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Abstract: This paper studies different decomposition approaches for real-time optimization
of process systems with a decentralized structure where the idea is to improve computational
efficiency and transparency of a solution. The contribution lies in the application and assessment
of the Dantzig-Wolfe method which allows us to efficiently decompose a real-time optimization
problem into parts. Furthermore, the nonlinear system is modeled by piecewise linear models
with the added benefit that error bounds on the solution can be computed.
The merits of the method are studied by applying it to a semi-realistic model of the Troll west
oil rim, a petroleum asset with severe production optimization challenges due to rate dependent
gas-coning wells. This study indicates that the Dantzig-Wolfe approach offers an interesting and
robust option for complex production systems. Moreover, the method compares favourable with
earlier results using Lagrangian relaxation which again was favourable compared to a global
approach.
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1. INTRODUCTION

Development of a petroleum field asset requires planning
on multiple horizons. On a life-cycle horizon, strategic de-
cisions are made on field development such as the choice of
technology and export options, and investment and recov-
ery strategies. For offshore assets the choice of technology
may include subsea solutions, and the issue of processing
the reservoir fluid offshore or onshore (Nygreen et al.,
1998). On a medium time horizon, typically three months
to two years, production targets are decided. Depending
on the life cycle of an asset, decisions may also involve a
drilling program. During for instance the green field stage,
it is important to plan, drill and commision new wells to
reach some pre-defined plateau rate as soon as possible. A
reservoir simulator, containing anything between 100.000
and 1, 000, 000 states, is usually an important planning
tool on the medium time horizon. A reservoir simulator
will be quite complex if the geology is complex, due to
heteregeneities like faults and shale layers, to represent
flow patterns accurately.

On a shorter time horizon, typically days to weeks, pro-
duction optimization where both the sub-surface part, like
the reservoir and wells, and the surface part like the man-
ifolds, pipelines and downstream production equipment, is
taken into account is important. This is commonly called
the real-time production optimization (RTPO) problem.
Production may be constrained by reservoir conditions
such as coning effects and/or the production equipment
like pipeline capacity or downstream water handling ca-

pacity, and constraints may move from one part of the
system to another part over time. Water production may
e.g. be low early on and increase dramatically during the
decline phase of a reservoir thereby making water handling
capacity an issue. Decision variables in RTPO include
production and possibly injection rates, and routing of well
streams. A typical production system structure is shown
in Fig.1. It has two separate non-connected reservoirs from
which 11 wells feed into three manifolds and pipelines, and
finally into the downstream facilities section. Manifold 1
and 2 belong to one cluster, while manifold 3 belongs to
the other cluster.

RTPO is in use in the upstream industry today. Wang
(2003), Saputelli et al. (2003) and Bieker et al. (2006)
provide readable overviews. It might be noted that these
references focus on the value chain from the reservoir to,
and not including, the downstream processing equipment.
The downstream boundary is typically a constant pressure
on the inlet separator. A few publications on RTPO for the
production chain from the reservoir to export are available;
Foss and Halvorsen (2009), Selot et al. (2007). Commercial
products for RTPO are available, but not widely used.
Two of them are GAP and MaxPro. They model the well
and near well region, and the pipeline system, and solve
the optimization problem using a nonlinear programming
(NP) algorithm like sequential quadratic programming
(SQP).

There are several factors which complicate the RTPO
problem.



• RTPO may give rise to optimization problems with
both continuous and discrete decision variables. Dis-
crete decision variables are found in routing when
there is a choice to route the fluid from a manifold
to one of several flow lines. The presence of dis-
crete decision variables complicates the optimization
problem by transforming a linear program (LP) or
a nonlinear program (NP) to a mixed integer lin-
ear program (MILP) or a mixed integer nonlinear
program (MINLP), respectively. Güyaguler and Byer
(2007) discusses RTPO in the context of MILP while
Kosmidis et al. (2005) use a MINLP formulation.
• The models in the optimization problem are often

nonlinear, some of which may be highly nonlinear, as
will be discussed later. This includes well models as
well as pressure drop models for the pipelines which
support multiphase fluid transport.
• The optimization problems are usually quite large

and may include several hundred decision variables.
An example is the rate allocation problem at Troll
which in total includes more than one hundred wells
(Hauge and Horn, 2005).

