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Abstract: Microalgae have many applications such as the production of high value compounds
(source of long-chain polyunsaturated fatty acids, vitamins, and pigments), in energy production
(e.g. photobiological hydrogen, biofuel, methane) or in environmental remediation (especially
carbon dioxide fixation and greenhouse gas emissions reduction). However, the photobioreactor
microalgae process needs complex and costly hardware sensors, especially for biomass measure-
ment. Thus, state and parameter estimation seems to be a critical issue and is studied in this
paper in the case of a culture of the microalga Porphyridium purpureum. This paper is an
extension of the previous work of Becerra-Celis et al. (2008) where the principal objective is to
design a biomass estimator of this microalga production in a photobioreactor based on the total
inorganic carbon measurement.

Unscented Kalman filtering is applied to estimation of states and model parameters, producing
better performances in comparison with Extented Kalman filtering. Numerical simulations in
batch mode, and real-life experiments in continuous mode have been carried out. Corresponding

results are given in order to highlight the performance of the proposed estimator.
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1. INTRODUCTION

In chemical and biochemical processes, often chemical re-
actions have to be monitored and controlled using different
sensor measurements. Typically, measurements of reactant
and product concentrations, operating temperatures, pres-
sures, and other parameters are needed. In general, a mea-
surement has to be reliable, i.e. it has to be available and
accurate. However, there are several reasons why required
measurements may not be reliable. Some of such reasons
are the impracticability of building an appropriate sensor
due to lack of technology, the difficulty to position the
sensor, the associated cost. In such cases, an attempt to
use estimation techniques may be done.

Dochain (2003) presents an interesting overview of avail-
able results on state and parameter estimation in chemical
and biochemical processes. A comparison of several tradi-
tional state and parameter estimation approaches is given,
discussing pros and cons in different cases, and describ-
ing how the most common implementation problems are
solved (see Dochain (2003) and references therein). In this

* The authors wish to acknowledge support from the French-
Norwegian research cooperation project AURORA

work particular attention is given to Kalman filtering. Its
application to nonlinear systems is tipically implemented
by the well known and widely used Extended Kalman Fil-
ter (EKF). Even though there are issues due to the inher-
ent linearization procedure in the algorithm, the scientific
and industrial communities have obtained successful EKF
applications. However, it is the authors’ opinion that in
systems with strong nonlinearities it could be interesting
to exploit the benefits of the Unscented Kalman Filter
(UKF). Thus, the UKF is introduced as a valid EKF
alternative, and it is shown how to obtain improvement
due to its implementation flexibility, extending then its
applicability. The first works introducing the Unscented
transformation idea and the UKF algorithm are Julier and
Uhlmann (1996), and Julier and Uhlmann (1997). In Wan
and Van Der Merwe (2000) several UKF algorithms are
described, which could be used for state estimation, pa-
rameter estimation, and joint state and parameter estima-
tion. This work aims to present UKF advantages in terms
of performance and implementation ease, compared to the
EKF. The work of Becerra-Celis et al. (2008) is considered
as starting point, where it is shown how to implement an



EKF for state estimation in a photobioreactor. Moreover,
experimental data is used to validate the results.

Next section explains how to use the UKF for joint state
and parameter estimation. Section 3 describes the photo-
bioreactor used for microalgae production, and its model.
Section 4 analyzes the application of the UKF to the
photobioreactor. In addition, it is shown that when param-
eter estimation is considered, the UKF produces improved
results, particularly when experimental data, collected
from continuous cultures, is used. Finally, conclusions and
future work are presented.

2. STATE AND PARAMETER ESTIMATION

Consider the following nonlinear system

£(t) = g(&(t), ult), ve(t))
y(t) =1(E(t)) + n(t) (1)

where £ is the state vector, u is the input vector, y is the
measurement vector, ve is the process noise vector, n is
the measurement noise vector, of appropriate dimensions,
respectively. Simply stated, the state estimation problem
consists to reconstruct the state vector knowing the mea-
surement and input vectors, some information on noise
distributions, and the nonlinear functions g(-) and I(-).
When the parameters used in the model (1) are uncertain
the estimation problem may be more difficult to solve.
One method to obtain sufficiently good estimates is to
make the estimator algorithm robust with respect to the
parameter variations. Another method is to try to estimate
the uncertain parameters improving the model accuracy.
However, joint parameter and state estimation may lead
to observability problems. A general framework to intro-
duce the parameter estimation is to extend the state with
the uncertain parameters vector and then estimate the
augmented state. In cases where the actual parameters
are slowly varying, it is common to model the parameters
vector 1 as a random walk driven by a white noise process
vy (t). Thus the following differential equation

