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Abstract: This paper reviews the application of a model predictive controller algorithm to a crude oil 

unit in Izmit Refinery of Turkish Petroleum Refineries Corporation as a summary of nearly eight months 

of practical study. The controller is designed to control the crude heating via process flows followed by 

furnace heating and distillation column with product strippers. After a process overview, the fundamental 

control loop considerations are discussed. Steps of determining inferred qualities and step test response 

tests are outlined. The controller design considerations, constraint handling and economic variables are 

presented. Finally, a comparison of before and after commissioning in the kerosene quality and rate is 

tabulated as well as simulation results of the system response for different set point changes in the 

product qualities.  

Keywords: Advanced process control, multivariable predictive control, crude distillation processes, 

model identification.  

1. INTRODUCTION 

Model predictive control (MPC) strategies have found a wide 

range of applications from refineries to food processing and 

become a standard control algorithm for process industries. In 

1999 nearly five thousand applications were reported with an 

increase of about 80 % in the following years (Qin and 

Bagdwell, 2003). MPC algorithm utilizes an explicit process 

model to optimize an open loop performance objective to 

constraints over a future time horizon, based on current 

measured variables and the current and the future inputs 

(Rossitier, 2003).  

Turkish Petroleum Refineries Corporation (TUPRAS) is the 

largest industrial enterprise in Turkey. TUPRAS controls all 

of Turkey’s refining capacity with operating four refineries 

with a total annual process capacity of 28.1 million tons 

crude oil. TUPRAS Izmit Refinery is the biggest refinery of 

four with annual refining capacity of 11.0 million tons of 

crude oil. 

After privatization in 2006, implementation of advanced 

process control (APC) applications were initiated to increase 

operational excellence with many other projects. In this 

paper, an APC application to one of the crude units in Izmit 

Refinery is presented. After the process overview, base layer 

control strategies developed to sustain healthy layer for APC 

studies are explained. The main elements of the controller, 

controlled, manipulated and disturbance variables are 

discussed. Following the methods for obtaining inferred 

qualities, response tests and dynamic modelling strategies are 

outlined. The dynamic models obtained during tests are used 

in the commercial MPC algorithm SMOCPro. The control 

strategies, economic concerns and commissioning issues are 

discussed in the Section 4. The results of the commissioned 

plant data is tabulated as well as simulation of the controller 

for different set point changes in product qualities.  

It is desired to give an outline of an industrial MPC 

application, but also some practical issues on implementation 

details. Finally, Section 5 outlines the study. 

2. PROCESS OVERVIEW AND BASE LAYER CONTROL 

STRATEGIES 

Plant-5 is one of the three crude oil units in TUPRAS Izmit 

Refinery and its simplified flow diagram is depicted in 

Figure1. 

 

Fig. 1. CDU layout 



 

 

     

 

The crude unit consists of mainly five operations. Advanced 

control strategies of steps 1,2 and 3 are in the scope of this 

paper: 

1. Before and after desalter operation, the crude is 

heated via the hot streams available in the plant. 

2. The crude is heated at a temperature around 320-350 

ºC in two parallel furnaces. 

3. The heated crude oil is distilled into products. 

Kerosene, light diesel and heavy diesel are drawn 

off after strippers. The bottom product, residue, is 

the feed to the vacuum unit. 

4. The upstream of distillation column, a mixture of 

LPG, light straight run naphtha and heavy straight 

run naphtha, is fed to the naphtha splitter column 

where LPG and light naphtha are separated from 

heavy naphtha. 

5. The liquid product of naphtha splitter upstream is 

separated into light naphtha and LPG in the 

debutanizer column. 

Before implementation of advanced process control 

algorithm, a preliminary study comprising a base layer PID-

based control is running successfully in normal operation. 

This study includes check of all instrumentation, checking for 

sticky valves, process feedback effects, process interactions, 

noisy measurements, retuning of PID controllers and possible 

configuration changes in the control strategies. In this scope, 

56 regulatory PID controllers were retuned before starting 

testing. 

