considera-
tions lead to the following candidate estimation structure:
(i) no sensor in the stripping section, (ii) one sensor in the
enriching section between 29-th and 33-rd trays, and (iii)
the C3 composition as innovated state. These structural
conclusions are suggestive in the sense that: (i) candidate
sensor location and innovated C3 compositions around
the afore concluded candidates must be examined, and
(ii) the conclusive structural assessment will be performed
in the next section, on the basis of GE functioning. In
order to verify the estimator performance, some different
choices for the set of innovated states have been selected by
following the considerations above: these innovated state
sets will be illustrated and compared in Section 4.

4. STRUCTURE ASSESSMENT WITH ESTIMATOR
FUNCTIONING

Having as point of departure the candidate structures
identified in the preceding section, in this section the
estimation structure for effluent composition estimation
aims is assessed on the basis of the structure behavior with
a robustness-oriented GE with passive structure (Pulis
et al. (2006)). The role of the actual process will be played
by the six-component system (2), and the GE will be
implemented with the reduced three-component model (4).

4.1 Geometric estimator with passive innovation

Let us recall the adjustable-structure proportional-integral
(PI) GE with passive structure (Alvarez and López (1999);
Alvarez and Fernandez (2008)):

ˆ̇xI = fI(x̂, û) + Φ−1
xI
P (KP (yP − ŷ) + z)

ˆ̇xII = fII(x̂, û) ż = KI(yP − ŷ) ŷ = h(x̂)
(5)

where x̂, û, and ŷ are the estimates of x, u, and y,
xI ∈ RnI is the set of the innovated states, xII ∈
Rn−nI is the set of the non-innovated states, KP and
KI are respectively the proportional and integral gain
matrices. For this kind of estimator structures, if xI =

[cl
1
1

s1 . . . c
l
n1
1

s1 . . . c
l1m
sm . . . c

lnm
m

sm ]
T

, then KP , KI , ΦxI
, and P

assume the following form:

KP =

KP,s1

. . .
KP,sm

 KI =

KI,s1

. . .
KI,sm





ΦxI
=
[
∂T̂s1

∂ĉ
l11
s1

∣∣∣∣
ĉs1

. . .
∂T̂s1

∂ĉ
l
n1
1

s1

∣∣∣∣
ĉs1

. . .
∂T̂sm

∂ĉ
l1m
sm

∣∣∣∣
ĉsm

. . .
∂T̂sm

∂ĉl
nm
m

sm

∣∣∣∣
ĉsm

]

·

 1
. . .

1

 P =

 1 . . . 1
. . .

1 . . . 1


T

Note that: (i) the generic composition cl
j
i

si is innovated only
by using temperature at si-th stage; (ii) ni represents the
number of innovated components at si-th stage and the
condition

∑m
i=1 ni = nI holds; (iii) [xI xII z]

T ∈ Rn+m;
(iv) P is a matrix of 1s and 0s, where for every column
i ∈ {1, . . . ,m} there are ni 1s as shown above. When the
integral action state is eliminated, the proportional (P)
GE is obtained.

The robust convergence aspects and its connection with
the tuning of gains can be seen in Alvarez and Fernandez
(2008), and here it suffices to mention that: (i) the conver-
gence criterion is coupled with rather easy-to-apply tuning
guidelines, and (ii) the tuning scheme and guidelines apply
over all structures. In this way, one has the certainty that
the estimator functioning results are due to the structure
and not to the tuning scheme.

Next the GE tuning guidelines for the GE PI estimator
with passive structure are recalled. Consider an innovated

state c
lj
i

si : then, the corresponding temperature used in
order to estimate this composition is Tsi

and the tuning
parameters are:

KP,si
= 2ξsi

ωsi
KI,si

= ωsi

2 (6)
where ωsi and ξsi are respectively the characteristic fre-
quency and the damping factor of the estimator at si-
th stage. The characteristic frequency ωsi must be chosen
between 5 and 10 times faster than ωo,si (where ωo,si is
the natural characteristic frequency of composition at si-
th stage). Following conventional-like filter and control
behavior assessments, the estimator functioning will be
measured with the IAE index and the steady-state error.

