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Abstract: In this work characteristics-based model predictive control (CBMPC) of a fixed bed
reactor with catalyst deactivation is studied. Performance of CBMPC has been analyzed for two

cases: one that incorporates the catalyst deactivation within the reactor model and another that

ignores the deactivation. Simulation results show that the performance of first controller that

incorporates the catalyst deactivation is better than the controller that ignores the deactivation.
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1. INTRODUCTION

A catalyst loses its activity during operation. Catalyst de-
activation can have variety of consequences. It may cause
thermal instability of the reactor. It also affects the conver-
sion and selectivity of the desired reaction. Consequently,
it will affect the productivity and energy efficiency of the
plant. In order to compensate for the effect of catalyst de-
activation, the operating conditions are changed gradually
to ensure maintaining the quality of product and the rate
of production. Then designing a controller that can ensure
changing optimal process operating conditions are tracked
as they vary, is an important issue in operation of catalytic
reactors.

Integration of the catalyst deactivation dynamics into the
reaction system model results in a model that can describe
the dynamical behavior of the system more precisely.
By using this model in model-based algorithms, one can
design a more efficient controller.

The objective of this work is to study the control of a
fixed bed reactor with catalyst deactivation. In order to
capture all of the main “macroscopic” phenomena (i.e.,
reactions, diffusion, convection, and so forth), the model of
a fixed bed reactor takes the form of a mixed set of partial
differential, ordinary differential, and algebraic equations.
Such systems and many others (e.g., systems modeled by
partial difference equations, integral equations and delay
differential equations) are called distributed parameter
systems (DPS) or infinite dimensional systems. Since we
will consider the catalyst deactivation in the reactor’s

model, the resulting infinite dimensional system will be
time varying.

Aksikas et al. (2009) and Aksikas et al. (2008) studied the
control of the time varying infinite dimensional systems.
In these works linear-quadratic controllers are developed
by solution of the classical Riccati equation. This work is
extended by Mohammadi et al. (2009) to cover the two-
time scale property of the fixed bed reactors.

Model Predictive Control (MPC) is an optimal control
technique that uses a model of the system to predict
the future plant behavior and determines a sequence of
control moves so that the predicted response moves to the
desired set point in an optimal manner. Unfortunately,
MPC algorithms for distributed parameter systems are
relatively scarce. For diffusion-reaction systems, which are
described by parabolic PDEs, Dubljevic et al. (2005) used
modal decomposition to derive finite-dimensional systems
that capture the dominant dynamics of the original PDE
and are subsequently used for controller design. For the
convection dominated parabolic PDEs, the modal decom-
position methods result in high-order finite dimensional
systems. MPC for high-order systems is computational
demanding and cannot be applied on-line. For hyperbolic
systems, the eigenvalues of the spatial differential operator
cluster along vertical or nearly vertical asymptotes in the
complex plane[Christofides (2001)], and the modal decom-
position methods may not be used. Dubljevic et al. (2005)
used the finite difference method to convert the hyperbolic
equations to a set of ODEs and the MPC is designed for the
resulting model. Using discretization methods may result
in improperly capturing the dynamics of the system. More-
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Fig. 1. Schematic diagram of Fixed-Bed reactor

over, the resulting ODEs are high-order and may result
in an MPC that has high computational computational
requirements.

Characteristics-based MPC is an approach for model pre-
dictive control of DPS proposed by Shang et al. (2004)
and Shang et al. (2007). The method of characteristic
allows controller design for linear, quasilinear, nonlinear
low dimensional PDEs. In this method, partial differential
equations are transformed to a set of ordinary differential
equations along the characteristic curves, which exactly
describe the original DPS. Then the controller design can
be performed on ODEs instead of PDEs without approxi-
mation.

The process considered in this work is a catalytic hy-
drotreating reactor. Hydrotreating is the conventional
means for removing sulfur from petroleum fractions. A
schematic diagram of this reactor is shown in Fig.1. An
important feature of a fixed bed reactor is the two time
scale property of the system. In the other words, the
dynamic behavior of the material balance is faster than
the energy dynamics. Due to this property, the system has
two characteristic curves. Furthermore, by incorporating
the catalyst deactivation equation within reactor’s model
another very slow dynamic will be added to the system.

In this work the problem of controlling a fixed-bed cat-
alytic reactor with catalyst deactivation is considered.
We applied nonlinear characteristic-based MPC on-line
algorithm to control the temperature of the reactor at the
desired setpoint during the reactor’s operation. Two cases
have been considered. In the first one, the designed MPC
uses a model of the system that considers the catalyst
deactivation. In the second one, the catalyst deactivation
is ignored for model predictive control development. Then
performance of the two cases has been compared.