This paper focusses on the RTPO problem for systems
with a decentralized structure meaning that common con-
straints are quite few. Such strucures are quite typical in
the upstream petroleum industries as visualized by Fig.1.
The contribution lies in the application and assessment of
the Dantzig-Wolfe method which allows us to decompose a
RTPO problem into parts meaning that we apply a divide-
and-conquer strategy which is a sound engineering design
principle. This principle has survived ever since complex
systems came into making. The Dantzig and Wolfe prin-
ciple dates back to 1960 (Dantzig and Wolfe, 1960).

A few recent publications apply Dantzig-Wolfe decom-
position (DWD) to process systems. Alabi and Castro
(2009) apply DWD to a refinery planning problem, for-
mulated as a large LP problem, by decomposing it along
the value chain. They show substantial savings in com-
putation time. They also point to the inclusion of binary
decision variables, which will be addressed in this paper,
as a future task. Cheng et al. (2008) propose DWD as
a means for designing a decentralized MPC for plant-
wide MPC coordination. Again substantial computational
savings are reported for the LP formulation chosen. This
paper also gives a very readable introduction to DWD.
Both papers state that DWD is particularly well suited
for large problems with well-structured subproblems and
a small number of linking constraints.

This study will show that the Dantzig-Wolfe approach
offers an interesting and robust option for complex produc-
tion systems wiht certain structural properties. Moreover,
the method compares favourable with earlier results using
Lagrange relaxation (LR) (Foss et al., 2009) on a realis-
tic field case. The nonlinear system will be modeled by
piecewise linear models with the added benefit that error
bounds on the solution of the production optimization
problem can be computed.

The remainder of this paper is organized as follows.
First, the RTPO problem is presented in a mathematical
context before the decomposition approach in general and
the Dantzig-Wolfe method in particular are presented.

Fig. 1. A petroleum production system with two separate
reservoirs from which 11 wells feed into 3 manifold and
3 pipelines. Manifold 1 and 2 belong to one cluster,
while manifold 3 belongs to the other cluster. The
pipeline flows provide input to the processing facilities
where fluids are conditioned for export.

Subsequently, the Troll west oil rim case is presented and
results are shown. Finally, results are discussed and some
conclusions end the paper.

2. FORMALIZING THE RTPO PROBLEM

The RTPO problem will in most cases mean maximizing
oil production while honouring system constraints like
capacities in pipelines and wells, safety regulations and
preventing damage on long-term effects, in particular
recovery of available hydrocarbon resources. The latter
point is important. An example of the interplay between
short term production and long-term recovery was shown
in Naus et al. (2006) in the sense that accelerated short-
term production reduced long-term recovery.

The optimization problem is usually treated in a quasi-
dynamic way by re-optimizing a stationary optimization
problem, typically once a day. The solution of the math-
ematical RTPO will serve as a recommendation to the
operating engineers who may or may not follow the advise.
One reason for neglecting a recommendation may hinge
on the fact that the transition cost of changing from one
routing configuration to another is not included in the
optimization problem. Therefore such a change will only
be implemented if there is a substantial gain by doing this.

Referring again to Fig.1 to explain upstream systems
closer, there are four wells connected to manifold 1 and
3, respectively, and three wells connected to manifold 2.
Well streams from each well are connected to one pipeline.
Hence, each of the wells in manifold 1 and 2 can be
connected to either of the two pipelines transporting the
reservoir streams to downstream processing. There is only
one pipeline from manifold 3, and therefore no routing
decision is necessary in this part of the system. The de-
cision variables on each well are usually one production
choke valve to adjust production and on-off valves linking
a well to one of the pipelines. Further, different well com-
pletions may give rise to additional decision variables like
the injected gas-rate for a gas-lift well, a commonly used
technology to increase well lifetime as reservoir pressure
decreases. Altogether this means that there will be both
continuous as well as discrete decision variables in a typical



RTPO problem. The well and pipeline system is divided
into clusters. There are two cluster in Fig.1, one covering
manifold 1 and 2, and the second includes manifold 3.
Hence, a cluster may include one or more manifolds.

