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Abstract: Disturbances in the form of oscillations are usually originated in process plants due to various
faults such as sensor faults, valve faults, process faults and controller tuning faults. Many of these faults
can be represented as nonlinearities. Faults in the form of nonlinearities may produce oscillations with
a fundamental frequency and its harmonics. This study presents a novel method based on the estimated
frequencies, amplitudes and phases of the fundamental oscillation and its harmonics to troubleshoot
or isolate the root-cause of plantwide or unit-wide disturbances. Once the root cause is known, the
oscillations can be eliminated, and the process can be operated more economically and profitably. The
successful application of the method has been demonstrated both on simulated and industrial data sets.
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1. INTRODUCTION

Modern process plants are designed based on the concept of
energy and material integration in order to minimize the energy
requirements and pollution levels. Large process plants, such
as oil refineries, power plants and pulp mills, are complex in-
tegrated systems, containing thousands of measurements, hun-
dreds of controllers and tens of recycle streams. The inte-
gration of energy and material flow, required for efficiency,
results in the spread of fluctuations throughout a plant. The
fluctuations force the plant to be operated further from the
economic optimum that would otherwise be possible, and thus
cause decreased efficiency, lost production and in some cases
increased risk. Because of the scale of operation of process
plants, a small percentage decrease in productivity has large
financial consequences. It can be extremely difficult to pinpoint
the cause of these fluctuations. In the most difficult case, the
fluctuations are in the form of oscillations. The problem is that
oscillations have no defined beginning and end, and so the cause
cannot be isolated by standard techniques. Finding the cause
of oscillations is a tedious, labor-intensive, often fruitless task.
Once the cause is understood, removal of the oscillations is
usually straightforward. Therefore, it is important to detect and
diagnose the causes of oscillations in a chemical process.

Most of the available techniques for oscillation detection focus
on a loop by loop analysis (Hagglund, 1995). Thornhill and
co-workers have presented some detection tools that consider
the plant-wide nature of oscillations (Thornhill et al., 2003). To
detect oscillations in process measurements and identify signals
with common oscillatory behavior, use of spectral principal
component analysis (Thornhill et al., 2002) or autocorrelation
functions (acf) (Thornhill et al., 2003) is suggested. Xia and
Howell (2003) have proposed a technique that takes into ac-
count the interactions between control loops. Thornhill and
Horch (2007) provided an overview of the advances and new
direction for solving plantwide oscillation problems. A recent
book (Choudhury et al., 2008) provides two chapters on the

state of the art technologies for plantwide oscillation detection
and diagnosis. This paper demonstrates a method for detecting
plantwide oscillations and isolating the root causes of such
oscillations.

2. WHAT ARE PLANTWIDE OSCILLATIONS?

When one or more oscillations is generated somewhere in
the plant and propagates throughout a whole plant or some
units of the plant, such oscillations are termed as plantwide
or unitwide oscillations. Oscillation may propagate to many
units of the process plants because of the tight heat and mass
integration in the plant as well as the presence of recycle
streams in the plant. Figure 1 shows an example of a plant-
wide oscillation problem. The top panel shows the time trends
of 37 variables representing a plant-wide oscillation problem in
a refinery (courtesy of South-East Asia Refinery). The bottom
panel shows the power spectra of these variables. A common
peak in the power spectra plot indicates the presence of a
common disturbance or oscillation at a frequency of 0.06 or
approximately 17 samples/cycle in many of these variables. The
presence of such plant-wide oscillations takes a huge toll from
the overall plant economy.

3. DETECTION OF PLANTWIDE OSCILLATIONS

Detection of plantwide oscillation is relatively an easy problem.
Often times the plant operators notice some oscillations in the
plant, which leads to a deeper investigation of the problem and
may cause the invention of a plantwide oscillation of a larger
nature. Over the last few years, some studies were carried out
to detect plantwide oscillations (Tangirala et al., 2005; Jiang
et al., 2006) and to group the similar oscillations together. The
following are the brief description of some of these techniques
that can be used for detecting plant-wide oscillations.



(a) Time Trends

(b) Power Spectra

Fig. 1. Time trends and their power spectra for the South-East
Asia Refinery data set

3.1 High Density Plot - An Excellent Visualisation Tool

This plot describes time series data and their spectra in a nice
compact form in one plot. From this plot, one can easily vi-
sualize the nature of the data and the presence of common os-
cillation(s) in the data. However, this method is not automated
and cannot provide a list of the commonly oscillating variables.
Figure 1 is an example of a high density plot.

