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Abstract: This paper deals with the numerical simulation studies of the nucleation and crystal growth 

process in a batch crystalliser. The population density functions may extend over orders of several 

magnitudes and the size distribution can be very sharp, thus accurate numerical solution of the population 

density functions can be challenging. The main interest for finding a more representative population 

balance solutions has motivated many researchers to develop many methods for the last four decades. In 

this paper, four methods have been implemented including wavelet-based method. The results obtained in 

three case studies, have demonstrated the wavelet scheme to be an alternative in providing accurate, fast 

and robust solutions.  
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1. INTRODUCTION 

Hulburt and Katz (1964) introduced a statistical mechanical 

formulation, known as population balance, for modelling the 

crystallisation process. The population balance equation 

(PBE) can be defined as a mathematical description 

characterising particles undergoing the mechanisms of birth, 

growth, death and leaving a certain particle phase space. In 

crystallisation, those mechanisms can be categorized as 

nucleation, growth, agglomeration and breakage. The 

population density functions may extend over orders of 

several magnitudes and the size distribution can be very 

sharp, thus the accurate numerical simulation of the 

population density functions can be challenging and has 

motivated several researchers in this area for decades to 

develop specialised algorithms for solving PBE, for example 

Ramkrishna (1981), Hounslow et al.(1988), Litster et al. 

(1995),  Kumar and Ramkrishna (1996), Nicmanis and 

Hounslow (1996), and Mahoney and Ramkrishna (2002). All 

of these methods can be classified into four categories, such 

as method of weight residuals/orthogonal collocation, finite 

elements methods, finite difference schemes/discrete 

population balances methods, and other methods. There are 

major drawbacks from those methods such as 

computationally expensive, lack of stability and accuracy of 

the solution and in applicability of the solved models to be 

implemented in control based models. Extensive comparative 

discussion of those methods can be found in the literature 

(Kostoglou et al. 1994; Ramkrishna 2000; Vanni 2000). 

Therefore, the need for accurate, fast, robust and low order 

solution is essential for design, control and optimisation 

purposes. 

 

This paper reports the application of wavelet based methods 

as an alternative, for solving population balance problems in 

a batch crystalliser condition. Previous study (Utomo et al. 

2006) has been extended by comparing with finite difference 

based methods, such as upwind finite difference (U-FD), 

biased upwind finite difference (BU-FD), and method of 

weighted residuals, such as, orthogonal collocation with finite 

element method (OCFE). Different types of population 

balance are illustrated in the three cases discussed in this 

paper. They are having a high non-linearity, a steep-front 

profile, and stiff characteristic. The solutions are 

benchmarked with respects to their size (spatial grid points 

used), accuracy (mean and average error) and the 

computation time (t-CPU).  

 

2. NUMERICAL SCHEMES 

2.1 Previous Methods 

Finite difference (FD) methods have been commonly used for 

the solution of all types of partial differential equations 

(ODEs) systems. FD method approximates the continuous 

function, ����, with Taylor expansion series (Hangos and 

Cameron, 2001). They can be a first order or second order 

approximations. In our case, FD method was used to 

approximate the first partial derivative of population density 

over its size and converts the PDE into a set of ODEs.  

 

In this paper, the upwind finite difference and biased upwind 

finite difference schemes were applied to effectively handle 

the instability and to avoid the spurious oscillation as 

generated by a centred FD scheme. The five-point (fourth-

order accuracy) upwind and biased upwind on uniform grids 

were implemented as described in (Wouwer et al. 2005). 

Orthogonal collocation technique was developed and applied 

in various cases of boundary value problems. The trial 

functions are chosen as sets of orthogonal polynomials and 



 

 

     

 

the collocation points are the roots of these polynomials. The solution can be calculated from the collocation points. The 

use of orthogonal polynomials is to reduce the error as the 

polynomial order increases (Gupta 1995; Hangos et al. 2001). 

OCFE is the combination method of dividing the regions into 

a number of elements and by applying orthogonal collocation 

techniques for each element can improve the solution where 

the profile is very steep. In the region, where there is a sharp 

transition, numbers of small elements can be applied while 

the remainder utilizes larger size elements. Selection of the 

elements size is therefore essential. 

