
     

Control of Nonlinear System – Adaptive and Predictive Control   
 

Jiri Vojtesek*, Petr Dostal*, Vladimir Bobal* 


*Department of Process Control, Faculty of Applied Informatics,  
Tomas Bata University in Zlin, Czech Republic 

(Tel: 00420576035199; e-mail: {vojtesek,dostalp,bobal}@fai.utb.cz) 

Abstract: The goal of this paper is to propose suitable control methods for controlling of the highly 
nonlinear system represented by the mathematical model of the continuous stirred tank reactor (CSTR) 
with so called van der Vusse reaction inside. Temperature of the reactant is controlled by the heat 
removal of the cooling liquid in the reactor’s jacket. Two control strategies were suggested – adaptive 
control and predictive control. The adaptive approach uses recursive identification for the optimal setting 
of the controller. The predictive control computes input sequence by the minimizing of the cost function 
constructed by the difference between output variable and reference signal. Both control strategies shows 
good control results and pertinence for the controlling of such type of systems. 
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1. INTRODUCTION 

Unfortunately, most of the processes in the technical praxis 
have nonlinear properties. Typical example of the nonlinear 
system can be found in the chemical or the biochemical 
industry where so called chemical reactor is used for 
production of the several chemicals or drugs (Corriou, 2004). 

Controlling of these devices with the conventional methods 
where parameters of the controller are set at the beginning 
fixed during the control could result in non-optimal control 
responses because of changing parameters of the system. This 
inconvenience could be overcome with use of other control 
strategies which takes into account these changes, for 
example adaptive or predictive control. These two control 
strategies are compared in this paper in order to compare 
obtained simulation results. 

The basic idea of adaptive control is that parameters or the 
structure of the controller are adapted to parameters of the 
controlled plant according to the selected criterion (Bobál et 
al., 2005). Adaptation can be done for example by the 
modification of the controller's parameters by the change of 
the controller’s structure or by generating an appropriate 
input signal, which is called “adaptation by the input signal”. 

The polynomial synthesis (Kučera, 1993) is one of the 
methods used in adaptive control for control synthesis of the 
system. This method is based on the input-output model of 
the controlled system or its transfer function. It can be 
classified as an algebraic method and is based on algebraic 
operations in the ring of polynomials. Polynomials are 
usually described in s-plane for continuous systems, in z-
plane for discrete systems and in -plane for systems which 
come from -models of both the controlled system and the 
controller too (Middleton and Goodwin, 2004) and 
(Mukhopadhyay et al., 1992). 

One of the biggest advantages of the polynomial method 
compared to the conventional method is that it provides not 
only relations for computing of the controller's parameters 
but the structure of the controller too. This structure fulfils 
general requirements for control systems and input signals 
(reference signal and disturbance) and it can be used for 
controlling of the systems with negative properties from the 
control point of view, such as non-minimum phase systems 
or unstable systems. Another advantage is that the resulted 
relations are easily programmable. 

Polynomials in the numerator and denominator of the transfer 
function of the controller result from the solution of 
Diophantine equations, which have so called characteristic 
polynomial of the closed loop system on the right side of the 
equation. The roots of this polynomial are then poles of the 
closed-loop system, which affects the quality of control. The 
method of choosing the poles is called Pole-placement or 
Pole-assignment (Kučera, 1991). 

The idea of the predictive control is based on the calculation 
of the control sequence from the actual time point minimizing 
the deviation of the reference signal and the output signal of 
the plant in the future horizon (Clarke et al., 1987). The 
future values of the reference signal are given in advance or 
are assumed to be equal to the present one. The future values 
of the plant can be predicted from a process model. If 
disturbances are measurable, then their future values are 
predicted using some assumptions. 

All approaches are verified by the simulation in the 
simulation program Matlab®, version 6.5. 

2. ADAPTIVE CONTROL 

The adaptive approach in this work is based on choosing an 
external linear model (ELM) of the original nonlinear system 



 
 

     

 

whose parameters are recursively identified during the 
control. Parameters of the resulted continuous controller are 
recomputed in every step from the estimated parameters of 
the ELM (Bobál et al., 2005). 

2.1  External Linear Model 

The main types of ELM are continuous-time (CT) models 
and discrete-time (DT) models.  

The general description of the CT ELM can be formulated 
via transfer function G(s): 
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The continuous-time ELM is supposed to be more accurate 
and corresponding to the real model because data are 
estimated continuously during the control. On the contrary, 
CT identification is difficult. 