As mentioned before, the estimation task is to infer the
effluent impurity compositions (i.e., C3 in the bottom and
IC4 in the top). Since the C3 in the reboiler is adequately
described by the model without measurement, only the
results of the IC4 distillate composition estimates will be
presented. Several simulations have been performed, but
for sakes of brevity only one of them is reported here.
To test the estimator over different structures, a column
transient has been induced by some step changes at the
reboiler duty (∆Q = +3% at t = 2 hrs and ∆Q = 0 at
t = 8 hrs, with respect to Q value of Table 1)

Two different measures have been employed: (i) the
steady-state error (7a), and (ii) the IAE index (7b)

ej
i,SS1 if ∆Q = 0 and ej

i,SS2 if ∆Q = +3% (7a)

IAE(ej
i ) =

∫
|ej

i |dt (7b)

where ej
i is the composition error for the component j

at i-th stage. There are two steady-state errors, since
two different steady-state conditions are present, as can
be seen from Figures 4, 5, and 6. For all the structures
considered, the estimator has been tuned with the tuning

guidelines sketched in (6), with ωsi
= 10ωo,si

and ξsi
= 3

for i = 1, . . . ,m.

4.2 Estimation with one innovated state

On the basis of the structural analysis performed in
Section 3, two single-innovated state cases have been
considered: xI = [cC3

29 ] and xI = [cC3
33 ].

The corresponding GE behavior results are presented in
Figure 4 and Table 3, showing that: (i) comparing with
the reduced model behavior, in both cases the estimate
error undergoes a considerable reduction by measurement
injection, and (ii) the case with cC3

33 -innovation yields a
slightly better behavior than with cC3

29 -innovation. This
result is consistent with the conclusion reached in Section
3, as 33-th stage has the largest stage-to-stage gradient
and is close to the top stage.

Fig. 4. IC4 distillate composition estimate with one inno-
vated state

4.3 Estimation with two innovated states

Now, let us find out whether the joint consideration of
the two previous cases leads to some estimator behavior
improvement, this is xI = [cC3

29 c
C3
33 ]T .

The corresponding GE behavior results are presented in
Figure 5 and Table 3, showing that there is not an
appreciable improvement over the estimation structures
with one innovated state discussed in the last subsection
(see Figure 4).

Fig. 5. IC4 distillate composition estimate with two inno-
vated states

4.4 Estimation with three innovated states

Finally, let us investigate if the effluent estimation behav-
ior can be improved by adding one innovated state to the
two-innovated state structure presented in Subsection 4.3,



this is xI = [cC3
29 c

C3
31 c

C3
33 ]T , with the incorporation of the

innovated state cC3
31 being motivated by the fact that 29-

th and 33-rd stages bracket the rich-in-information zone
of the enriching section. The corresponding GE behavior
results are presented in Figure 6 and Table 3, showing
that there is an appreciable improvement over the two-
innovated state estimation structure discussed in the last
subsection (see Figure 5).

Fig. 6. IC4 distillate composition with three innovated
states

Table 3. IAE values and steady-state errors
(the subscript T refers to the top stage)

eIC4
T,SS1 eIC4

T,SS2 IAE(eIC4
T )

Reduced model −0.0433 −0.0109 20.1124
xI = [cC3

29 ] −0.0092 −0.0064 5.9306
xI = [cC3

33 ] −0.0049 −0.0058 3.8622

xI = [cC3
29 cC3

33 ]
T −0.0052 −0.0054 3.8077

xI = [cC3
29 cC3

31 cC3
33 ]

T −0.0025 −0.0022 1.7871

4.5 Concluding remarks

The behavior measures of the four estimation structures
considered in this section are summarized in Table 3, show-
ing that: the best GE estimator behavior is obtained with
the three-innovated state structure, followed by the two-
innovated state structure, and by the two single-innovated
state structures. It must be pointed out that the steady-
state estimation error is smaller than 1% and therefore
comparable with typical measurement errors. These re-
sults are in agreement with the a priori structural assess-
ments drawn in Section 3. The IC4 distillate composition
estimation task can be effectively performed using: (i) a
three-component reduced model, (ii) one or more sensors
located between stages 29 and 33 in the enriching section,
and (iii) passive innovation for component C3.

5. CONCLUSIONS

The problem of jointly designing the estimation struc-
ture and algorithm to infer an effluent composition for a
six-component distillation column with temperature mea-
surement option has been resolved in a tractable man-
ner within a GE design framework in the light of the
staged column system characteristics. The design focused
on structural aspects: model reduction, sensor location,
and innovation mechanism. The methodology consisted
of: (i) one structural analysis step that yielded a few
candidate structures and (ii) a step with conclusive struc-
tural results on the basis of estimator behavior assessment.

The resulting GE (with 75 to 77 nonlinear ordinary dif-
ferential equations (ODEs), depending on the structure)
was considerably simpler than its EKF counterpart (with
2812 ODEs) and of tuning procedure (trial-and-error or
optimization for the EKF and well defined for the GE).

Currently, work is underway to apply the proposed ap-
proach to estimate the pollutant contents in the outlet
streams of an actual industrial column.
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