 

2.2 Wavelet-based methods 

 

In 1992, Daubechies in her famous text-book, “Ten lectures 

on wavelets” (Daubechies 1992), predicted that a wavelet 

based software package to solve partial differential equations 

will be available in the market. The prediction has not been 

met as today there is no software available except for the 

Wavelet Toolbox in MATLAB®, which cannot be used for 

solving any partial differential equation (PDE).  

 

The earliest wavelet application in chemical engineering was 

Wavelet Galerkin (WG). It was due to the work of Chen et al. 

(1996). Wavelet method with Galerkin scheme was utilised to 

solve the breakage population balance in a batch crystalliser. 

One of the challenges of WG is the expansion coefficients in 

WG was not specified in the physical space, while most of 

the PDEs can be directly solved in the physical space rather 

than converting and transforming its solution back to physical 

space. The second method was Wavelet Optimised Finite 

Difference (WOFD), developed by Jameson (1998). To date, 

this method has not been employed in the chemical 

engineering field. The third method was Wavelet Orthogonal 

Collocation (WOC). Its first application in chemical 

engineering was due to Liu and Cameron (2001). This 

method was successfully applied to solve the population 

balance and steep front concentration profiles in adsorption. 

However, WOC has not been applied for solving the complex 

cases which may involve the non-linearity and full 

dimensional variables. To sum up, the comparison of the 

three methods discussed are given below, which may initiate 

further development of a new wavelet-based numerical 

scheme for solving PDEs. 

Table 1. Comparative components of three wavelet-based 

methods, WG: Wavelet Galerkin, WOFD: Wavelet 

Optimised Finite Difference and WOC: Wavelet Orthogonal 

Collocation 

Comparative components WG WOFD WOC 

Basis calculation Wavelet Physical Physical 
BC treatment Difficult Easy Moderate 

Non-linearity handling Difficult Moderate Moderate 
Adaptive scheme No Yes Yes 
Computation capacity Fixed Fixed Reduced 

 

2.3 Daubechies orthonormal wavelets 

 

Wavelet can be used as a basis function to represent a certain 

function. In the wavelet function, two-basis functions can be 

found, the scaling function and the wavelet function. The 

scaling function coefficient illustrates a local average of the 

function (coarse illustration) and the wavelet function 

coefficient describes detailed information of the function 

(refinements) that cannot be found from the average 

coefficient. Compared to Fourier expansion, wavelet 

approximation gives smaller error and is highly localized at 

discontinuity regions (Nielsen 1998). Compared to the 

traditional trigonometric basis functions which have infinite 

support, wavelets have compact support, therefore wavelets 

are able to approximate a function by the placement of the 

right wavelets at appropriate locations. From Daubechies’s 

work (1988), scaling function (φ ) and wavelet function (ψ ) 

can be described by a set of L (an even integer) coefficients 

(pk : k = 0,1,…, L-1) through the two-scale relationship: 
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and the wavelet function 
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The support for the scaling function is in the interval 0 to (L-

1), whilst for the wavelet function is in the interval (1-L/2) to 

(L/2). The coefficients pk are called the wavelet filter 

coefficients.   

 

Denote L
2
(R) as the space of square integrable functions on 

the real line. Let Vj be the subspace as the L
2
-closure of the 

linear combination of: 
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for k { }...1,0,1...,−=∈ Z . A function ( )xf jV∈ can be 

represented by the wavelet series: 
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The multi-resolution properties of wavelets give another 

advantage to represent functions in differential equations 

which can be solved numerically (Motard et al. 1994). 

Detailed information about Daubechies orthonormal wavelets 

can be found in Daubechies  (1988). 