2. MODEL DESCRIPTION

The dynamics of a fixed-bed reactor can be described
by partial differential equations derived from mass and
energy balances. To model the reactor, a plug-flow pseudo-

homogeneous model is considered. Moreover, we consider a
one-spatial dimension model where there are no gradients
in the radial direction. In the simplified system considered
here, a lumped reaction kinetics equation was assumed and
has the following form (see Chen et al. (2001)):

ra = k(t)e"mr)cm ez (1)
Under the above mentioned assumptions, the dynamics of
the process are described by the following energy and mass
balance partial differential equations (PDE’s).
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Initial and boundary conditions are:

Ca(0,t) = Ca,in, Ca(z,0) = Cao(2), (4)

T7(0,t) = Tin, T(2,0) = To(z)
In the equations above, C4, T, ¢, pg,p,Cp, E,Cy, AH,,u
denote the reactant concentration, the temperature, the
porosity of the reactor packing, the catalyst density, the
fluid density, the heat capacity, the activation energy,the
hydrogen concentration, the enthalpy of reaction, and the
superficial velocity respectively. k is the pre-exponential
factor. Catalysts lose their activity with time and as a
result this coefficient varies with time. The parameter k is
proportional to the catalyst activity, which is a function
of time and the operating conditions and can be described
by an ODE (see Furimsky and Massoth (1999)). Here, we
assume that the operating conditions are maintained in
narrow ranges and in this case k is only a function of time,
which can be described by:

k=ko+ ke (5)
The above expression for the kinetics of naphtha hy-
drotreating reaction is in agreement with the observations
that after a rapid initial deactivation of the hydrotreating
catalyst there is a slow deactivation phase and finally a
stabilization of the catalyst activity phase.

3. CHARACTERISTICS-BASED MPC

The method of characteristics is a technique for solving
hyperbolic partial differential equations. The idea is that
every hyperbolic PDE has characteristic curves along
which the dynamics evolve and as a result, the PDE can
be represented as an equivalent ODE.

Consider a quasilinear system of first-order equations
with two dependent variables v, and two independent
variables t and x.
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if ay # a9, the system has two different characteristics
determined by:
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along these characteristics dynamic of the system is de-
scribed by:

d
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Then, by using the method of characteristics, the set of
partial differential equations (6) is transformed to a set of
ODEs along the characteristic curves. This set of ODEs
can be used to predict the future behavior of the system.

For a fixed-bed reactor which is modeled by equations (2)
and (3) the characteristic curves are:

dz u
GEa T ®
dz
= — = 1
Cs priaky (10)

and the state variables C'4 and T are described by the
following ODEs along the characteristic curves:
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The characteristic ODEs are coupled with respect to the
two characteristic curves, and the future state variables at
one spatial point should be determined by simultaneous
integration of both characteristic ODEs along two nonpar-
allel characteristic curves. Fig. 2 illustrates the calculation
of the future output variables using method of character-
istics. This method for prediction of the future behavior is
proposed by Shang et al. (2004). The idea is that at t = ¢,
the measurements of the state variables are available at
discretization points and these measurements are used to
determine the value of the state variables at intersections
of the characteristic curves. This algorithm provides us
with the future values of the output variable. For example
for point P we have:

t(P)
Ca(P) = / £1(Q) (13)
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where:
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and a; and ag are ¥ and u respectively. The position of

the point P is calculated by:

i Z(R) — a2 Z(Q) + araz[t(R) — t(Q)]
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Z(P) = (16)

This procedure is repeated for all nodes and then values of
the future output variables are available and one can use
common NMPC algorithm to compute the control action.
The control action is calculated by solving the following
optimization problem in receding horizon manner.

t+H, t+H,
min/ (T—Tsp)2dt+/ MAW?  (17)
t t

Where H,, is the prediction horizon, H. is the control
horizon, and A is the weight of the input in the objective
function. These parameters are tuning parameters for
MPC.
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Fig. 2. Calculation of future outputs using characteristic
curves

The values of T in the objective function are calculated
using the method that described in this section. Since f;
and f, in equations (13) and (14) are nonlinear functions,
this optimization problem is a nonlinear optimization and
can be solved numerically.

4. NUMERICAL SIMULATIONS

Our case study is a naphtha hydrotreating reactor. The
simulation of the reactor was performed using COMSOL®
Multi-physics. Using the MPC controller formulated in
section 3, the control of the outlet temperature can be
achieved. The manipulated variable is the superficial ve-
locity of the feed.

