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Abstract: Modern process plants are highly integrated and as a result, decentralized PID control loops 
are often strongly interactive. The currently used sequential tuning approach is not only time consuming, 
but does also not achieve optimal performance of the inherently multivariable control system. This paper 
describes a method and a software tool which allows a control engineer to calculate optimal PID 
controller settings for multiloop systems. It is based on the identification of a state space model of the 
multivariable system, and it uses constrained nonlinear optimization techniques to find the controller 
parameters. The solution is tailored to the specific control system and PID algorithm to be used. The 
methodology has been successfully applied in several industrial advanced control projects. The tuning 
results which have been achieved for interacting PID control loops in the stabilizing section of an 
industrial Gasoline Treatment Unit at SABIC Petrochemicals are presented. 
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1. INTRODUCTION 

One of the most important challenges facing the process 
industry today is optimizing the operation of complex units, 
without compromising the safety and integrity of the process 
equipment. Process complexity has increased significantly 
over the past two decades due to increased level of heat 
integration and use of recycle streams. In addition, the need 
for increased process flexibility to deal with changing raw 
materials and alternate energy sources, as well as the need to 
adapt quickly to fluctuating throughput and quality targets, 
often means that the process dynamics will vary significantly 
over time and with operating point.  The basic control layer  
of process plants almost always consists of a large number of 
decentralized SISO PID controllers, although this approach is 
intrinsically inadequate for multivariable processes.  Due to 
the situation described above, the interactions between these 
controllers are becoming more important, and tuning these 
control loops for good performance and adequate robustness 
is a challenging task.  

The industrial practice of PID controller tuning is still 
dominated by manual trial-and-error tuning. If tuning rules 
are used at all, it’s the “classical” ones like Ziegler-Nichols or 
Chien-Hrones-Reswick which are based on simplified first 
order plus dead time (FOPDT) process models and do not 
consider stability robustness issues, therefore often being not 
adequate in modern process units with more complex 
dynamics and nonlinearity. In addition, many tuning rules 
assume that all PID controller equations work as described in 

the textbooks, when in fact there is substantial variation 
between the different vendors. In contrast, different PID 
controller structures result due to use of either the parallel or 
the serial form, using the control error or the PV by the 
Proportional (P) and Derivative (D) terms, and many other 
quirks like alternative implementations of the derivative 
filters. Tuning SISO PID controllers in a multivariable 
environment is usually done in a time-consuming sequential 
and iterative way, starting with the most important loops, and 
heuristic detuning in case the interactions are significant.   

For a long time, vendors of automation systems such as 
Distributed Control Systems (DCS) and Programmable Logic 
Controllers (PLC) have been offering PID self-tuning 
functionality (tuning on demand). Unfortunately, they have 
only found limited application. This is also true for model 
based PID controller tuning software provided by the same or 
third-party vendors. Moreover, in most cases these tools are 
restricted to single loop tuning applications, and do not 
support multi-loop tuning (Li et al., 2006, Espinosa Oviedo et 
al., 2006 and Zhu, 2004). 

The design of interacting PID controllers in a multivariable 
environment is not a new topic in the process control 
literature. At least three research directions can be identified: 
(1) reduction of controller interactions by proper MV-CV 
pairing, (2) design of decoupling networks and (3) 
consideration of MIMO interactions in decentralized 
controller tuning. In this paper, only the third direction is 
relevant. Several methods have been developed, Luyben’s 



 
 

     

 

BLT method being the most popular one (Monica et al., 
1988). Here, the individual PI loops are first tuned by the 
Ziegler-Nichols rules independently. Then, a detuning factor 
is calculated which assures a certain stability margin for the 
controlled MIMO system. All individual controller gains are 
divided by this factor, and the reset times are multiplied by it. 
The price to be paid for the reduced interaction is a more 
sluggish behaviour of PI loops. Other methods include the 
sequential loop closing approach (Hovd and Skogestad, 
1994), the independent design method (Hovd and Skogestad, 
1993) and the multivariable generalization of the relay-
feedback self-tuning method (Halevi et al. 1997). For a 
discussion of these methods the reader is referred to (Chen 
and Seborg, 2003). 

This paper introduces a new method and a software tool 
“AptiTune™” for the calculation of optimum PID controller 
settings in a multivariable system (multivariable loop tuning). 
The method consists of several steps. First, a set of Finite 
Impulse Response (FIR) models of the open-loop MIMO 
plant is being identified and approximated by a reduced-order 
state space model. In a second step, optimal parameters for 
the decentralized PID controllers are calculated using 
constrained optimization. Finally, the setpoint tracking, 
disturbance rejection and noise attenuation behaviour of the 
controlled system is simulated.  