Two base layer enhancements were carried out in distillation 

column control. There has been no bottom flow controller in 

the distillation column. Operators would manipulate the 

residue flow manually to keep level at operating ranges. This 

resulted continuous monitoring by operators and also discrete 

sudden changes in residue flow, which is the feed of vacuum 

unit as well. In the reviews, a new base layer of a level 

controller cascaded to the bottoms flow controller is 

implemented. With an appropriate tuning, the level is 

controlled while the bottoms flow does not vary significantly 

to create big disturbances to the vacuum unit. 

The overhead drum temperature was manually controlled via 

bypassing from crude oil preheat heat exchangers at above 

102 ºC to avoid corrosion problems. A new temperature 

controller has been implemented that closes the bypass valve 

in the line directing overheads product through the overheads 

cooler / crude preheat exchange. 

3. CONTROLLER DESIGN 

3.1 Variables 

At the beginning of an APC project, the controller design 

requires selection of manipulated (MV), disturbance (DV) 

and controlled (CV) variables. These variables in this project: 

• 28 manipulated variables are considered, 17 of 

which are for preheat and 11 for crude distillation 

column. These manipulated variables are feed flow 

controllers, furnace coil flow controllers and 

distillation column pressure, temperature and flow 

controllers. 

• 3 disturbance variables are selected; amount of total 

feed and inlet flow rates to two furnaces. 

• 19 controlled variables, where 4 variables are in 

preheat section and remaining in the crude 

distillation column. 

Controlled variables for preheat section are desalter 

temperature and pressure and furnace outlet temperatures for 

the preheat section.  

Some key variables are tabulated in Table 1 at the end of the 

paper. Distillation column controlled variables can be 

classified in three categories; inferred qualities, variables of 

economic importance and operational constraints. 

The inferred qualities are the four main product qualities, 

heavy naphtha, light diesel and heavy diesel 95% distillation 

points and kerosene flash point. In order to control these 

qualities, inferential measurements have been developed. All 

the qualities have been inferred based on statistical regression 

of empirical data. The data was collected during a test period 

of two weeks, where manipulated variables and important 

column dynamics were changed one by one and held constant 

for two to three hours, while subsequent lab results were 

gathered. This data was used as a training period and 

inferential measurements were modelled using RQE Pro, 

software in the Process Control Technology Package (PCTP) 

of Shell Global Solutions International BV. Various 

combinations of process variables were regressed and good 

fits were achieved. Regular laboratory data of nearly eight 

months was also used to validate the model. The inferred 

qualities are mainly functions of pressure compensated 

temperatures. In some cases, vapour / liquid ratio below the 

draw-off tray of the product of which the quality was to be 

inferred. In the online application, the inferred qualities’ 

equations’ biases are updated with regular laboratory results. 

Before defining these qualities as a CV to the controller, 

several lab results were introduced to obtain a healthy 

estimation. These results correct any prediction error in the 

calculation that might arise in a local problem occurred 

during tests. Reducing the laboratory analysis amount after a 

certain period is another advantage of this method. Also in 

the online application, sudden change in bias may result in a 

change in the predicted quality, hence an aggressive MV 

output. To overcome this local disturbance, a filter time of 

thirty minutes to one hour has been applied to smoothen the 

update mechanism. 

Operational constraints are usually the design specifications. 

Controlling column pressure valve opening prevents any loss 

of gas during operation. Reflux and heavy diesel pump 

around amount and top drum level as a CV sustains a safe 

operation. The level in the strippers is a major constraint 

where light diesel stripper level can be operated successfully 

to only a certain amount and is the main drawback of the 

light diesel amount. 



 

 

     

 

Although they are not a part of the controller, reducing 

stripping steam amount and transferring the maximum heat 

from heavy diesel pump around are two economically 

beneficial CV’s. The controller controls the stripping steam / 

feed ratio and heavy diesel inlet/outlet temperature difference 

multiplied by heavy diesel pump around amount at certain 

ranges. 