1(t) =wvy(t) (2)

is used to augment the system (1). Associating then
a relatively small covariance to wv,(t), it is possible to
consider the slowly varying nature of the parameters. The
section below describes the particular UKF used in this
work. The algorithm describes the case of joint parameter
and state estimate. The equations are still valid if only
state estimate is considered. However, the procedure to
augment the state vector and covariance matrix, with the
parameter vector and its covariance matrix, respectively,
must be omitted.

2.1 Unscented Kalman Filter algorithm

Consider the following discretization of the system (1-2)

§k+1 = f(flm uk7vli777k)
Nkt1 =Nk + v},
Y = h(&k, M) + Nk (3)

obtained using an appropriate numerical integration rou-
tine. To estimate jointly the state and parameters of the
system (3), the following augmented vector is defined:

B = (2, vl (4)

where #, = [, 7] has as elements the state and pa-
I
rameter estimates, respectively. The vector v, = [vi ,UZ']’
contains the process noises in the evolution of ¢ and 7.
Analogously, the augmented covariance matrix is defined

as

] .

a __ k k

where P} consists of the state and parameter error co-
variances, while P includes the process noise covariance
associated to state and parameters. In addition, the off
diagonal entries are cross covariance terms represented by
the notation P,’". Obviously, all elements of Z{; and P are
of appropriate dimensions.

Given the initial conditions

. T Py 0
$8=|:00:|7 Pg:[(?pg}v (6)

v

the dimension L of the augmented system state 2%, and
the following scalar weigths W

We™ = A/(L+ ) (7)
W =ML+ M)+ (1—a®+8) (8)
Wz(m) — Wz(C)

=1/[2(L + )] (9)

fori =1,...,2L, A = o®(L + k) — L, and where «, 3, s
are parameters to be chosen.

Fork=1,...,0

- Calculate the sigma points defined as
(Xlg—l)o = 2%

(Xlgfl)j =Zp_1+ (\/ Py )j
(XI?A)HL =g, —7 (\/Pz—l )j

where (/P¥_, )j is the j-th column (j =1,...,L) of
the square root of the augmented covariance matrix
(5) at the previous time step. The parameter v =
v L + X can be interpreted as a scaling factor used to
move the position of sigma points around the mean
value £} _,. Finally, the sigma points are regrouped in
the following matrix of L rows and 2L + 1 columns:

a X
w3

(10)

(11)

where X}’ ;| contains the sigma point rows associated
to state and parameters, and X}/_; the sigma point
rows associated to the state and parameters process
noises.



- Propagate the sigma points through the nonlinear
dynamics F[], and compute the predicted state es-
timate, where the index ¢ is used to select the appro-
priate sigma point column:

Xk|k71 =F [Xlgflv kal} (12)
2L

I, = Z Wi(m)Xi,k\kq (13)
i=0

- Compute the predicted covariance:

2L ,
P = ZWi(C) [Xi,mkq - fﬁﬂ [Xi,mkq - i;]
i=0

(14)

- Using the predicted mean (13) and covariance (14),

recompute a new set of sigma points as defined in
(10-11):

Xy =[x, A (15)

- Instantiate the new sigma points through the obser-
vation model H[], and calculate the predicted mea-

surement:
Vijr—1 =H [X] (16)
2L
U = Z Wi(m)yi,k\k—l (17)
i=0

- Obtain the innovation covariance and the cross co-

variance matrices:
2L

Pog = 2 W Wiie—1 = 0] Virnor — G +P"
1=0
(18)

2L
> ~— a1/’
Pae = 2 W X1 = 2] Vi1 — 9]
i=0
(19)
where P™ is the measurement noise covariance;
- Perform the measurement update using the regular
Kalman filter equations:

Ki = Py, Pr, (20)
T =2 + K (yp — 95 (21)
P =P, — KiPy, 5, Ky, (22)