On the other hand, identification of the DT models are easy 
to realize. We can say that discrete models are used in the 
cases where the usage of continuous ones is complicated or 
the realization is impossible. An important variable in the 
discrete-time models is sampling period Tv. 

The transfer function G in this case is defined as Z-transform 
of the output variable y to the input variable u 
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where a(z) and b(z) are discrete polynomials and U(z) and 
Y(z) are Z-transform images of the input and output variables. 

2.2  Identification 

The use of the discrete model for nonlinear system can cause 
problems with the sampling period Tv. This sampling period 
cannot be small because of the stability and the big sampling 
period is unacceptable because we do not know what will 
happen with the system during this sample. 

The inconvenience with the sampling period could be 
overcome with the use of so called delta (-) models. 
Although the delta operator belongs to the class of discrete 
models with the operator described as  

   1q x k x k   (3) 

it can been seen from 
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that this operator is related to sampling period Tv and it 
means that -models are close to the continuous ones in d /dt.  

A new complex variable in “” plane called “”, which is 
defined for example in (Mukhopadhyay et al., 1992) as 
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need to be introduced. We can obtain an infinite number of 
models for different values of optional parameter  in 
Equation (5) from the range 0 1  .  

The forward -model described for  = 0 by  
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is dealt with in this work.  

The Recursive Least-Squares (RLS) method is used for the 
parameter estimation in this work. The RLS method is well-
known and widely used for the parameter estimation (Fikar 
and Mikleš, 1999). It is usually modified with some kind of 
forgetting, exponential or directional (Kulhavý and Karny, 
1984), because parameters of the identified system can vary 
during the control which is typical for nonlinear systems and 
the use of some forgetting factor could result in better output 
response.  

The RLS method with exponential forgetting is describe by 
the set of equations: 
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Several types of exponential forgetting can be used, e.g. like 
RLS with constant exponential forgetting, RLS with 
increasing exp. forgetting etc. RLS with the changing exp. 
forgetting is used for parameter estimation, where the 
changing forgetting factor 1 is computed from the equation 

     2
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Where K is small number, in our case K = 0.001. 

2.3 Polynomial Synthesis 

The structure of the controller is designed via polynomial 
synthesis. The simple one degree-of-freedom (1DOF) control 
configuration was used. The block scheme of this 
configuration in Fig. 1. 
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Fig. 1 1DOF control configuration 

Block Q in Fig. 1 represents the transfer function of the 
controller, G denotes the transfer function of the plant, w is 



 
 

     

 

the reference signal, e is used for the control error, v is the 
disturbance at the input to the system, u determines the input 
variable, and finally y is the output variable. 

Transfer functions of the controller and controlled plant could 
be described in the continuous time by equations: 
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where polynomials p(s) and q(s) are designed by the 
polynomial approach and parameters of these polynomials 
are computed by the Method of uncertain coefficients which 
compares coefficients of individual s-powers from 
Diophantine equation (Kučera, 1993): 

         a s s p s b s q s d s      (10) 

Although parameters of the polynomials a(s) and b(s) are 
reflected to be in continuous-time, the identification runs 
recursively in discrete time periods related to the sampling 
period Tv. This simplification is supported by the use of -
models where each input and output variable is recomputed 
to this sampling period, Tv, which shifts these discrete 
polynomials closer to the continuous ones. It was proofed for 
example in (Stericker and Sinha, 1993) that the parameters of 
the delta model for the small sampling period approach to the 
continuous ones in (9). 

The feedback controller Q(s) in Fig. 1 ensures all basic 
control requirements – i.e. stability, load disturbance 
attenuation and asymptotic tracking of the reference signal. It 
is required that each controller could be tuned somehow. This 
option can be found in this controller in the stable optional 
polynomial d(s) on the right side of the Diophantine equation 
(10). As it is mentioned above, there are several methods for 
choosing of this polynomial. The method used here is Pole-
placement or Pole-assignment method. Polynomial d(s) can 
be divided into two parts – m(s) and n(s), so 

     d s m s n s   (11) 

where polynomial n(s) is computed from the spectral 
factorization of polynomial a(s) in the denominator of the 
transfer function G(s) (9) 
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and polynomial m(s) is a stable one 
   deg degd n

im s s    and i > 0 are (deg d – deg n) optional  
stable roots, usually called poles of the control system. A 
disadvantage of this method can be found in the uncertainty 
of the polynomial m(s) – there is no general rule how to 
choose roots . 