3.2 Response Testing 

During the commissioning of a predictive controller, testing 

and modelling efforts can take up to 90 % of the cost and 

time (Andersen and Kummel, 1992). Successful modelling 

engenders controller stability and performance on the 

predictive capability of the process model used. The most 

important element of a good modelling is the high quality 

clean data obtained form response testing. Also it should be 

noted that data analysis and model identification enhances 

process understanding and behaviour.  

In the APC application in TUPRAS Izmit Refinery crude 

distillation unit, the response tests were carried out for three 

weeks in two shifts. For each of the 28 manipulated variables, 

tests were carried out separately in sequence, groups of six to 

eight steps were made in each. The sequence was repeated 

afterwards, obtaining a test data of sixteen to twenty moves 

for each variable. Repeating sequence allows preventing 

unmeasured disturbances that might happen in one of the 

sequences. The step sizes were defined in a way to see clear 

effects in the other variables, and steps were held for periods 

of one to one and a half of the settling time. The step sizes 

were changed sometimes to identify the presence of 

nonlinearities. 

During step testing, it is very important to carefully observe 

the steps. The correlation of the independent variables, 

possible operator interventions and insufficient move sizes 

may result in poor data, hence poor modelling. Good signal-

to-noise ratio enables that the effects of test changes in inputs 

could be clearly visible in process outputs. To overcome 

possible operator interventions, trainings were carried out 

before start of tests. Also changes in the regulatory 

configuration, PID tunings and possible controller saturations 

must be prevented during the test period. 

3.3 Dynamic Modelling 

Majority of industrial MPC applications use linear empirical 

models (Qin and Bagdwell, 2003). While analyzing the plant 

data, such an empirical dynamic process-modelling tool, 

AIDAPro –another PCTP software- was used. The results of 

step tests were analyzed and mathematically fit to obtain 

predictive process models.  

In dynamic modelling, the interactions of all variables are 

taken into account, hence the effect of intermediate variables 

and disturbances can be tolerated in identification. Basically, 

multivariable higher order parametric models were created 

for each variable. These models are then approximated and 

reduced to a parametric model on individual relationship 

basis of two variables. Based on the data analyzed, the 

process knowledge and step test experience dynamic 

response of the variables are determined. Numerical 

representation of these dynamic response curves can be of 

any degree from first order zero gain to second order beta. 

During modelling 31(28 manipulated and 3 disturbance 

variables) X 19 response curves were fitted. Of these 589 

possible independent / dependent variable response curves, 

53 responses are identified for the controller design. The 

other responses are either zero gain or insignificant. 

4. CONTROLLER COMISSIONING 

4.1 Controller Design 

The dynamic models from observed plant data were used to 

design the controller. Shell Multivariable Optimizing 

Controller, SMOCPro is used to implement predictive 

controller in TUPRAS Izmit Refinery Crude Unit. 

SMOCPro, a part of the Process Control Technology Package 

(PCTP) of Shell Global Solutions International BV, and its 

algorithm was summarized by Qin and Bagdwell (2003) : 

• An explicit disturbance model described the effect 

of unmeasured disturbances; the constant output 

disturbance was simply a special case, 

• A Kalman filter was used to estimate the plant states 

and unmeasured disturbances from output 

measurements, 

• A distinction was introduced between controlled 

variables appearing in the control objective and 

feedback variables that were used for state 

estimation 

• Input and output constraints were enforced via a 

quadratic program formulation 

As well as most advanced process control algorithms, SMOC 

algorithm also follows a reference trajectory by the future 

outputs on the prediction horizon and penalizes the control 

effort on the control horizon. General objective function of 

the controller can be written as 

 
∑∑

==

∧

−+∆∆

−+∆++−+

C

j

P

i
Cnunu

winuwinriny
1

2

2

1

1

2

)1()...(
)1()()(min

(1) 

in which ‘u’ represents inputs, ‘y’ is used to define outputs 

and the superscript ^ denotes the predicted values. ∆u is the 

input variation and r is the reference trajectory of the outputs. 