 

2.4 Wavelet Orthogonal Collocation(WOC) 

 

This method was introduced by Betoluzza and Naldi (1996) 

for solving partial differential equations. In 2001, it was 

developed and applied for solving population balance 

problems by Liu and Cameron (2001). The interpolation 

functions are generated by autocorrelation of the compactly 

supported Daubechies scaling functions )(xφ . Then the 

function θ  called autocorrelation function verifies the 

interpolation property due to the orthonormality. 
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and 

( )∫ ≠=−= 0,0)()( ndxnxxn φφθ                                      (6) 

The approximate solution of our problem will be a function uj 

in the term of its dyadic points to obtain the wavelet 

expression: 

 

( ) ( ) ( )∑ −= − nxnuxu jj

jj 22 θ                      (7) 

Detailed information can be found in Liu and Cameron 

(2001) and Bertoluza and Naldi (1996). 

 

 

3. CASE STUDIES 

 

Three case studies of population balances, which have sharp 

transition phenomena in their particle size distribution in the 

batch crystallizer, were tested in this paper. Even though the 

case studies considered here are simple, the analytical 

solutions are available for comparison purposes.  

 

3.1 Case I: Population balance  with nucleation and size-

independent growth 

 

The population balance for nucleation mechanism and size 

independent growth is described by the partial differential 

equation: 
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where � is the number of particle (population density), � is 

the particle size, � is the growth rate, and �	 is the nucleation 

rate.  

 

With initial and boundary conditions such as: 

( ) ( ) 0,0;00, == xntn  (9) 

 

The analytical solution for this case is: 

[ ] 01)exp()exp(),(

0)exp(1),(

>−−−−=

<−−−=

txtxxtn

txxxtn  

 

(10) 

The dimensionless particle size 
 is defined as follow: 

 

 

Where:  

 

 

3.2 Case II: Population balance with size-independent 

growth only and initially seeded  

 

One dimensional population balance for size dependent 

growth mechanism is described by the partial differential 

equation below: 
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With initial and boundary conditions such as: 

( ) ( ) )6.61)1(100exp(,0;00, 2 ×−−== xxntn  (12) 

 

The analytical solution for the second case is : 

)6.61)1.(100exp(),( 2 ×−−−= tGxxtn  (13) 

 

The dimensionless particle size 
 is defined as follow: 

 

 

Where:  

 

 

3.3 Case III: Seeded batch crystalliser with nucleation and 

growth 
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(14b) 

(14c) 

 

where � is the growth rate, and � is the nucleation rate, �� 

and � are the growth and nucleation constant, �� is the 

suspension density, ∆� is the supersaturation, and superscript 

� and b are the exponential constants for growth and 

nucleation rate respectively. 

 

 

With initial and boundary conditions such as: 
( ) ( )00,0 LLnLn −= δ  
( ) GBtn /0, =  

   

(15) 

 

The supersaturation balance can be written as 

 

 

 

(16) 

 

where ��	 is the mass of seed crystals, 
�	is average size of 

seed crystals, 
� is the average size of growing crystals, � is 

the amount of solvent used, � is the crystal density, �� is the 

volume shape factor, �� is the total surface area of crystals, 

and �� is the area shape factor. 

 

The particle size 
 is defined as follow: 

  

 

 

4. RESULTS AND DISCUSSION 

 

All the simulation results presented have been executed on an 

Intel(R) Core(TM) 2 CPU, with 2.00 GHz and 2.00 

Gigabytes of RAM. A MATLAB® version 7.4.0.287 

(R2007a) was used as the computation software to simulate 

the models. The built-in integrator of “ode15s” was utilised 

for integrating set of ordinary differential equations. The 

relative and absolute error of the integrator was specified at 

value of 10
-3

. 

 

4.1 Case I 

 

The first case describes a simple population balance system 

which presents sharp front size distribution profiles. The PBE 

has a nucleation as function of size and a constant growth rate 
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and the analytical solution was available from (Chang et al. 

1984). Four numerical schemes were applied in this case, 

their performance were tested in order to see the suitability, 

accuracy and stability of tested methods in handling the non-

linearity and the sharp profile characteristic. The orthogonal 

collocation with finite elements (OCFE) scheme with 2 

elements, which comprise of 31 grid points was applied. The 

other two methods were based on finite difference scheme. 