It was the aim of the development to come up with a software 
tool which is based on recent identification and control 
developments, but which does not require in-depth 
knowledge of identification and control theory by the average 
user. Furthermore, the optimization solution is tailored to the 
specific target automation system, e.g. the particular DCS or 
PLC which is used for control purposes. 

The remainder of the paper is organized as follows: In section 
2, the identification and optimal tuning methods will be 
described together with the “AptiTune™” software tool. 
Section 3 presents some results of multiloop tuning in the 
stabilizer section of an industrial Gasoline Treatment Unit 
(GTU). The retuning of the PID controllers was one of the 
first steps of an advanced control project, which also included 
the design and commisioning of an MPC controller.   

2. METHOD AND TOOL FOR MULTILOOP TUNING 

2.1  Identification of the MIMO process model 

The first step of model based multiloop tuning is to develop a 
dynamic model of the multivariable process with n inputs and 
n outputs, the outputs (ui) and process variables (yi) of the 
PID controllers shown in Fig. 1. 

Our preferred approach is to switch all PID controllers to be 
tuned into manual mode whenever possible and to perform a 
series of output steps of different duration and amplitude. 
According to our experience, four to six steps with duration 
varying between 10% and 100% of the desired closed-loop 
settling time are usually sufficient. If a test signal generator is 
available, PRBS (pseudo-random binary sequence) or GBN  

 

Fig. 1: Decentralized multiloop PID control system 

(generalized binary noise), then an automated test may be 
used as an alternative. Both types of plant tests can be 
performed in sequential or in time-saving simultanous mode.  

If one or more PID controllers cannot be switched to manual 
mode, then the loop can be kept in automatic mode and 
multiple setpoint steps can be made.  The Projection Method 
described in (Forsell and Ljung, 2000) can then be used. 

After pre-processing the raw test data (detection/rejection of 
outliers, filtering, decimation, cutting out periods of bad data 
etc.), the parameters of a MIMO FIR model 

(0), (1), (2), , ( ) , 1...ij ij ij ij ij Mg g g g g n i j n = = 
G …  (1) 

are estimated by least squares regression. The user should 
specify a-priori knowledge such as zero gain, known dead 
time or integrating behaviour of subprocesses. Although FIR 
models are estimated, the results are presented as Finite Step 
Response (FSR) models for easier visualization and 
understanding. The “AptiTune™” software tool also supports 
the import of FSR models created by identification tools from 
MPC packages, but also allows the user to specify a transfer 
function matrix. 

In the next step, the MIMO FIR model is approximated by a 
linear state-space model of the form 

�x(t) = A x(t)+ Bu(t)
y(t) = C x(t)

    (2) 

This approximation is not based on the raw or preprocessed 
plant test data, but on a model-to-model fit. To remove noise 
and cycles from the FIR model, it can first be smoothed using 
a central average filter. The state-space model is constructed 
using the singular value decomposition (SVD) model 
reduction technique (Maciejowski, 1989). While creating the 
state-space model, the diagonal model curves are given more 
preference than the off-diagonal models. As a result, diagonal 
models normally have higher order than the off-diagonal ones 
and consequently fit the original FIR model curves more 
accurately. The step responses calculated based on the stat-
space models are graphically displayed. 

If it is possible to do a closed-loop step test (or if historical 
data contain a clear SP step), a practical way of validating the 
process model is to simulate the closed loop behaviour of the 
control system with the actual PID controller parameters 



 
 

     

 

currently entered on the DCS , and to compare the simulation 
results with plant data.  If the observed responses are similar 
to the simulated responses, then we can conclude that the 
model is sufficiently accurate for loop tuning purposes. 

2.2  Calculation of optimal PID controller parameters 

The PID controller parameters (controller gains ,c iK , reset 
times ,r iT  and derivative time constants ,d iT ) are calculated 
solving numerically the nonlinear constrained optimization 
problem 

, ,
min

( , , ) 0 1... , 1...
Pi N i V iK T T

j P i N i V i

J

g K T T i n j m≤ = =
  (3) 

where J  denotes the objective function and jg  are 
constraints. The objective function J  is a weighted sum of 
three terms 1 2 3J J J J= + +α β  which assess different 
aspects of the control loop performance. The first part 

1 0
( ) ( )fT

rJ y t y t dt= −∫  refers to the Integrated Absolute 

Error (IAE) criterion for setpoint tracking. Here, the error is 
defined as the difference between the PV and a user-defined 
first order reference trajectory ( )ry t  connecting the actual 
PV and the setpoint. By specifying the time constant of the 
trajectory, the user can affect the speed of the response to 
setpoint changes. The second part 2 0

( ) ( )fT
J w t y t dt= −∫  

denotes the IAE for an input step disturbance. Finally, the 
third term 3 0

( ) ( )fT
J u t t= ∆∫  reflects the control effort. By 

setting the weighting coefficients α and β , the user can 
balance a compromise between the different performance 
objectives. Another design parameter allows the user to 
weight the performance of the n  SISO control loops against 
the necessary degree of decoupling between them. 