In this optimization problem, the first term is used to 

minimize the error resulting from the difference between 

predicted outputs and reference trajectory during prediction 

horizon, P. The second term is the difference of control 

actions taken at each time step during control horizon, C. 

Weighting matrices w1 and w2 are positive definite matrices, 

with different magnitudes for all MV’s and CV’s. These 

matrices were used in controller tuning. The optimal input 

sequence’s only first input is implemented to the system and 

the calculations are re-executed in the next sampling time. 

The controller was tuned in offline program with simulations. 

While simulating both control considerations and economic 

variables, discussed in the next part, were considered. 



 

 

     

 

Increasing w1, CV weights, increases the priority in 

decreasing the deviation in set point and reference trajectory, 

in other words makes the control tighter.  Low w1 values 

allow bigger trade-offs. Increasing w2, MV weights, 

prioritizes minimum input variation and results in smoother 

moves.  

As a base decision, the weights for column pressure, column 

top temperature and furnace outlet temperature controllers 

were given higher values than other MV’s. The controller 

was expected to move these MV’s smoother. CV weights for 

kerosene flash point, heavy diesel 95 % distillation and level 

of light diesel stripper were set higher than other weights to 

sustain tighter control. The weight tunings were completed by 

evaluating simulations. 

 

4.2 Economic Variables 

A key factor of SMOCPro is the economic function. 

Economic function is a bilinear function that the controller 

minimises. As long as the control objectives are met, the 

controller drives the defined economic function to minimum. 

Economic function in crude distillation unit consists of: 

• Minimizing column top temperature, column 

pressure and stripping steam ratio to the feed 

• Maximizing heavy diesel pump around duty, 

product draws to stripper level constraints and 

furnace heater duties. Maximizing the amount of 

heavy diesel by letting heavier cuts into heavy diesel 

and leaning to high limit. Maximizing the amount of 

kerosene by letting heavy naphtha into kerosene and 

approaching to low limit. 

The constants of elements of economic function can be 

changed based on the plant needs or operational conditions. 

 

4.3 Commissioning and Online Tuning 

The controller was commissioned over a three- week period. 

The controller tunings determined in the offline studies were 

rechecked to prevent any model-process mismatch. After 

sustaining successful control, economic variables were 

commissioned by extending / restricting the limits. Operator 

trainings were also a major part of the commissioning period. 

All operators were trained to understand the basics of 

controller’s function and philosophy. 

 

4.4 Results 

Over a two months period of controller running, the overall 

throughput of desired products increased significantly. Figure 

2 shows the decrease in the naphtha yield, whole straight run 

naphtha (WSRN), and increase in the kerosene yield for a 

five weeks period of pre-commissioning and four weeks 

period of post-commissioning of the controller. The crude oil 

density was   assumed to be constant, 32.46 and 32.43 API 

for pre and post-commissioning respectively. As seen from 

the figure, 11 % increase in the kerosene yield was achieved 

as a result of decrease in naphtha yield. 

The change in the naphtha yield was also observed in the 

kerosene flash point. The naphtha in the kerosene product 

decrease the flash point of kerosene and by the high weight in 

the kerosene quality, the quality approaches to low limit. This 

approach shown in Figure 3 resulted in very significant 

economic benefits. 

0,10

0,15

0,20

0,25

0,30

0,35

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

Days

W
S

R
N

/F
E

E
D

0,06

0,08

0,10

0,12

0,14

0,16

0,18

K
E

R
O

S
E

N
E

/F
E

E
D

WSRN/FEED Mean WSRN/FEED Ratio KERO/FEED Mean KERO/FEED Ratio

Before APC

Crude Oil Gravity =32,46 API

Kero/Feed Ratio (mean)= 14,7%

After APC

Crude Oil Gravity =32,43 API

Kero/Feed Ratio (mean)= 16,4%

11 % Kerosene Yield

Improvement

 

Fig. 2. Change in the naphtha yield before and after 

commissioning. 
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Fig. 3. Change in kerosene flash point before and after 

commissioning.  