3.2 Power Spectral Correlation Map (PSCMAP)

The power spectral correlation index (PSCI) is defined as the
correlation between the power spectra of two different measure-
ments. It is a measure of the similarity of spectral shapes, i.e.,

measure of the commonness of frequencies of oscillations. The
PSCI for any two spectra |Xi(ω)|2 and |Xj(ω)|2 is calculated as

PSCI = correlation(|Xi(ω)|2, |Xj(ω)|2)=
∑ωk

|Xi(ωk)|2|Xj(ωk)|2√|Xi(ωk)|4|Xj(ωk)|4
(1)

The PSCI always lies between 0 and 1. In the detection of
plantwide oscillations, the objective is to collect variables with
similar oscillatory behaviour.

For multivariate processes, the PSCI is a matrix of size m ×
m, where m is the number of measured variables. In order to
provide an effective interpretation of the PSCI, the matrix is
plotted as a colour map, which is termed as the power spectral
correlation map. An important aspect of this colour map is its
ability to automatically re-arrange and group variables together
with similar shapes, i.e., variables, which oscillate at a common
frequency and have therefore similar values of PSCI. For a
detailed discussion on this method, refer to (Tangirala et al.,
2005).

3.3 Spectral Envelope Method

In (Jiang et al., 2007), the spectral envelope method has been
used to troubleshoot plantwide oscillations.

Let X is a data matrix of dimension n × m, where n is the
number of samples and m is the number of variables. If the
covariance matrix of X is VX and the power spectral density
(PSD) matrix of X is PX(ω), then the spectral envelope of X is
defined as:

λ (ω) � sup
β �=0

{β ∗PX(ω)β
β ∗VXβ

} (2)

where ω represents frequency and is measured in cycles per
unit time, for −1/2 < ω ≤ 1/2, the λ (ω) is the spectral
envelope at the frequency ω , β (ω) is the optimal scaling
vector that maximizes the power (or variance) at the frequency
ω , the ‘*’ represents conjugate transpose. The quantity λ (ω)
represents the largest portion of the power (or variance) that
can be obtained at frequency ω from a scaled series. Jiang et. al
(2007) provided a detailed description of this method.

4. DIAGNOSIS TECHNIQUES FOR PLANTWIDE
OSCILLATIONS

In a control loop, oscillations arises due to the following pri-
mary reasons:

(1) Presence of a poorly tuned controller
(2) An oscillatory external disturbance
(3) Presence of a faulty valve, e.g., a sticky valve or saturated

valve.
(4) A highly nonlinear process
(5) Model-plant mismatch for an active MPC controller.

As described, the detection of plant-wide oscillation is rela-
tively an easy problem compared to the diagnosis of its root-
cause. Recently a number of papers appeared in the literature
describing a few techniques to perform root-cause diagnosis
of plant-wide oscillation (Thornhill et al., 2001; Thornhill and
Horch, 2007; Choudhury et al., 2007; Jiang et al., 2007; Zang
and Howell, 2007; Choudhury et al., 2008).



Oscillations originated in process plants due to various faults
such as sensor faults and valve faults may be represented
as nonlinearities. Faults in the form of nonlinearity produce
oscillations with a fundamental frequency and its harmonics. It
is well known that the chemical processes are low-pass filters in
nature. Therefore, when a fault propagates away from its origin
or source, the higher order harmonics get filtered out.

4.1 Oscillation and Harmonics

Sinusoidal fidelity states that if a sinusoidal input passes
through a linear system, the output of the linear system is a
sinusoid with the same frequency, but with a different mag-
nitude and phase. A linear system does not produce any new
frequency. On the other hand, when a sinusoidal signal with
a certain frequency passes through various types of nonlinear
systems or functions such as a square function, an exponen-
tial function, a logarithmic function and a square-root func-
tion, nonlinear systems may generate harmonics in addition
to the original fundamental frequency of the input sinusoid.
Therefore, nonlinearity induced oscillatory signals generally
contain a fundamental frequency and its harmonics. Harmonics
are oscillations whose frequencies are integer multiples of the
fundamental frequency.