The upwind finite difference (U-FD) of 2 points and the 

biased upwind finite difference (BU-FD) of 5 points were 

employed. Both of them were discretised in space to generate 

129 grid points. Lastly, wavelet orthogonal collocation 

(WOC) was used, and their performance were benchmarked 

with the analytical solution. 

 

The average error (AE) was defined as the square root of sum 

of square error divided by the number of grid points. As it 

was calculated on an individual time basis, AE does not 

depend on the number of equations (grid points). The value 

of AE can illustrate the total absolute error of the grids for a 

certain time. A small value of AE may also illustrate a stable 

solution. While AE is the global error figure, the maximum 

error (ME) could show a local error or an overshoot from the 

reference value. ME was defined as the maximum value of 

the square root of sum of square error at a certain time. 

 

 

Fig. 1. Particle size distribution, case I at 0.6 seconds, 

simulated by four methods and compared with analytical 

solution. 

Figure 1 shows a comparative particle size distribution (PSD) 

at 0.6 s. The particle distribution was initially zero and the 

nucleation start to generate nuclei and at the same, the born 

nuclei grow at a constant rate of 1.0.  OCFE 31 profile 

produced a slightly overestimated particle density than the 

analytical solution. While, all the other numerical schemes, 

including WOC, with the same resolution gave comparable 

results. The simplest two points upwind scheme gave an 

under predicted population at the peak point, while the 

simulation results from biased upwind and wavelet are 

equivalent in term of minimising the error at the peak point. 

From the AE point of view, U-FD was the least while BU-FD 

was the first accurate then followed by WOC. When the 

wavelet level (J) was increased from 7 to 9, the ME values 

were about the same but an increased accuracy was achieved 

by 62%, consequently at the same time the computation time 

(t-CPU) was 440% higher.  

 

 

Fig. 2. Particle size distribution of WOC (J=8) at 0.2, 0.4 and 

0.6 second, the black line: WOC solution and grey line: 

analytical solution. 

In this simulation, all the computation time was short (less 

than 5 seconds) because all the methods have the same 

structure of a matrix form. Matrix to matrix calculation was 

superior than loop calculation (using for loop) for its 

computation time and its adaptability to a more complex 

case. Figure 2 shows the solutions produced by WOC (J=8) 

at various time from t = 0.2, 0.4 and 0.6 seconds. At this 

point, it can be concluded that OCFE methods can be with 

reasonable accuracy level and WOC method can be 

employed as an equivalent alternative solution for handling 

the case of sharp fronts profile caused by non-linear 

nucleation function. A question that arose is whether these 

methods are able to track a very sharp profile as shown in the 

next case. 

 

Table 2. Numerical performance results for case I, N: grid 

points, AE: average error, ME: maximum error, t-CPU: 

computation time 

Case I @ 0.6 s N AE ME t-CPU 

OCFE (2) 31 0.4383 0.7861 < 1s 

U-FD (2) 129 0.0082 0.0391 < 1s 

BU-FD (5) 129 0.0031 0.0120 < 1s 

WOC (J=7) 129 0.0064 0.0243 < 1s 

WOC (J=8) 257 0.0033 0.0242 1.4 s 

WOC (J=9) 513 0.0024 0.0239 4.4 s 

 

 

4.2  Case II 

 

In a seeded batch crystalliser, where the nucleation can be 

minimised, particle size distribution will be controlled only 

by the initial condition of seeding and a crystal growth. In 

this case, the crystal growth was assumed again constant, and 

the seed condition was artificially made to present a very 

sharp front of particle size distribution. The previous study 

done by Utomo, et al. (2006) reported that OCFE method 

cannot be applied as the unstable solutions were obtained. 

Moreover, the upwind finite difference scheme gave delayed 

solutions. Therefore, only WOC method as an equivalent 

method was tested in this case. The effect of wavelet 

resolution (J) and vanishing moments (M) were observed to 

closely study its performance. 

 

 



 

 

     

 

 

Fig. 3. Particle size distribution of WOC at t = 1s, using 

various J =5,6,7. 

