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Abstract: In this paper we develop a robust constrained predictive controller for linear systems.
The controller is equipped with soft output constraints that are used in a novel way to have
robustness against model plant mismatch. By simulation we compare the performance of the
new robust constrained predictive controller to a nominal predictive controller. In the nominal
case, the performance of the robust predictive controller is comparable to the performance of
the nominal predictive controller. In the case of plant model mismatch, the robust predictive
controller performs significantly better than the nominal predictive controller.
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1. INTRODUCTION

Model predictive control has become a standard technol-
ogy in high level control of chemical processes. However,
little advice is available regarding tuning methodologies
of such controllers in the face of the inevitable plant
model mismatch. The closed-loop performance of nominal
linear model predictive control can be quite poor when
the models are uncertain. Consequently, some years after
commissioning, many high-level control systems are turned
off due to bad closed-loop performance. This is often due
to changes in the plant dynamics caused by wear and tear
combined with lack of the necessary human resources at
the plant to re-tune and maintain the MPC. Model pre-
dictive controllers with robust performance against model-
plant mismatch is therefore crucial in long-term main-
tenance and success of MPC system. Using soft output
constraints in a novel way, we demonstrate by simulation
that the poor performance of predictive control in the case
of plant model mismatch can be improved significantly.
Therefore, we suggest use of the soft constraints to tune
and improve the performance of linear model predictive
control.

Specifically, we investigate the effect of uncertain models
on the performance of a regularized l2 model predictive
controller with input constraints, input-rate constraints
and soft output constraints (Maciejowski, 2002; Goodwin
et al., 2005; Qin and Badgwell, 2003). Previously, the
soft output constraints have been used to replace hard
output constraint and guarantee feasibility (Scokaert and
Rawlings, 1999). We use the soft output constraints to
create a dead zone around the set point and demonstrate
by simulation that the performance of such an MPC
does not degrade much in the nominal case but improves
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significantly in the case of plant model mismatch. This
technique is similar but not identical to the funnels used
by Honeywell in RMPC (Qin and Badgwell, 2003; Havlena
and Lu, 2005; Havlena and Findejs, 2005). Compared to
classical process control, our use of the soft constraints
has some similarities to PID control with dead zones
(Shinskey, 1988).

We use a finite impulse response (FIR) model for pre-
diction of the process outputs. In contrast to state space
parameterizations, the FIR model is in a form that can
easily be applied in robust predictive control, i.e. predictive
control based on robust linear programming or second-
order cone programming (Hansson, 2000; Vandenberghe
et al., 2002; Boyd and Vandenberghe, 2004). To facilitate
comparative performance studies of l2 and robust MPC,
a FIR based l2-MPC benchmark has been established
(Prasath and Jørgensen, 2008). The soft output constraint
included in the MPC acts as a dead zone to the controller
to reduce its sensitivity to noise and uncertainty when
the process output is close to its target. This use of soft
constraints for robustness is new, simple, and gives good
performance. Bemporad and Morari (1999) provide an ex-
cellent survey of methodologies for robust model predictive
control.

This paper is organized as follows. We derive the predictive
controller consisting of a regulator and an estimator with
soft output constraints in Section 2. Section 3 illustrates by
simulation the performance of MPC with and without soft
constraints for both deterministic and stochastic processes.
Conclusions are given in Section 4.

2. FIR MODEL BASED MPC

Model predictive control systems consist of an estimator
and a regulator as illustrated in Figure 1. The inputs to



the MPC are the target values, r, for the process outputs,
z, and the measured process outputs, y. The output from
the MPC is the manipulated variables, u.

2.1 Plant and Sensors

The plant is assumed to be a linear state space system

xk+1 = Axk + Buk + Bddk + Gwk (1a)

zk = Cxk (1b)

with x being the states, u being the manipulated variables
(MVs), d being unmeasured disturbances, and w being
stochastic process noise. z denotes the controlled variables
(CVs). The measured outputs, y, are the controlled out-
puts, z, corrupted by measurement noise, v. Consequently

yk = zk + vk (1c)

The initial state, the process noise, and the measurement
noise are assumed to be normally distributed stochastic
vectors

x0 ∼ N(x̄0, P0) (2a)

wk ∼ Niid(0, Q) (2b)

vk ∼ Niid(0, R) (2c)

The measured output, y, is the signal available for feedback
and used by the estimator. u is the signal generated by the
control system and implemented on the plant.