4.2 Fourier Series and Harmonics

Fourier series states that any signal can be represented as
a summation of sinusoids. Therefore, any time series, y(t),
where, t ∈ ℜ can be represented as

y(t) =
∞

∑
i=0

Ai cos(λi t +φi) (3)

For a signal containing harmonics, Equation 3 can be rewritten
as:

y(t) =
M

∑
i=0

Ai cos(i∗λ t +φi)+ ε(t) (4)

where λ is the fundamental frequency. Each term of equation 4
contains three unknowns namely, amplitude, frequency and
phase. The basic idea is to estimate the amplitudes, frequencies
and phases for each term of equation 4 for any time series and
then examine the relationships among the frequencies to find
whether they are harmonically related.

From the experience of the author, for useful application of the
harmonic analysis of chemical process data, it suffices to use
M = 5.

4.3 Total Harmonic Content (T HC)

A new index called Total Harmonic Content (T HC) can be
defined as:

T HC = n∗WHM (5)

where n is the number of harmonics found and WHM is the
Weighted Harmonic Mean. WHM is defined as

WHM = ∑M
i=1 wi

∑M
i=1

wi
Ai

(6)

where wi is weights and is defined as wi = i/∑M
i=1 i so that the

summation of the weights are equal to 1 and the weights for
the higher harmonics are large. More weights are given to the
higher harmonics because due to the low-pass filtering effect

of the chemical processes the higher harmonics get filtered out
gradually as the signal propagates away from the source or the
root cause.

For plant-wide oscillations, the amplitudes, frequencies and
phases of first five term of Equation 4 are estimated. For all
tags or variables which have the same fundamental frequency
are identified and the Total Harmonic Contents (T HC) are
calculated using Equation 5. After calculating the T HCs, the
variables are ranked according to the descending order of T HC.
The variable with the highest T HC is likely to be the root
cause. Plant information such as Piping and Instrumentation
(P&I) diagrams, Process Flow Diagrams (PFD) and operators’
knowledge should be utilised in conjunction with the informa-
tion provided by T HC to confirm the root cause. The chance
of being right first time is high. However, if the variables with
the maximum value of T HC is not the root cause, the variable
with the second highest value of T HC should be investigated
as a root cause. Thus maintenance effort should be started from
variable with the maximum value of T HC to the variables in
the descending order of T HC.

Thornhill et al. (2001) described a similar method using a
distortion factor, which was defined as the ratio of the total
power of the signal except the power at the fundamental fre-
quency to the power of the fundamental frequency. They used
power spectrum to estimate the distortion factor. The method
was successful to a limited extent because the power spectrum
is heavily affected by the signal noise. On the other hand, the
method described here uses only the amplitudes of the harmon-
ics and the fundamental frequency, therefore the T HC is not
influenced by the signal noise except some small contamination
occurs during the frequency and amplitude estimation.

5. SIMULATION EXAMPLE

This simulation example describes a hypothetical process
where a nonlinear function, a square function, followed by
some linear filters are present. The simulink block diagram
is shown in figure 2. The process was excited by a sinusoid

Fig. 2. Simulink block diagram for simple oscillation propaga-
tion

with frequency 0.25 rad/sec. Random noise with variance 0.05
was added to the sinusoid. The simulated time series data with
their power spectra are shown in Figure 3. From the power
spectra, it is hard to see the harmonics generated by the square
function because the fundamental frequency has high power. It
is interesting to note that for tags 4, 5 and 6, a low frequency os-
cillation has been developed due to the low pass filtering of the
random noise by the process. The fundamental oscillation and
its harmonic are gradually filtered out as the signal propagates
through the system.



Fig. 3. Simulated data and their power spectra

Table I shows the harmonic analysis of the simulated data.
The algorithm correctly identifies the presence of sinusoids in
the signal. Five sinusoids are estimated for each signal. For
the first signal (tag 1), the magnitude of the first sinusoid is
much larger (more than 50 times) than the other sinusoids.
The other sinusoids came into play due to the addition of
random noise which has power in all frequencies. Research is
undergoing to formulate a statistical hypothesis test to detect
the presence of true sinusoids. The current algorithm correctly
estimates the frequency of the main sinusoid as 0.25 rad/sec.
Two dominant sinusoids with frequencies 0.25 and 0.5 rad/sec
are estimated for tag 2. For tag 3, the sinusoid with frequency
0.5 rad/sec is present but its power has been decreased because
of its attenuation by the first order filter. For tag 4, 5 and 6,
the fundamental frequency sinusoid (0.25 rad/sec) has become
gradually weak and has been masked with the noise, as evident
from the estimated magnitudes shown in the table. The Total
Harmonic Content (THC) was calculated for each tag where
oscillation with fundamental frequency and its harmonic are
found. The maximum T HC corresponds to tag 2 indicating the
source or root-cause of the propagated oscillation.