We focus on production systems with a decentralized
structure where common constraints may include down-
stream processing capacity limitations and common pipe-
lines. In the following we present a system model which
encompasses a large class of upstream production systems.
Some simplifications are made to ease the explanation. For
instance we assume only one manifold for each cluster in
this section. An extension to several manifolds per cluster,
as is the case for manifold 1 and 2 in Fig.1, is however
straightforward. In fact in the Troll case treated later the
clusters have two manifolds each.

We first present a system model for a subsystem, denoted
cluster i, before the integrated optimization problem is
described.

Indexes, constants and decision variables are explained in
Table 1 and 2.

2.1 Modelling a subsystem

In the following we present and comment the model of one
subsystem, cluster i.

• Mass balance is preserved for each phase, i.e. gas, oil
and water, at each node. This means that no phase
transition takes place at the surface of a cluster.

J(i)∑
j=1

qp
ij = qp

i , p ∈ {g, o, w} (1)

• The routing problem is parameterized through binary
variables for each well, one for each line; yl

ij . If yl
ij = 1

the well is connected to line l, if not it is zero. Each
well cannot be connected to more than one line, hence

L(i)∑
l=1

yl
ij ≤ 1, yl

ij ∈ {0, 1} , j ∈ {1, . . . , J(i)} (2)

This implies that the flow qp
i from one cluster is

divided onto L(i) pipelines.
• The well model, or performance curve for gas, oil and

water, are given by the following nonlinear structure

qp
ij = dp

ij(pres
ij , pwh

ij ), (3)

p ∈ {g, o, w} , j ∈ {1, . . . , J(i)}
where pres

ij and pwh
ij denotes the reservoir pressure

locally at the well and the pressure at the wellhead,
respectively. Depending on the reservoir conditions
near a well the complexity of these well models vary
a lot. The simplest version will be a linear model.
In systems with rate-dependent gas coning however,
as in the Troll oil case (Hauge and Horn, 2005),
nonlinearities can be severe.
• The pressure drop across the production choke is

given by

yl
ijp

l
i ≤ pwh

ij , (4)

j ∈ {1, . . . , J(i)} , l ∈ {1, . . . , L(i)}
This constraint may only be binding if yl

ij = 1 since
it is always satisfied for yl

ij = 0.

• Flow into the pipelines from cluster i to the platform
is given by

qpl
i =

J(i)∑
j=1

yl
ijq

p
ij (5)

p ∈ {g, o, w} , l ∈ {1, . . . , L(i)}
• The pressure drop in a pipeline segment from cluster
i to the inlet separator depends nonlinearily on the
flow of gas, oil and water in the pipe segment. The
nonlinearities are particularly severe during the tran-
sition from one multiphase flow regime to another,
and when a pipeline exhibits slugging. More on mul-
tiphase flow may e.g. be found in Brenne (2005)

psep − pl
i = dl

i(q
gl
i , q

ol
i , q

wl
i ), (6)

l ∈ {1, . . . , L(i)}
• There are non-negativity conditions on all flow and

pressure variables, i.e. backflow is not modeled.