 

3.  PREDICTIVE CONTROL 

3.1  Generalized Predictive Control 

Generalized Predictive Control (GPC) is one of the most 
popular predictive methods based on Model Predictive 

Control (MPC) (Clarke et al., 1987), and has been 
successfully used in praxis for different types of control 
problems from this time. 

The GPC has many common ideas with the ordinary 
predictive methods but it has some differences to such as the 
solution of the GPC controller is analytical, it can be used for 
unstable and non-minimum phase systems etc. 

The general single-input single-output (SISO) after 
linearization can be described through the discrete backshift 
operators z-1 as 

           1 1 11dA z y t z B z u t C z e t           (13) 

where u(t) is control variable, y(t) output variable, e(t) 
denotes a zero mean white noise, and d is dead time of the 
system. Polynomials A(z-1), B(z-1) and C(z-1) are 
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Equation (23) is called the Controller Auto-Regressive 
Moving-Average (CARMA) model. This model is not 
suitable in most industrial processes where disturbances are 
non-stationary. In these cases, the integrated CARMA 
(CARIMA) model is more suitable 
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where  = 1 – z-1 . 

The GPC algorithm can be then formulated as minimization 
of the cost function 
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where  ŷ t j t  is an optimum j-ahead prediction of the 
output on data up to time t, further, N1 and N2 denote 
minimum and maximum costing horizons, respectively, Nu is 
control horizon, w(t + j) means reference signal, u stands for 
manipulated variable and finally u(j) and u(j) denote 
weighting sequences.  

The values of these factors are for simplification assigned as 
u = 1, and u is constant through the whole time interval of 
the control. 

 

4. MODEL OF THE PLANT 

The nonlinear system under the consideration is the 
Continuous Stirred Tank Reactor (CSTR). The reaction 
inside the reactor is called van der Vusse reaction can be 
described by the following reaction scheme (Chen, et al., 
1995): 
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The graphical scheme of this reactor can be seen in Fig. 2 

The mathematical model of this reactor is described by the 
following set of ordinary differential equations (ODE): 
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Fig. 2: Continuous Stirred Tank Reactor (CSTR) 

This set of ODE together with simplifications then 
mathematically represents examined CSTR reactor. The 
model of the reactor belongs to the class of lumped-
parameter nonlinear systems. Fixed parameters of the system 
are shown in Table 1 (Chen, et al., 1995). 

Table 1 Fixed parameters of CSTR 

k01 = 2.145·1010 min-1 
k03 = 1.5072·108min-1.mol-1 

E2/R = 9758.3 K 
h1 =-4200 kJ.kmol-1 
h3 = 41850 kJ.kmol-1 

Vr  = 0.01 m3 
cpr = 3.01 kJ.kg-1.K-1 
cpc = 2.0 kJ.kg-1.K-1 

U  = 67.2 kJ.min-1m-2K-1 
cA0 = 5.1 kmol.m-3 

Tr0 = 387.05 K 

k02 = 2.145·1010 min-1 
E1/R  = 9758.3 K 

E3/R = 8560 K 
h2 = 11000 kJ.kmol-1 

 
r = 934.2 kg.m-3 

qr = 2.365·10-3 m3min-1 
Qc = -18.5583 kJ.min-1 

Ar = 0.215 m2 
cB0 = 0 kmol.m-3 

mc = 5 kg 

The reaction heat (hr) in eq. (20) is expressed as: 
2
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where hi means reaction enthalpies. 

Nonlinearity can be found in reaction rates (kj) which are 
described via Arrhenius law: 
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where k0 represent pre-exponential factors and E are 
activation energies.  

Static analysis has shown (Vojtesek, et al., 2004), that system 
has an optimal working point for volumetric flow rate of the 
reactant qr = 2.365×10-3 m3.min-1 a heat removal Qc = -18.56 
kJ.min-1. The difference between actual and initial 
temperature of the reactant Tr was taken as controlled output 
and changes of the heat removal Qc was set as control input, 
i.e. 
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On the other hand, dynamic analysis results in ELM 
represented by a second order transfer function with relative 
order one, which is generally: 
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Equation (25) can be rewritten for the identification to the 
form of the differential equation   
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where y is recomputed output to the -model: 
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where Tv is the sampling period, the data vector is 
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and the vector of estimated parameters  
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could be computed from the ARX (Auto-Regressive 
eXogenous) model  
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by the recursive least squares methods described in part 2.2.  