6. CASE STUDIES

6.1 Simulation Example - A Non-Linear Dynamic Vinyl Acetate
Process

This example describes a simulation case study for root-cause
diagnosis of plantwide oscillations using a non-linear dynamic
model of a Vinyl Acetate process. The nonlinear dynamic
model of the Vinyl Acetate process is published by (Chen et
al., 2003) and is freely available from the authors’ website.
Figure 4 shows a simplified schematic of the Vinyl Acetate
Process. The process model contains 246 state variables, 26
manipulated variables and 43 measurements. The process takes
approximately 300 minutes time to reach steady state. For
details, refer to (Chen et al., 2003).

After the process reached steady state, a 5% stiction (S = 5,
J = 2) in the manipulated variable corresponding to the cooling
water flow rate for the separator jacket temperature cooling
valve was introduced using the stiction model developed in
(Choudhury et al., 2005). Simulation data set consisted of 1000
minutes of data with a sampling time of 15 seconds containing
a total of 4000 observations for each variable. The last 1024
data points were used in this analysis in order to avoid transient
behaviour due to the sudden introduction of stiction. Figure 5
shows the time trends and power spectra of the manipulated
variables of the Vinyl Acetate process. The power spectra
show that the variables 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 14, 19,
21, 22 and 23 are oscillating with a common oscillation at

Fig. 4. Schematic of the Vinyl Acetate Process

a normalized frequency of 0.0505. Total Harmonic Content
(T HC) was calculated for these variables. Figure 6 shows the
calculated T HC values against the variable or tag number. The
maximum T HC corresponds to the tag 9 correctly indicating
the root-cause of the plantwide oscillation because stiction was
introduced in this variable during simulation.
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Fig. 6. THC values for the Vinyl Acetate Process Variables
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Fig. 7. Total Harmonic Contents (THC) Results for SEA data
sets

6.2 An Industrial Example - Application to a Refinery Data Set

The proposed method was applied to a benchmark industrial
data set for plantwide oscillations study appeared in the liter-
ature such as (Tangirala et al., 2007; Tangirala et al., 2005;
Thornhill et al., 2001). The data set, courtesy of a SE Asian
Refinery, consists of 512 samples of 37 measurements sampled
at 1 min interval. It comprises measurements of temperature,
flow, pressure and level loop along with some composition mea-
surements. The time trends of the controller errors are shown in
Figure 1(a) and the corresponding power spectra are shown in
Figure 1(b). From these figures or using the technique of power
spectral correlation map (PSCMAP) described in (Tangirala et
al., 2005), it can be found that the tags 2, 3, 4, 8, 9, 10, 11,
13, 15, 16, 17, 19, 20, 24, 25, 28, 33 and 34 are oscillating to-
gether with a common frequency of 0.0605 or 17 samples/cycle
approximately. All data corresponding to the variables with the
common frequency were first normalized so that they had zero-
mean and unit variance. Then the amplitudes, frequencies and
phases for first five sinusoids were estimated and T HC were
calculated for these variables. The calculated T HC values are
plotted against the tag number in Figure 7. The highest T HC
value corresponds to the tag no. 34, which is the first candidate
for the possible root-cause of this plantwide oscillation. In
real plant investigation if this tag is not found to be the root
cause, then the tag corresponding to next highest value of T HC
should be investigated. For this case, earlier studies (Thornhill
et al., 2001; Tangirala et al., 2005; Tangirala et al., 2007) found
tag 34 as the root-cause. Therefore, the proposed T HC index
correctly detected the root-cause of this plantwide oscillations.

7. CONCLUSIONS AND FUTURE WORKS

This study describes a method to troubleshoot plantwide os-
cillation using harmonic information present in the signal. The
amplitudes, frequencies and phases of the fundamental signal
component and its harmonics are estimated and used for the di-
agnosis of the root-cause of plantwide oscillation. A new index
called Total Harmonic Contents (T HC) has been defined and
used for isolating the root-cause. The method can be automated
to facilitate troubleshooting of plantwide oscillation.
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