For each control loop, the user can specify one or more 
inequality constraints 0jg ≤  from the following list: 
maximum OP deviation after setpoint changes, maximum 
overshoot, minimum damping ratio, maximal noise 
amplification, process gain and deadtime margins, 
maximum/minimum limits of the controller parameters. For 
level buffering controllers, the maximum setpoint deviation 
and the minimum return time after a level disturbance can be 
specified. By careful specification of the constraints, the user 
can tailor the tuning to process-specific requirements.  

For starting the numerical optimization, initial controller 
parameter values have to be selected. For this purpose, the 
user can choose to use the actual DCS values or values 
calculated by the Cohen-Coon tuning rule (for individual 
controller tuning assuming a SISO model). The degree of 
difficulty of the nonlinear constrained optimization problem 
depends on the number of controllers involved, the order of 
the process model, and the number and nature of the 
inequality constraints. In general, non-convexity and local 
minima can occur. Therefore, several search algorithms have 

been implemented, including a brute force global search in 
the entire parameter space, a genetic algorithm (both intended 
for initialization), and a generalized gradient algorithm 
(Vlachos et al., 2000). 

In contrast to some PID controller tuning software available 
mainly for teaching and training purposes, the “AptiTune™”  
tool not only calculates “generic” PID controller parameters, 
but parameters for a specific realization of the PID controller 
equation for specific commercial control system hardware. 
The user can select between different control algorithms of 
widespread DCS systems such as Honeywell, Emerson 
DeltaV, Foxboro I/A, ABB and several others. For example, 
six different versions of the PID algorithms are available for 
the Emerson DCS, for which the optimization results may be 
quite different. Optimal controller parameters can of course 
also be calculated for P, I only and PI controllers. 

After the optimizer has converged and optimal controller 
parameters have been found, the design process will be 
finished by simulation of the dynamic behaviour of the 
control system. It is useful to study different scenarios: 
setpoint tracking, input disturbance rejection, and noise 
attenuation. The “integrity” of the controlled MIMO system 
should be studied as well, i.e. the behaviour of the controlled 
system if one or more controllers are in manual mode, or if 
components like final actuators fail. Finally, the robustness 
against plant-model mismatch should be evaluated. For this 
purpose, robustness plots such as in Fig. 2 are helpful. It 
shows the purple stability limit in a process gain ratio/dead 
time graph, and the stability region for the minimum required 
combined gain and deadtime margins as the red polygon (left 
hand plot, lower left hand corner).  
 

 

Fig. 2: Robustness plot 

3. INDUSTRIAL EXAMPLE 

The method and software tool described above have been 
used successfully in a number of advanced control projects. 
A good example is the stabilizing section of a GTU process, 
where improving the PID controller tuning was a prerequisite 
for successful MPC design and implementation. 

The Process and Instrumentation Diagram for the GTU 
process is shown in Fig. 3. Although the overall system is 
(8x8), it was possible to decompose it into a (2x2) system on



 
 

     

 

 
Fig. 3: P&I diagram of the GTU process 

the E20 column and (6x6) for the rest of the unit. Due to 
limited space, the results for the (2x2) system are presented. 

The objective of the E20 stabilizer column (on the right hand 
side of the P&ID) is to remove hydrogen and methane 
dissolved in the petrol (mostly C5) stream.  The column is 
essentially a degassing drum with trays for improved 
separation.  The current PID control scheme is somewhat 
unconventional in that the PID loop pairing is the “wrong” 
way round:   

• A tray temperature close to the top of the column is 
controlled (even though the product specification is 
on the bottoms stream) by using the overhead vent 
valve for temperature control.  There is no reflux 
drum, and feed comes in close to the top, providing 
the internal reflux stream.    

• The column pressure controller cascades to the 
steam flow SP on the reboiler. 

One reason for the unconventional PID loop pairing is that 
controlling pressure with the reboiler duty ensures that the 
pressure is less likely to go high and lift the safety valve. If 
the PID was paired the other way around, there is a chance 
for the pressure to go high if the overhead valve saturates 
before the column runs out of reboiler duty. Since the degree 
of interaction between the two loops is quite strong, the 
pressure loop will go unstable if either the feed drum LIC or 
the TIC approached unstable (even though there is nothing 
wrong with the tuning of the PIC).  The drum level controller 
sets the valve position directly without the benefit of a 
cascaded flow controller.  Any change in either upstream or 
downstream pressure affect the feed flow PV, which then 
affects the temperature and pressure in the E20 column.  Due 
to the heavy coupling between the three loops, it is not really 

feasible to tune one loop without due consideration of the 
remaining two control loops.   