It should be added that the downstream boundary condi-
tion is given by a fixed inlet separator pressure psep, and
we assume that it is equal for all L(i) pipelines. Further,
it is straightforward to include additional local constraints
like for instance the flowrate from a well due some exter-
nal reason. This could be well-related problems like sand
production, or reservoir based constraints as discussed
earlier. Such contraints will typically induce relations like
qo
ij + qw

ij ≤ qmax
ij

Table 1. The indexes used.

i - cluster i
I - no. of clusters
p ∈ {g, o, w} - phase index - gas, oil or water
ij - well j in cluster i
J(i) - no. of wells linked to cluster i
l ∈ {1, .., L(i)} - line index for cluster i
L(i) - no. of lines linked to cluster i

Table 2. The variables and data used to define
the sub-problem.

qp
i - total mass flowrate of phase p from cluster i

qp
ij - mass flowrate of phase p from well j in cluster i

qpl
i - mass flowrate of phase p through line l in cluster i

yl
ij - binary variable equal to 1 if well ij is routed

to line l
pres

ij - reservoir pressure at well ij

pwh
ij - wellhead pressure

dp
ij - well performance model

dl
i - pipeline pressure drop model

pl
i - pressure in line l subsea in cluster i

psep - separator pressure

2.2 The integrated problem

The RTPO problem is specified below. The objective
function is defined by the total oil production, and the
global constraints are given by gas and water handling
capacities in the downstream part of the value chain.
Hence, the objective function and common constraints are
given by



max

I∑
i=1

qo
i (7)

I∑
i=1

qg
i ≤ q

g (8)

I∑
i=1

qw
i ≤ qw (9)

The objective function and common constraints are linear
and additive and each term qo

i =
∑J(i)

j=1 q
o
ij is a function of

only local variables.

The complete RTPO problem consists of I clusters, each
modelled by (1)-(6), or an extension of these equations
due to several manifolds in one cluster, and the integration
through (7)-(9).

The actual decision variables are production choke open-
ings and on-off valves linking a well to a pipeline. The
production choke openings are not directly a part of
the optimization problem. They are calculated using the
pressure drop across the production choke (4) and the
flowrate through the production choke (qg

ij , q
o
ij , q

w
ij) in an

appropriate valve model.

2.3 Piecewise linearization and SOS2 sets

The optimization problem contains both continuous and
discrete variables. Furthermore, nonlinear well and pres-
sure drop models are present. Hence, this is basically a
MINLP problem. We transform this into a MILP problem
by replacing the nonlinear constraints by linear constraints
and constraints on some auxiliary integer variables. The
procedure is as follows: The nonlinear constraints, (3)
and (6), are replaced by piecewise linear approximations.
These piecewise linear approximations are modelled by
linear constraints and discrete variables, i.e. integer con-
straints, using Special Ordered Sets of type 2 (SOS2).
The discrete variables are necessary to assure interpolation
between neighbouring points only, Williams (2005), as in
any piecewise linear approximation of a nonlinear function.
The number of linear constraints and integer constraints
necessary to replace one nonlinear constraint depends on
the nonlinearities and approximation accuracy. Higher ac-
curacy means more interpolation points and hence more
linear and integer constraints.

3. DECOMPOSITION

3.1 Principle

When a problem becomes too large or complicated to
handle, a decomposition approach can be applied if the
problem structure is suitable. The basic mechanism in
all decomposition principles is to decompose the original
problem into smaller sub-problems which are coordinated
by a ”master” problem. There exists multiple decompo-
sition techniques to solve large problems. Two common
methods are Lagrange relaxation and Dantzig-Wolfe de-
composition.

Both LR and DWD are suited for problems with a block
angular constraint structure which is the case for the

RTPO problem described above. The structure is exploited
when the original problem is split into sub-problems, while
the common constraints remain in the master problem.

In LR (Beasley, 1993) the basic idea is to attach Lagrange
multipliers to the common constraints in the model and
relax these in the objective function, while DWD handles
the common constraints in a master problem. The result-
ing integrated optimization problem will hence fall apart
into I local optimization problems, one for each cluster
i (Fisher, 1985). For (convex) LP problem the solution
of I such local optimization problems provides the same
solution as (1)-(9) provided that the Lagrange multipliers
for the common constraints λg, λw are known. Hence, the
Lagrange multipliers put a common cost to the use of a
scarce resource by each local problem.

3.2 Dantzig-Wolfe decomposition

When applying DWD to the RTPO problem the sub-
problems will be identical to LR. However, while the
Lagrange multipliers are updated by a simple heuristic in
the LR case, the update is now done by solving an LP-
problem.