To simulate the closed loop behavior of the system, we
performed two cases. In the first one, we considered the
deactivation equation of the catalyst and applied the MPC
controller to time-varying equations.



In the second case, the model of the system that is used
for MPC ignores the catalyst deactivation and assumes
constant activity over operation time of the reactor.

Model parameters are given in Table 1. The objective is
to control the reactor’s outlet temperature at specified
setpoint. The objective function is given in Equation (17).

The characteristic curves (9) and (10) are functions of
the input variable. Then for the cases that the control
horizon, H., is greater than one, the characteristic curves
will not have constant slope and the calculation of the
future values of the output variable will be challenging. In
order to simplify the calculations, for the purpose of this
example, we assumed that the control horizon is equal to 1,
so the MPC problem becomes the following optimization
problem:

t+H,
t
ag)% - _pjk(t)e_%czl Cj#  along characteristic C;
€
aT AH, o
ot poTpk (t)ei%cfil Cy  along characteristic C,

The number of discretization points was taken to be m =
9. The prediction horizon is set to the residence time of
the reactor, and A is 1 x 103. The difference between the
two cases is in the characteristic equations (11) and (12),
which for the first case are functions of time.

This optimization problem can be solved by any optimiza-
tion method for differential algebraic equations (DAE).
Here we used sequential approach, which assumes piece-
wise constant inputs at each time interval and integrates
the differential equations in each interval. This method
is an easy method for solving optimization problems for
MPC, but it is slower than other algorithms such as that
proposed by Bock et al. (2000). The sequential algorithm
is good enough for purpose of this illustration example,
but for actual implementation the optimization algorithm
should be improved.

Fig. 3 illustrates the performance of the CBMPC for
the first and second case. This figure shows that the
performance of the standard MPC algorithm for the first
case is better than the second one. The second case, which
considers a constant activity for the catalyst results in
an steady state offset. Fig. 5 is the plot of the outlet
concentration for two cases and Fig. 4 illustrates the
computed control actions for two cases. As Fig. 4 shows,
for the second case the input trajectory is almost constant
except for first few time intervals; For the first case, due
to inclusion of the time varying catalyst activity, the
MPC provides more accurate control. Since we assumed

Table 1. Model Parameters

Parameter Values unit

€ 0.4

pB 700 kgcat/m®
Cy 587.4437 mol/m3
n1 1.12

na 0.85

E 81000 J/mol
R 8.314 J/mol K
Cao 0.419344 mol/m?
Cain 0.419344 mol/m?
To 523 K

T; 523 K

P 2.7 Kg/m?
Cp 147.49 J/Kg K
AH 101.3 x 103 J/mol

a 0.005

k1 1.2384

ko 2.8896

piecewise constant profiles for input variable, resulting
output trajectory for the first case is non-smooth. But the
fluctuations are not greater than £0.01 x Yj),.

In order to deal with the steady state offset problem in
the second case, one should implement offset elimination
algorithms on standard MPC. These algorithms increase
the computational demand of the MPC. Moreover the best
offset elimination algorithm may achieve a performance
similar to that of the first case.
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Fig. 3. Outlet temperature( Controlled variable)

Fig. 6 compares the conversion of the reactor for two cases.
Although the conversion of the second case is higher at
beginning, after a while the reactor’s conversion decreases.
Lower conversion results in decrease in the profitability of
the plant.

5. CONCLUSION

In this work we studied the model predictive control of a
naphtha hydrotreating reactor with catalyst deactivation.
A characteristic-based MPC is developed to control the
reactor. Two different case studies are studied: One that



—— Case 1: Considering deactivation
15 == Case 2:lgnoring Deactivation -

Input x 10*

. . . . . .
0 1000 2000 3000 4000 5000 6000 7000
Time

Fig. 4. Computed Input variable

Concentration
o
N

Case 1: Considering deactivation

i == Case 2:Ignoring Deactivation

0 . . . . . .
0 1000 2000 3000 4000 5000 6000 7000
Time

Fig. 5. Computed Input variable

1 Case 1: Considering deactivation
e, H

[y - = Case 2:Ignoring Deactivation

4
©

Conversion
o o o o
o =2 ~ @

N
~

o
w

o
S
I

. . . . . .
1000 2000 3000 4000 5000 6000 7000
Time

o

o
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incorporates the catalyst deactivation kinetics in the con-
troller model and the second one that ignores the catalyst
deactivation. The performance of two controllers are com-
pared. The key result of this study is that integration of
the catalyst deactivation kinetics with the reactor model,
provides improved performance of the characteristic based
MPC. This improvement in temperature control results in

an improvement in conversion of the reaction, which may
increase the plant profitability.
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