2.2 Regulator

Stable processes can be represented by the finite impulse
response (FIR) model

zk = bk +

n∑
i=1

Hiuk−i (3)

in which {Hi}
n
i=1

are the impulse response coefficients
(Markov parameters). bk is a bias term generated by
the estimator. bk accounts for discrepancies between the
predicted output and the actual output. In this paper, the
output predictions used by the regulator are based on the
FIR model (3). Consequently, using the FIR model (3),
the regularized l2 output tracking problem with input and
soft output constraints may be formulated as

min
{z,u,η}

φ =
1

2

N−1∑
k=0

‖zk+1 − rk+1‖
2

Qz
+ ‖Δuk‖

2

Su

+

N∑
k=1

1

2
‖ηk‖

2

Sη
+ s′ηk

ηk (4a)
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Fig. 1. Generic model predictive control system.

subject to the constraints

zk = bk +

n∑
i=1

Hiuk−i k = 1, . . . , N (4b)

umin ≤ uk ≤ umax k = 0, . . . , N − 1 (4c)

Δumin ≤ Δuk ≤ Δumax k = 0, . . . , N − 1 (4d)

zk ≤ zmax,k + ηk k = 1, . . . , N (4e)

zk ≥ zmin,k − ηk k = 1, . . . , N (4f)

ηk ≥ 0 k = 1, . . . , N (4g)

in which Δuk = uk − uk−1. In this formulation, the
control and the prediction horizon are identical. If desired,
a prediction horizon longer than the control horizon could
be included in the formulation. However, we prefer instead
to select the control horizon sufficiently long such that any
boundary effects at the end of the horizon has no influence
on the solution in the beginning of the horizon. (4) can
be converted to a constrained linear-quadratic optimal
control problem. Efficient algorithms exists for the solution
of such problems with long prediction horizons, N . In this
paper we adopt another approach and formulate a dense
quadratic program in standard form that is equivalent with
(4).

Define the vectors Z, R, U and η as

Z =

⎡
⎢⎢⎣

z1

z2

...
zN

⎤
⎥⎥⎦ R =

⎡
⎢⎢⎣

r1

r2

...
rN

⎤
⎥⎥⎦ U =

⎡
⎢⎢⎣

u0

u1

...
uN−1

⎤
⎥⎥⎦ η =

⎡
⎢⎢⎣

η1

η2

...
ηN

⎤
⎥⎥⎦ (5)

Then the predictions by the impulse response model (4)
may be expressed as

Z = c + ΓU (6)

For the case N = 6 and n = 3, Γ is assembled as

Γ =

⎡
⎢⎢⎢⎢⎢⎣

H1 0 0 0 0 0
H2 H1 0 0 0 0
H3 H2 H1 0 0 0
0 H3 H2 H1 0 0
0 0 H3 H2 H1 0
0 0 0 H3 H2 H1

⎤
⎥⎥⎥⎥⎥⎦

and c is

c =

⎡
⎢⎢⎢⎢⎢⎣

c1

c2

c3

c4

c5

c6

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

b1 + (H2u−1 + H3u−2)
b2 + (H3u−1)

b3

b4

b5

b6

⎤
⎥⎥⎥⎥⎥⎦

Similarly, for the case N = 6, define the matrices Λ and
I0 by

Λ =

⎡
⎢⎢⎢⎢⎢⎣

I 0 0 0 0 0
−I I 0 0 0 0
0 −I I 0 0 0
0 0 −I I 0 0
0 0 0 −I I 0
0 0 0 0 −I I

⎤
⎥⎥⎥⎥⎥⎦ I0 =

⎡
⎢⎢⎢⎢⎢⎣

I
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦

Define sη =
[
s′η1

s′η2
. . . s′ηN

]′
and

Qz =

⎡
⎢⎢⎣

Qz

Qz

. . .
Qz

⎤
⎥⎥⎦Si =

⎡
⎢⎢⎣
Si

Si

. . .
Si

⎤
⎥⎥⎦



with i = {u, η}. Then the objective function (4) may be
expressed as

φ =
1

2

N−1∑
k=0

‖zk+1 − rk+1‖
2

Qz
+ ‖Δuk‖

2

Su

+
1

2
‖ηk+1‖

2

Sη
+ s′ηk+1

ηk+1

=
1

2
‖Z − R‖

2

Qz
+

1

2
‖ΛU − I0u−1‖

2

Su

+
1

2
‖η‖

2

Sη
+ s′ηη

=
1

2
‖c + ΓU − R‖

2

Qz
+

1

2
‖ΛU − I0u−1‖

2

Su

+
1

2
‖η‖

2

Sη
+ s′ηη

=
1

2
U ′ (Γ′QzΓ + Λ′SuΛ)U

+ (Γ′Qz(c − R) − Λ′SuI0u−1)
′
U

+

(
1

2
‖c − R‖2

Qz
+

1

2
‖I0u−1‖

2

Su

)

+
1

2
η′Sηη + s′ηη

=
1

2
U ′HU + g′U + ρ +

1

2
η′Sηη + s′ηη

=
1

2
x′H̄x + ḡ′x + ρ

(7)

with

H = Γ′QzΓ + Λ′SuΛ (8a)

g = Γ′Qz(c − R) − Λ′SuI0u−1 (8b)