We start by assuming linear constraints and continous
variables, i.e. an LP-problem instead of a MILP problem.
The master problem is a reformulation of the integrated
problem. By taking advantage of the fact that a convex
combination of basic feasible points, which are corner
points of the feasible set defined by the linear constraints
of the integrated problem, also is a feasible solution,
an alternative formulation can be achieved. Each basic
feasible point in the integrated problem is then represented
as a variable in the master problem. The number of basic
feasible points for any practical problem can clearly be
prohibitively high, and in reality only a small number of
these basic feasible points will ever enter the basis in the
master problem. The idea is then to restrict the master
problem by reducing the number of basic feasible points.
This is called a Restricted Master Problem (RMP).

Hence, we start with a few basic feasible points and check if
the solution of the integrated problem is within a convex
combination of these points. If this is not the case new
basic feasible points are included in a structured way until
the optimal solution has been found (Williams, 2005). This
is usually called column generation and several procedures
are proposed in the literature; either adding one or several
columns, i.e. new basic feasible points, at each iteration
(Dantzig and Thapa, 2002). Some details of the algorithm
are given below with some related comments specific to
the RTPO problem.

Algorithm structure

1. Choose two initial basic feasible points for each local
optimization problem.

2. Specify the RMP as a LP for the given set of basic
feasible points. Then solve it and compute values for the
Lagrange multipliers for the global constraints, i.e. λg, λw.
The RMP is specified in a separate section below.

3. Solve I local optimization problems by using the La-
grange multipliers computed in 2.



Fig. 2. Iteration structure for Dantzig-Wolfe Decomposi-
tion (DWD) and Lagrangian Relaxation (LR)

4a. For i ∈ {1, . . . , I}: If the solution of a local optimization
problem i extends the convex set defined by the basic
feasible points used in 2, then add these basic feasible
points to the RMP, and go to 2. (This implies that the
feasible region of this new RMP is extended).

4b. If the solutions of all the local optimization problems
are unchanged, the optimal solution has been found; and
the algorithm terminates.

The main iteration loop is shown in Fig.2. This figure
is also applicable for LR if the master problem box is
understood as the updating algorithm for the the Lagrange
multipliers for the global constraints.

In view of our RTPO problem item 1 above implies that
two feasible solutions for each cluster must be determined
to start the algorithm.

3.3 Restricted master- and sub-problem

The procedure is to update the Lagrange multiplier in
a way that the consumption of the relaxed common
constraints converge to their optimal values. Each sub-
problem is defined by (again only including two common
constraints)

max qo
i − λgqg

i − λ
wqw

i − λCONV EX
i (10)

λ ≥ 0, i ∈ {1, . . . , I}

and the local constraints (1)-(6). λCONV EX
i is the La-

grange multiplier for the convexity constraint in the RMP
defined below. Since no sub-problem variables are asso-
ciated with it, it will only act as a constant in the sub-
problem.

The RMP can now be formulated. zp
is represents one basic

feasible point s from sub-problem i. zp
is could in principle

include the optimal value of all decision variables for sub-
problem i after solving it given λg and λw. However, only
the variables also present in the objective function and
the common constraints will be relevant for the RMP.
Hence, zp

is will for this RTPO problem contain some flow
variables (qo

i , q
g
i , q

w
i ), but no pressure variables. µis is

the corresponding weight the master problem will give
this basic feasible point. The objective function of the
master problem is given in (11). Further, (12) and (13)
represents the constrained common resources, while (14)
is the convexity constraint.

max
∑

i

∑
s∈Si

zo
isµis (11)

∑
i

∑
s∈Si

zg
ispµis ≤ qg (12)

∑
i

∑
s∈Si

zw
ispµis ≤ qw (13)

∑
s∈Si

µis = 1 i ∈ {1, . . . , I} (14)

µis ≥ 0 (15)