In (12), F[] is the modified nonlinear dynamics of (3).
The changes are made to consider the discretization and
the augmented state, and also to guarantee the proper
propagation of each sigma point. Analogously, in (16)
HJ[-] is the modified observation function. Due to the fact
that measurement noise is assumed additive with zero
mean, it is possible to write (18). Thus, the algorithm
computational complexity is reduced because there is no
need to associate more sigma points. Regarding filter
design parameters, in most cases typical values are § = 2,
and Kk = 0 or k = 3 — L, leaving only the parameter o as
free parameter. Moreover, considering that 1 < a < 10~4
the tuning of the UKF becomes simpler. For a finer tuning
and a more accurate description about the meaning of the
UKF parameters one can refer to Wan and Van Der Merwe
(2000). Finally, in (11) and (15) a square root of a matrix

has to be calculated, thus an appropriate algorithm must
be used, for instance the Cholesky factorization.

3. PHOTOBIOREACTOR FOR MICROALGAE
PRODUCTION

8.1 Strain and growth conditions

The photobioreactor is used to produce the red microalgae
Porphyridium purpureum SAG 1830-1A obtained from
the Sammlung von Algenkulture Pflanzenphysiologister
Institut Universitat Gottingen, Germany. The strain is
growth and maintained on Hemerick medium (Hemerick
(1973)). The pH of the Hemerick medium is adjusted to
7.0 before autoclaving it for 20 minutes at 121 °C. Cultures
are maintained at 25 °C in 500 ml flask containing 400 ml
culture under continuous light intensity of 70 pEm 257!
and aerated with air containing 1% (v/v) COgz at 100 rpm
on an orbital shaker. During the exponential growth phase,
within an interval of two weeks, 200 ml of culture are
transferred to a new flask containing fresh medium.

3.2 Culture conditions and measurements

Figure 1 illustrates the photobioreactor diagram where
the growth of cultures is performed. The bubble column
photobioreactor has a working height of 0.4 m and a
diameter of 0.1 m. The total culture volume is 2.5 [, and
the cylindrical reactor, made of glass, has an illuminated
area of 0.1096 m?. To agitate the culture an air mixture
with 2% (v/v) COxq is continuously supplied at a flow rate
of 2.5 V.V.H (gas volume per liquid culture volume per
hour). 0.22 wm Millipore filters, appropriate valves and
flowmeters are used to filter and to control the air flow rate
entering the photobioreactor. Four OSRAM white fluores-
cent tubes (L30W/72) and three OSRAM pink fluorescent
tubes (L30W /77) are arranged around the bubble column
as an external light source. The incident light intensity on
the reactor surface is measured at ten different locations
with flat surface quantum sensors (LI-COR LI-190SA).
The average light intensity is computed by the weighted
average of all measurements. The optimal value of irradi-
ance on surface for the reactor is 120 pEm~2s~!. A trans-
parent jacket connected to a thermostat unit allows the
temperature control, which is regulated at 25 °C. Other
sensors are a pH sensor (Radiometer Analytical) and a
dissolved oxygen sensor (Ingold type 170). A sampling port
is applied to the top of the column, from where samples
for off line analysis are collected after 6, 8, and 12 hours.
The number of cells is counted using an optical microscope
ZEISS Axioplan-2 on Malassez cells. The total inorganic
carbon (T.I.C.) in the culture medium is calculated by gas
phase chromatography. This method, proposed by Marty
et al. (1995), is used to measure low inorganic carbon
concentrations down to (10~mol [~1) within an accuracy
of 10%.

3.8 Mathematical model

In this work the bioprocess model presented in Baquerisse
et al. (1999) is used. It consists of two sub models,
one describing the growth kinetics, and one representing
the gas-liquid mass transfer in the photobioreactor. This
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Fig. 1. Photobioreactor diagram.

results in two differential equations describing the state of
the reactor:

dX an Fout
eI X uX — 2 x
ar -y i TH %
diTIC] F, Fout X
- TIC;, — TIC)yut —
7 7 [TIC] % [TIC]ou: ”YX/S

—mX + kra ([CO3] — [COq)) (23)
where X is the biomass, and [TIC] is the inorganic
carbon concentration associated with cell density increase.
The subscripts [-];n and []ou+ indicate quantities flowing
into, and out from the reactor, respectively. V is the
culture volume, and F' is the medium flow rate. The mass
conversion yield is defined by Yx /g, m is the maintenance
coefficient, and kpa is the gas-liquid transfer coefficient.
The carbon dioxide concentration in the medium fresh is
defined as:

PCO,
H
where PC'Os is the partial pressure of carbon dioxide, and
‘H is the Henry’s constant for Hemerick medium. Moreover,

the carbon dioxide concentration in the medium is given
by:

[CO3] = (24)

[TIC]

L+ i

[COs] = (25)

K1 Ko

(HT]?

where Kj, Ky are kinetics constants, and [H "] is defined
as:

[HT]=10"PH (26)
representing the hydrogen ions concentration in the cul-
ture media.