ρ =
1

2
‖c − R‖

2

Qz
+

1

2
‖u−1‖

2

Su
(8c)

x =

[
U
η

]
H̄ =

[
H 0
0 Sη

]
ḡ =

[
g
sη

]
(8d)

Consequently, we may solve the FIR based MPC regulator
problem (4) by solution of the following convex quadratic
program

min
x

ψ =
1

2
x′H̄x + ḡ′x (9a)

s.t. xmin ≤ x ≤ xmax (9b)

bl ≤ Āx ≤ bu (9c)

in which

xmin =

[
Umin

0

]
xmax =

[
Umax

∞

]
(10a)

bl =

[
ΔUmin

−∞
Zmin − c

]
A =

[
Λ 0
Γ −I
Γ I

]
bu =

[
ΔUmax

Zmax − c
∞

]
(10b)

In a model predictive controller only the first vector,

u∗
0, of U∗ =

[
(u∗

0)
′ (u∗

1)
′ . . . (u∗

N−1)
′
]′

, is implemented
on the process. At the next sample time the open-loop
optimization is repeated with new information due to a
new measurement.

2.3 Soft Constraint Principle

Figure 2 illustrates the stage cost function for l2 model
predictive control (nominal MPC) and l2 model predictive
control with a dead zone (soft MPC). The stage cost
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Fig. 2. The set point deviation penalty function for nomi-
nal MPC and soft MPC.

function, or penalty function, is plotted as function of
the set-point error, e = z − r. The penalty function of
the nominal MPC is a quadratic function. The penalty
function of the soft MPC is constructed such that it is
zero or almost zero within the dead-zone between the soft
limits and growths quadratically when the set-point error
exceeds the soft limits. The small penalty within the soft
limits ensures that the controller produces a steady state
offset free response. By having the penalty small within
the soft constraints, the controller does not react much
to small errors. In this way we avoid that the controller
introduces significant real disturbances to the process
because it reacts to say measurement noise or plant-model
mismatch. Outside the soft limits, it is assumed that the
deviation from target is due to a real process disturbance,
and the soft MPC may be designed to react in the same
way as the nominal MPC.

2.4 Simple Estimator

To have offset free steady state control when unknown step
responses occur, we must have integrators in the feedback
loop. This may be achieved using a FIR model in difference
variables. Assume that the relation between the inputs and
outputs may be represented as

Δyk = Δzk = ek +

n∑
i=1

HiΔuk−i (11)

in which Δ is the backward difference operator, i.e. Δyk =
yk − yk−1, Δzk = zk − zk−1, and Δuk = uk − uk−1. This
representation is identical with the FIR model (3)

yk = zk = b̂k +

n∑
i=1

Hiuk−i (12)

if b̂k is computed by

ek = Δyk −

n∑
i=1

HiΔuk−i (13a)

b̂k = b̂k−1 + ek (13b)

Note that in the regulator optimization problem b1 = b2 =

. . . = bN = b̂k at each time instant. This is based on
the assumption that the disturbances enter the process



as constant output disturbances. Of course this may not
be how the disturbances enter the process in practice,
and significant performance deterioration may result as
a consequence of this representation.

3. SIMULATIONS

In this Section we consider plants of the form

Z(s) = G(s)U(s) + Gd(s) (D(s) + W (s)) (14a)

y(tk) = z(tk) + v(tk) (14b)

with the transfer functions

G(s) =
K(βs + 1)

(τ1s + 1)(τ2s + 1)
e−τs (15a)

Gd(s) =
Kd(βds + 1)

(τd1s + 1)(τd2s + 1)
e−τds (15b)

The disturbance model, Gd(s), is kept fixed at its nominal
value, while the transfer function, G(s), from U(s) varies
around its nominal value, G0(s). This is used to illustrate
the consequence of model uncertainty on the MPC closed-
loop performance. The nominal system is K = Kd = 1,
τ1 = τ2 = τd1 = τd2 = 5, β = βd = 2, and τ = τd = 5. The
system is converted to a discrete time state space model
(1) using a sample time of Ts = 1 and a zero-order-hold
assumption on the inputs.

The predictive controller is based on the impulse response
coefficients of the following system

Z(s) = Ĝ(s)U(s) (16)

in which Ĝ(s) is identical to the nominal plant G0(s).

The simple estimator described in Section 2.4 is used for
bias estimation. The input limits are umin = −1, umax = 1,
Δumin = −0.2, and Δumax = 0.2. The horizon of the
impulse response model is n = 40 and the control horizon
is N = 120. The MPC is tuned with Qz = 1 and S = 10−3.