3.4 Integer variables

DWD will find exact optimal solutions for feasible LP
problems. If it is extended to a MILP problem, however,
Branch & Price (Desrosiers and Lubbecke, 2006) or some
heuristics have to be applied to handle the integer prop-
erties. When solving the master problem, we have not
imposed integer restrictions on µis, i.e. the RMP is solved
as an LP to achieve Lagrange multipliers for (12) - (14).
The resulting solution may then be infeasible with respect
to the original MILP problem, since a convex combination
of two different basic feasible points is not necessarily
feasible. As mentioned, this could be handled in several
ways. However, if a satisfying number of basic feasible
points are generated up front, a feasible solution could
simply be found by demanding integer values for µis and
solve the RMP as an MIP problem. Vanderbeck (2006)
adresses the use of DWD on mixed integer problems.

3.5 Solution quality

For both LP and MILP problems, upper and lower bounds
on the objective function can be computed. The LP solu-
tion of the RMP plus the sum of the objective values of the
sub-problems will act as an upper bound (Karlof, 2006). In
the LP case, the solution of the RMP alone will give a fea-
sible lower bound, while for the MILP problems a heuristic
has to be applied to create the feasible lower bound. By
using these bounds actively during the optimization pro-
cess, it is possible to terminate the optimization problem
when an acceptable gap is achieved.

4. RESULTS

The Troll field is a huge oil and gas field on the continental
shelf west of Norway. Production allocation is complex as
described in (Hauge and Horn, 2005). We study the Troll
C production system shown in Fig.3 where primarily oil
is produced from an oil rim through more than 50 wells.
Well models and pressure drop models for multiphase flow
in pipelines are based on typical models as encountered in
this application. Hence, the models should be understood
as approximations of the actual well and pipeline models.
Each nonlinear model is approximated by a piecewise
linear model. A well model (3) is typically divided into
somewhere between 10 and 100 linear segments with the
wellhead pressure as its input. The pipeline models require
more linear segments since they depend on three inputs, cf.
(6). There are 8 clusters, and each cluster has a complex
structure in the sense that they contain two manifolds.
Each cluster has 6− 8 wells and the total number of wells
is 64. For the moment only the gas handling capacity is a
binding constraint. Water handling will become an issue



Fig. 3. Topology for the wells connected to the Troll C
platform

in the near future as the reservoir drains and therefore
produces more water.

The purpose of the numerical study is to investigate the
DWD performance compared to a global strategy and the
LR method proposed in Foss et al. (2009). Three different
strategies were therefore defined:

(1) A global strategy where all clusters are solved in one
large MILP problem.

(2) The LR method proposed in Foss et al. (2009).
(3) The DWD method proposed in this paper.

The computations were performed on an IBM Thinkpad
T60P with a 2.33GHz processor and a tolerance bound
of 0.5% for LR and DWD. The state-of-the-art XPress-
MP software suite is used to solve the MILP problems.
The main results are presented in Table 3. Results are
presented column-wise for different system sizes starting
with two cluster and ending with the full 64 well/8 cluster
system. The gas capacity for each scenario increases with
the number of clusters as shown in line 2. In the next three
lines the number of variables and constraints are listed.
Then follows the results in terms of computation time and
oil production which is the ultimate goal, cf. (7).

Finally, it should be noted that the results in Table 3
represent typical values as observed after several test runs.

Table 3. Results from tests on the model of the
Troll C production system.

No. of clusters 2 4 6 8
Gas cap.[Sm3/day] 3000 12000 18000 24000
Continuous variables 13898 27805 41766 55688
Discrete variables 1029 2134 3725 4819
Constraints 491 981 1639 2185
Strategy 1 - Global
Solution time [min] 0.26 7.38 237.0 720.0
Oil [Sm3/day] 1777 6487 11641 14365
Strategy 2 - LR
Solution time [min] 1.42 8.54 18.2 19.2
Oil [Sm3/day] 1774 6467 11640 14440
Strategy 3 - DWD
Solution time [min] 1.86 1.43 6.16 11.3
Oil [Sm3/day] 1777 6458 11629 14473

5. DISCUSSION

The main observation to make is the fact that the decom-
position stratgies, DWD and LR, outperform the global

method for the combined rate allocation and routing prob-
lem for all but the smallest 2 cluster problem. The global
method does not converge to its termination criteria after
12 hours for the eight cluster case and in general it has
a hard time solving problems consisting of 6 clusters or
more. Furthermore, DWD shows superior performance to
LR.