In addition, a light transfer model is considered, which
describes the evolution of incident and outgoing light
intensity:

(Iz - Iout)Ar

E:
VX

(27)

Iout = CIIinXC2 (28)
where FE is the light ”energy” accessible per cell, I, is the
outgoing light intensity, I;, is the ingoing light intensity.
C4, Cs are constants depending on the reactor geometry,
and A, is its area.

The light intensity and the total carbon concentration
influence the specific growth rate, defined as

= Hmax € P
H=lma g [TIC]opt

- _ 1]
(152 [TIC] 6(1 ) (29)

where fimaz, Eopt, and [TIC]p are model parameters
identified from the batch data experiments. Finally, in (29)
substrates limitation effect is taken into account.

8.4 Batch and continuous operating conditions

The photobioreactor can work in two different operating
conditions, batch mode and continuous mode. In batch

mode:
F;, = [TIC)in = 0; Xin=0. (30)

out — 07

In continuous mode, instead:

Fin =

out 7é 0. (31)

3.5 Model parameters

The model parameters used in this work are the ones
identified in Becerra-Celis et al. (2008). For more details on
the system identification procedure the reader is referred
to their work. Tables 1 and 2 contain the parameters for
the microalgae and the total inorganic carbon dynamics,
respectively.

Table 1. Model parameters for Porphyridium
purpureum at 25 °C.

Parameter Unit Value
Bmaz hT 0.0337
Eopt pEs™1(10%¢ell) ! 1.20
[TIC)opt mmolel ™1 12.93
kra A1 41.40
Cq 0.28
Ca —0.55

Table 2. Model parameters for [TIC] dynamics.

Parameter Unit Value
K 1.02-107F
Ko 8.32-10710
m h~Immole(10°cell)~1 0.004

Yx/s 10° cell per mole TIC 198.1
H atm | mole=1 34.03

4. BIOMASS ESTIMATION

Controlling a photobioreactor has some difficulties associ-
ated to the implicit nonlinear and time varying nature of
the system. There are also problems with the practicability



to find reliable online sensors able to measure the state
variables (Shimizu (1996)). To overcome the lack of online
sensors, Becerra-Celis et al. (2008) show how to implement
an Extended Kalman Filter (EKF) to estimate the biomass
for the photobioreactor, described in Section 3, using the
measurement of T.I.C.. In this work, it is shown how the
use of an UKF gives better performance, particularly for
continuous cultures. There are several reasons for which
the UKF may be considered as an EKF alternative. There
is no linearization procedure in the UKF, as can be seen
in section 2.1. This is relevant when strong nonlinearities
are present in the process because no linearization error is
introduced. It is straightforward to extend the state esti-
mation to joint estimation, just augmenting the estimated
vector and covariance matrix, while calculation of system
derivatives with respect to the parameters, are required in
an EKF algorithm.

4.1 UKF applied to the photobioreactor

Using the UKF, described in Section 2.1, the main objec-
tive is to estimate the biomass X in the photobioreactor of
Section 3. Focusing on the two different working conditions
defined in Section 3.4, it is observed how in batch mode
the UKF has an excellent performance, which also is the
case for the EKF designed in Becerra-Celis et al. (2008).
This is due to the fact that the model parameters are
identified in batch mode, and the measurements have a
constant sampling time. A more complex scenario appears
for continuous cultures. The model parameters are still the
ones from the batch experiments, and the experimental
data are collected at variable instant intervals. Due to
the variable time steps, Becerra-Celis et al. (2008) imple-
ments a continuous discrete version of the EKF. In this
work, this problem is tackled in two steps. Firstly, a zero
order hold is applied to the measurements, secondly the
standard UKF algorithm is properly modified. More in
detail, the discrete UKF algorithm with an augmented
state to consider parameter estimation and process noise
is implemented. The sigma points are recomputed in (15)
and then used to obtain the predicted measurement in
(16-17). Those modifications give the possibility to use
the discrete algorithm with the irregular measurement
sampling time of the continuous culture case. Furthermore,
the parameter fimq, in (29) is chosen to be estimated.
Finally, despite the fact that a zero order hold is used to
permit a discrete UKF implementation, the UKF accuracy
and speed of convergence are improved with respect to the
EKF ones.