The ELM is of the second order, which means that degrees of  
polynomials p(s), q(s), and d(s) are then: 

deg 2; deg 1; deg 4q p d    (31) 

and polynomials m(s) and n(s) in the equation (11) are  
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and coefficients of the polynomial n(s) are computed via 
spectral factorization (12) as 

2 2
0 0 1 0 1 0, 2 2n a n n a a     (33) 

Transfer functions of the feedback and feedforward parts of 
the controller for 1DOF and 2DOF configurations are 
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Where parameters of the polynomials q(s) and p(s) by the 
comparison of the coefficients of the s-powers a in 
diophantine equations (10). 

The identified parameters of the delta ELM from the 
predictive control were recomputed to the discrete-time 
ELM: 
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which was used for computation of the predictive controller 
in Equation (25). Zero mean white noise e(t) is not take into 
account. 

5. SIMULATION RESULTS 

Both control strategies were verified by simulation 
experiments. The sampling period was set to Tv = 0.3 min, all 
simulations took 500 min and 5 different step changes  
w = [2, -1, 1 -1, 1.5] were done during this interval.  

The first simulation study was done for adaptive controller 
with the various values of the root i = 0.05, 0.1 and 0.2 in 
Equation (32). The predictive controller was verified again 
for different values of the weighting factor u = 0.05, 0.5 and 
2 in (16). 
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Fig. 3: Course of the reference signal w(t) and the output 
variable y(t) for various of the root i in adaptive control 

Figures 3 and 4 represents simulation results for adaptive 
control. It can be clearly seen, that the increasing value of the 
parameter i results in the quicker output response, y(t), but 
small overshoots. On the other hand, lower value of this root 
position is parsimonious to the input variable, u(t), in Fig. 4 
which could be in this case considered as a twist of the valve 
on the feeding of the cooling pipe. 
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Fig. 4: Course of the input variable u(t) for various of the root 
i in adaptive control 

The quality of control was evaluated by the quality criteria Su 
and Sy computed for a time interval as: 
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The results for both control strategies are shown in Table 2. 
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Fig. 5: Course of the reference signal w(t) and the output 
variable y(t) for various of the root u in predictive control 

The simulation results of the second control strategy, 
predictive control, are shown in Fig. 5 and Fig. 6. This 
controller is tuned via weighting parameter u which is 
constant during the control and the second weighting 
parameter is u = 1 as it is written above in the theoretical 
part. In this case, increasing value of the u results in slower 
response of the output variable y(t). 

The last two graphs in Fig. 7 and Fig. 8 compares the best 
results for both control strategies – adaptive control with  
i = 0.1 and predictive control with u = 0.5.We can say, that 
in this case both control strategies are comparable but the 
output response y(t) in the predictive control  reaches the 
reference signal (wanted value) w(t) a little bit quicker than 
the adaptive controller. 
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Fig. 6: Course of the input variable u(t) for various of the root 
u in predictive control 

 

Table 2 The results of control quality criteria Su and Sy  

Adaptive control, i = Predictive control, u =  
0.05 0.1 0.4 0.05 0.5 2 

Su[-] 192.4 492.3 8571.5 3265.1 868.3 265.3 

Sy[K2] 1664.4 934.7 532.7 430.3 653.3 1194.8 
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Fig. 7: The best courses of the output variable y(t) for 
adaptive and predictive control 

0 100 200 300 400 500
-80

-60

-40

-20

0

20

40

60

80
 adaptive control
 predictive control

in
pu

t v
ar

ia
bl

e 
u(

t) 
(%

)

time t (min)

i = 0.1

u=0.5

 

Fig. 8: The best courses of the input variable u(t) for adaptive 
and predictive control 

6. CONCLUSIONS 

This paper presents two approaches which could be used for 
controlling of the temperature of the reactant inside the CSTR 
which is typical member of the nonlinear process with 
lumped parameters. Both, adaptive and predictive, controllers 
have good control results although the system has negative 
properties from the control point of view. The adaptive 
controller could be tuned by the parameter i while predictive 
controller has its weighting factor u as a tuning parameter 
too. Final comparison of both control techniques results 
better for the predictive controller but the difference is 
minimal. The future work will be focused on the verification 
of the obtained results on the real plant which could increase 
reliability of these methods. 
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