Best results were obtained by step testing condensate flow 
setpoint and vent valve, fitting a 2x2 model and then 
calculating moderately fast but well damped tuning that takes 
the strong off-diagonal interaction into account.  We tuned it 
for fast SP tracking but high robustness margins.  The 
standard deviations of the two PVs are now substantially 
better than before and that both loops are tracking SP well. 

The gain for the tray temperature vs. vent valve varies very 
substantially depending on operating point (from almost zero 
when the top of the column is perfectly pure, to almost 
infinite when the column goes rapidly off-spec).  This value 
represents the best model we could identify by keeping the 
tray temperature in the correct range with the column 
pressure at the nominal operating point.  The dynamic model 
is shown in Fig. 4. 
  

 
  

Fig. 4: Step responses of the dynamic model 
(Legend: TC.PV=Tray 6 Temperature; PC=Column Pressure;  TC.OP=Vent 

Valve; PC.OP=Steam Flow SP) 



 
 

     

 

Note that the total state-space model order is 18.  Fig. 5 
shows the optimized PV responses for a step change in both 
SPs:  

 
  

Fig. 5: Response of the 2x2 system to SP step changes 
(Legend: PV is shown in red, OP in blue) 

Note that PV overshoot is very low and that damping is 
exceptionally good.  The OP value for the vent has a peak 
value that is almost the same as the steady state value, and the 
loop has about the same rise time in closed loop as compared 
to open loop (a speed-up factor of about 1x).  The pressure 
loop is about 2x faster in closed loop compared to open loop.  
The load disturbance response is shown in Fig. 6: 

 
  

Fig. 6: Response of the 2x2 system to load disturbances 

Note that the PV and OP responses have very good damping 
with peak OP values that are very similar to the steady state 
values.  This will ensure exceptionally good damping on the 
actual process unit even when the process gain varies 
significantly.  Gain and dead time (stability) margins are very 
good, see Fig. 7: 

 
  

Fig. 7: Robustness plot (gain and deadtime stability margins)  

A sensitivity analysis on the tray temperature loop shows that 
the gain of the process will have to increase by 3x AND the 
dead time will have to increase by another 12 seconds before 
the damping of the loops is unacceptable.  Instability sets in 
at a process gain increase of more than 20x.  A dead time 
error of more than 2 minutes is needed to reach instability, 
and there is no process mechanism for this to occur while the 
TIC is in the active range.  These margins are exceptionally 
safe. 

In order to compare the performance of the loops before and 
after retuning, we collected a week of normal operating data 
before we arrived on site, and one week of normal operating 
data after the re-tuning work was concluded.  From these 
large data sets, we then calculated histograms to show the 
distribution of the control error (SP-PV).  For process 
reasons, we wanted the loops to be robust and to be able to 
withstand changes in process dynamics.  As a result, some 
loops were intentionally slowed down, and of course, their 
probability distributions will be wider than before.  However, 
this compromise is all for a good cause as it will ensure that 
the loops remain operational for the years to come. 

The performance of the pressure control loop PCA9876 is 
compared in Fig. 8: 
  

 
 

 
  

Fig. 8: Control error histograms for PCA9876 before and 
after retuning 
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It is clear from the two histograms shown above that the 
variability in the PV has reduced by about a factor of 4x.  
This is a big improvement in performance, yet this could be 
accomplished without compromising the robustness 
characteristics of the loop.  The pink trace shows the best fit 
for a normal (Gaussian) distribution to the data, assuming a 
zero mean value.  The estimated standard deviation σ reduced 
from 1.1 to 0.28. 

The histograms for temperature loop TC9854 are compared 
in Fig. 9: 

 

 

 
  

Fig. 9: Control error histograms for TC9854 before and after 
retuning 

The standard deviation reduced from 1.3 down to 0.5, so by a 
factor of almost 3x. To be honest, these good results are 
partly due to the very slow initial tuning of some loops we 
found at the beginning of the project. 

4. CONCLUSIONS 

The following conclusions can be made.  A MIMO model-
based approach can be used to successfully tune multiple PID 
loops that interact strongly.  If the open loop model is 
moderately accurate, then “one-shot” tuning is achievable 
and the simulated and observed OP and PV responses will be 

almost identical.  The use of sufficiently large gain and dead 
time robustness margins ensures that the loop will remain 
stable and well damped even if the process is strongly 
nonlinear.  This also helps to protect us against inaccurate 
model identification results. The ability to impose hard 
constraints on damping ratio, maximum PV overshoot, and 
the maximum OP value means we can ensure that the final 
design is safe from a process point of view.  PID tuning rules 
cannot achieve this. 
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