 

Figure 3 shows the WOC solutions with various wavelet 

resolution (J=5, 6, and 7) as compared to the exact analytical 

solution. It is clear that except for J=5, WOC presented a 

good validation result with high accuracy. WOC for J=5, 

however, not only gave a high ME but also oscillation and a 

negative value problem. The final solution of J=5 was stable, 

but early oscillation recorded the highest average error in the 

solution. The same problem was mentioned by (Muhr et al. 

1996), can be easily rectified by decreasing the spacing or 

utilising adaptive gridding. 

 

 

Fig. 4. The error analysis at t = 1s for various J, where AE: 

average error and ME: maximum error. 

 

The convergence issue is important for numerical simulation. 

The WOC method for the tested resolution could easily give 

good convergence at a resolution as low as 6. Both AE and 

ME could be used for error analysis to show the convergence 

at a certain time. As shown in Figure 4, the convergence was 

actually reached as the J was increased from 6 to 7 and 

further increased in resolution would not give any 

improvement in the accuracy. The effect of vanishing 

moments (M) could only be observed, when the lowest 

resolution was applied. M = 0 and 1 were the most optimal 

values in giving the lowest level of error. At this stage, it can 

be summarised that WOC could have been also employed as 

an alternative for a very sharp front’s profile. The selection of 

resolution is more sensitive to the computational performance 

rather than the sequential choice of vanishing moments. 

Selection of M becomes sensitive only when the symptom of 

instability was observed. To demonstrate WOC capabilities 

as an alternative method, the more complex population 

balance in a batch crystalliser case study was performed in 

the next section. 

 

Table 3. Numerical performance results for case II; M: 

vanishing moments, N: grid points, AE: average error, ME: 

maximum error, t-CPU: computation time 

Case II @ 

1.0 s 
M N AE ME t-CPU 

WOC (J=5) 

0 

33 

0.0369 0.0933 

< 1.0 s 
1 0.0368 0.0933 

2 0.0406 0.0931 

3 0.0414 0.1058 

WOC (J=6) 0-3 65 0.0038 0.0155 < 1.0 s 

WOC (J=7) 0-3 129 0.0028 0.0125 < 1.0 s 

WOC (J=8) 0-3 257 0.0027 0.0124 1.3 s 

 
4.3 Case III 

 

The last case presents a seeded batch crystalliser with 

capacity of 25.5 kg solvent, running in an isothermal 

condition for batch time of 6000 seconds. The nucleation and 

growth kinetics are described in (14b) and (14c). The initial 

condition was the seed condition at the average size of 500 

µm and the boundary condition is outlined in (15). To solve 

the system, a population balance equation (14a) coupled with 

the mass (supersaturation) balance for the solute and solid 

phase as in (16), thus the dynamic of crystal size distribution 

(CSD) can be computed. All the parameters used in this case 

were adopted from (Tavare et al. 1986).  

 

For illustrative purposes, Figure 5, shows the profile of 

supersaturation and crystal growth rate during 6000 seconds 

batch operation. The initial condition of 0.015 kg/kg solvent 

would give a corresponding crystal growth of 1.68 × 10
-10

 

m/s. The WOC method with J = 7 and M = 1 was employed 

and a reasonable result was obtained in Figure 6 as the 

experimental results was not available. 

 

 

 

Fig. 5. Supersaturation (left) and crystal growth rate (right) 

profiles for case III up to 6000 seconds. 



 

 

     

 

 

Fig. 6. Dynamic crystal size distribution for case III, for 400-

1000 µm in size and 0-6000 seconds. 

 

5. CONCLUSIONS 

In this paper, three case studies which present a very sharp 

size distribution profile have demonstrated the potential of 

wavelet-based numerical scheme as an alternative in 

providing accurate, fast and robust solutions. Further research 

on a new wavelet numerical scheme and wavelet application 

in chemical engineering field is essentially required and 

promising. From the computational efficiency result shown, 

with the WOC algorithm, the model is suitable to be 

employed in online control system, however, from control 

engineers’ perspective, low-order models are needed. 
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