To illustrate the controller’s performance on different 

situations, a simulation was studied using real plant data and 

specifications. When analyzing the results, a few points in 

controller tuning should be noted. Highest priority was 

assigned to kerosene and heavy diesel. Controller objective 

was to keep these qualities to low limit for kerosene and high 

limit for heavy diesel. On the other hand light diesel was 

assigned a low priority that its product rate was manipulated 

mainly in control of heavy diesel quality. 

Figure 4 shows the changes in the product quality set points 

for kerosene flash point, heavy diesel, heavy naphtha and 

light diesel 95 % distillation points and their responses to 

these changes. The changes in critical column dynamics were 

reported in Figure 5. Figure 6 illustrates the product rate 

changes occurred during these set point changes.  
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Fig. 4. Controller results in the qualities for the changes in 

the product quality limits. 
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Fig. 5. Controller results in the distillation column critical 

controllers for the changes in the product quality limits. 
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Fig. 6. Controller results in the product flow rates for the 

changes in the product quality limits. 

5. CONCLUSIONS 

In this paper, an industrial application of a model predictive 

controller algorithm has been presented. The controller has 

been designed for predictive control of crude oil preheat and 

distillation column of a crude oil unit in Izmit Refinery of 

Turkish Petroleum Refineries Corporation. A base layer 

control study has been performed to observe any 

nonconformity in the present control scheme. Tests have been 

carried out to obtain a mathematical model of the inferred 

product qualities. Dynamic step tests have been done for 

determined 28 manipulated variables. Dynamic modelling 

showed 53 responses to validate the controller. 

Priorities for controlled variables and desired variation limits 

of manipulated variables were determined and the controller 

performance was tested using simulations in SMOCPro. 

Obtained model was commissioned for a three week period. 

It has been observed that the product throughputs and its 

economic benefit have been increased significantly. 

Table 1.  Control Variables of CDU Atmospheric Column 

 Loop Description MV CV DV 

1 Heater Outlet Temperature √   

2 Heavy Diesel Pump Around 

(HADPA) Duty 
 √  

3 Atm. Column Top Temperature √   

4 Atm. Column Top Pressure √   

5 Kerosene Draw-off Flow √   

6 Light Diesel Draw-off Flow √   

7 Heavy Diesel Draw-off Flow √   

8 Stripping Steam Flow √   

9 Heavy Naphtha 95% Distillation  √  

10 Kerosene Flash Point  √  

11 Kerosene 95% Distillation  √  

12 Light Diesel 95% Distillation  √  

13 Heavy Diesel 95% Distillation  √  

14 Kerosene Stripper Level Control 

Valve Opening 

 √  

15 Light Diesel Stripper Level 

Control Valve Opening 

 √  

16 Heavy Diesel Stripper Level 

Control Valve Opening 

 √  

17 Atm. Column O/H Drum Level 

Control Valve Opening 

 √  

18 Atm. Column O/H Drum Pressure 

Control Valve Opening 

 √  

19 HADPA Flow   √ 

20 Stripping Steam Duty  √  

21 Feed to Atm. Column   √ 

 

REFERENCES 

Andersen, H.W. and Kummel, M. (1992). Evaluating 

estimation of gain directionality – Part 2: a case study of 

binary distillation, Journal of Process Control, 2, 67-86. 

Rossitier, J.A. (2003). Model based predictive control – A 

practical approach, CRC Press, London. 

Qin, S.J. and Badgwell, T.A., (2003). A survey of industrial 

model predictive control technology, Control 

Engineering Practice, 11, 733-764. 