4.2 Simulation results with experimental data

The following results show the efficiency of the proposed
method when the photobioreactor works either in batch
mode or in continuous mode. Figure 2 illustrates the con-
vergence of the UKF in simulated batch mode, for which
conditions (30) hold. In this case the nonlinear model (23)
is discretized at sampling time Ts = 0.5 h and used to
simulate the state of the process, starting from initial con-
ditions Xo = 2.44 - 10%¢ell/l, [TIC]y = 2.55 10~ 3mole/I.
After that, [TIC)] is corrupted by additive Gaussian white
noise with standard deviation o = 0.2 10~3mole/l, and
used as measurement for the UKF. Thus, the state is

Biomass X [10° cell/L]

[TIC] [107% mole/L]

— — — Simulated measurement affected by noise
— UKF
T

I I T
5 10 15 20 25
Time [hours]

Fig. 2. UKF estimation for simulated batch mode.
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Fig. 3. Experimental data: input and output of the photo-
bioreactor collected in continuous mode.

estimated successfully with excellent noise rejection in
T.I.C.. The results obtained for continuous cultures are
even more interesting. Initial conditions are Xy = 1.8 -
10%ell/l, [TIC)o = 4.51-10"3mole/l, and in addition real
experiment data, presented in Figure 3, are used as input
to the filters. The EKF designed in Becerra-Celis et al.
(2008), the UKF with only state estimation, and the UKF
with joint state and parameter estimation are simulated.
The results obtained are shown in Figure 4 and here
discussed. In Figure 4(a) it is noticeable how both UKF
implementations have faster speeds of convergence than
the EKF. In Figure 4(b) the state estimation error of the
three different approaches are compared, and it is evident
how the UKFs give smaller estimation errors. Moreover the
mean squared error (MSE) between the biomass and its
estimate is computed. Table 3 shows the MSE index, which
is obtained averaging the MSE along the entire simulation
period. From both figures it is noticeable how the UKF
performs better than the EKF, and how the introduction



Table 3. Mean Squared Error Index

EKF
13.60

UKF
6.12

UKF with par. est.
6.12

of parameter estimation in the UKF improves the accu-
racy of the estimation in the final part (after 300 hours),
although slightly reduces the speed of convergence. Since
the parameters are identified from batch experiments, as
shown in Becerra-Celis et al. (2008), adding parameter
estimation may be useful when the photobioreactor is run
in continuous mode. Figure 5 shows the evolution of the
Imaz €Stimation, the estimated value is compared with the
identified value and moreover the UKF error covariance is
shown.

1"

10

Biomass X [10° cell/]

F o "
— — UKF |
UKF with parameter est.
1 1

Experimental data

L L L L L 1
0 50 100 150 200 250 300 350 400 450
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(a) Biomass estimate
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(b) State Estimation Error

Fig. 4. Biomass estimation comparison for continuous
cultures.

5. CONCLUSION

This work can be considered as an extension of Becerra-
Celis et al. (2008), where the main objective is to design
an efficient, reliable and applicable biomass estimator for a
microalgae photobioreactor. A more recent nonlinear esti-
mator (UKF) is used, obtaining improved results. In both
batch and continuous mode, the approach presented pro-
duces a faster estimate convergence and a better estimate
accuracy. The capacity and ease to introduce parameter
estimation jointly with state estimation, the absence of
linearization, the comparable computational complexity
make the UKF an attractive estimator for nonlinear sys-
tems. The particular UKF framework described in section
2.1 showed to be well suited for the case when measure-
ments, arriving at variable time instants, are subject to a
zero holder filter. The extra set of sigma points calculated
in (15) are needed to obtain a smoother estimate. Future
work is needed to design a feedback based controller using
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Fig. 5. UKF parameter estimate and its covariance for
continuous culture.

the UKF estimate, and to better understand which param-
eter would improve the filter performance without intro-
ducing observability issues. It is also interesting to explore
how the UKF performs with other processes compared to
the traditional methods in use in practice.
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