By taking a closer look at the 2 cluster problem, the global
method is actually fastest. This is not surprising as it is
expected that the global method would be faster for small
problems. For the medium size problem with 4 clusters, the
global method is still working fine, and is actually faster
than LR. DWD is in this case extremely quick, due to few
main iterations. For the larger problems, we observe that
the two decomposition methods are much faster than the
global method, and that DWD is significantly faster than
LR.

The reason why DWD is faster than LR is related to the
updating of Lagrange multipliers. The DWD master prob-
lem finds good multipliers with fewer iterations than the
LR master problem, and on average converges after fewer
iterations. It should be mentioned that the computations
involved in solving the DWD master problem, i.e. the LP-
problem, is small compared to solving the local MILP-
problems. Hence, this is no issue when comparing DWD
and LD.

DWD is more stable with respect to solution time than
LR. Furthermore, DWD has few tuning parameters, and
works well for changing data sets. LR in contrast, is quite
sensitive to perturbations of the data set. A minor change
might result in a doubling of the solution time. However,
extensive knowledge of the problem will give the operator
a good feel for which parameter values result in fast
convergence.

Focussing on solution quality, we observe that the global
method finds the optimal solution for all except the full
field problem with 8 clusters. In that case the method was
stopped after 12 hours, with still a little more than 7.5%
in duality gap. The decomposition methods terminate
with less than 0.5% duality gap for all problems. The
solution time does of course depend on the resolution of the
piecewise linear models. A cruder approximation reduces
run-time and vice versa.

DWD provides a framework for decomposing a problem
and still keep track of the optimal solution for the inte-
grated problem. This approach has potential advantages
in terms of algorithmic efficiency as indicated by the test
case in the previous section. The DWD algorithm, as
well as LR, has some interesting properties. First, the
sub-problems may be solved using different algorithms
or even different software packages. This feature is in-
teresting for integrated optimization applications which
may encompass reservoir, wells, pipelines and processing
facilities. It should be added that the duality gap can only
be computed if upper and lower bounds on the solution
can be found. This is in general not possible if the sub-
problems are nonlinear programs as opposed to MILPs. A
second useful property of the algorithmic structure is the
potential for parallel computing since each sub-problem is
self-contained and has no dependency on the other sub-
problems. If the computational load between the sub-



problems is well-balanced a parallel implementation will
be particularly efficient.

The optimization problem is usually treated in a quasi-
dynamic way by re-optimizing the stationary optimization
problem, typically once a day. More frequent disturbances
may be handled by selecting a couple of wells for frequent
production changes to compensate variations in for in-
stance gas processing capacity. Well models are typically
updated twice a year by running well tests to collect data
to estimate well parameters. The use of dynamic models
is an issue. Some applications may benefit from dynamic
well models, in particular during start-up of wells. Start-
up may occur quite often since many wells are shut-in from
time to time due to maintenance or operational problems.
Applications with long pipelines may also benefit from
dynamic pipeline models provided the dynamics are im-
portant for optimal performance.

6. CONCLUSIONS

This paper argues that Dantzig-Wolfe Decomposition is
well suited for the well allocation and routing problem
in the upstream industries. There are several reasons for
this. DWD clearly outperforms a global method. DWD has
several similarities to LR. However, as the results show,
DWD gives better performance than LR in all relevant
cases tested herein. This is due to more efficient updating
of the dual variables. Furthermore, an error bound on the
solution of the production optimization problem can easily
be computed. This is clearly information of interest to
any user. Finally, the algorithm is efficient and can be
parallelized for even higher efficiency.
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