The unknown deterministic process disturbance, D(s), the
stochastic process disturbances, W (s) or wk, and the
measurement noise, v(tk) = vk, used in the simulations are
illustrated in Figure 3. The stochastic process disturbances
is wk ∼ N(0, 0.01), and the stochastic measurement noise
is vk ∼ N(0, 0.01).

3.1 Nominal Stochastic System

We consider the case when the model used by the con-
troller is identical to the deterministic part of the plant
model. However, the plant has in addition to the determin-
istic part stochastic process disturbances and stochastic
measurement noise as illustrated in Figure 3.

Consider the case with no determistic disturbance, i.e.
D(s) = 0. The performances of the nominal MPC and the
soft MPC applied to this system are compared in Figure 4.
The output variances produced by the two controllers are
almost identical, while the input variance of the soft MPC
is much smaller than the input variance of the nominal
MPC. Due to the low penalties within the soft limits, the
soft MPC does not react to measurement noise and do not
need to compensate such previous erroneous measurement
noise induced input moves.

Figure 5 illustrates the performance of the nominal MPC
and the soft MPC when the model is identical to the
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Fig. 3. External signals used in the closed loop simulations.
D(s) or dk is the unknown deterministic disturbance,
vk is the stochastic measurement noise, and wk is the
stochastic process noise,
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Fig. 4. Comparison of normal and soft MPC with nominal
models applied to a stochastic system with no de-
terministic disturbance (Nominal MPC = blue, Soft
MPC = red).

plant model and the external signals illustrated in Figure
3 are applied to the model (14). Also in this case, the
controlled variable, Y (or Z), of the two controllers are
similar while the manipulated variable, U , of the soft
MPC has significantly less variance than the manipulated
variable, U , of the nominal MPC.

3.2 Uncertain Determistic System

We consider a deterministic system without stochastic
process noise nor stochastic measurement noise. However,
the model used by the controllers is different from the
plant model. The process is perturbed by an unknown
deterministic disturbance, D(s), as illustrated in figure 3.

We compare the performance of the nominal MPC and the
soft MPC for model-plant mismatches defined by the time
delay, τ , the gain K, the time constant τ1, and the zero β.
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Fig. 5. Comparison of normal and soft MPC with nom-
inal models applied to a stochastic system with an
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shown in Figure 3.
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Fig. 6. Closed-loop MPC performance with time delay
uncertainty. The plant delay is τ = 3 and the model
delay is τ̂ = 5 (Nominal MPC = blue, Soft MPC =
red).

Figure 6 and Figure 7 illustrate closed-loop performances
achieved by the nominal and soft MPC when there is time
delay plant-model mismatch. The soft MPC has smaller
input variation than the nominal MPC, and the soft MPC
provies better control than the nominal MPC in terms of
set point deviations.

Figures 8-10 illustrate the performances of the nominal
MPC and the soft MPC in the case of model-plant mis-
match in the gain, the time constant, and the zero, re-
spectively. In all cases, the soft MPC has significantly less
input variation than the nominal MPC. Furthermore, the
outputs are significantly better controlled by the soft MPC
than by the nominal MPC.
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Fig. 7. Closed-loop MPC performance with time delay
uncertainty. The plant delay is τ = 7 and the model
delay is τ̂ = 5 (Nominal MPC = blue, Soft MPC =
red).
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Fig. 8. Closed-loop MPC performance with gain uncer-
tainty. The plant gain is K = 2 and the model gain is
K̂ = 1 (Nominal MPC = blue, Soft MPC = red).

3.3 Uncertain Stochastic System

Figure 11 illustrates the closed loop performance of a
nominal MPC and a soft MPC applied to the system
(14) with the external signals in Figure 3 and a plant-
model mismatch in the gain. The plant gain is K = 2
and the model gain is K̂ = 1. By inspection, it is obvious
that the performance of the soft MPC is significantly
better than the performance of the nominal MPC. The
superior performance is achieved by having a small set
point deviation penalty within the soft constraints such
that the controller does not react aggressively when close
to the set point. In this way it avoids perturbing the
system due to stochastic measurement noise and plant-
model mismatch.
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Fig. 9. Closed-loop MPC performance with time constant
uncertainty. The plant time constant is τ1 = 2 and
the model time constant is τ̂1 = 5 (Nominal MPC =
blue, Soft MPC = red).
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Fig. 10. Closed-loop MPC performance with zero uncer-
tainty. The plant zero is β = 4.5 and the model zero

is β̂ = 2 (Nominal MPC = blue, Soft MPC = red).

4. CONCLUSION

We have developed a l2 regularized predictive controller
with soft constraints and demonstrated efficient applica-
tion of this controller to uncertain stochastic systems. We
call this controller soft MPC. It is illustrated and verified
by simulations that this soft MPC provides significantly
better closed loop performance than nominal MPC. The
soft MPC also provides much better performance degra-
dation in the face of plant-model mismatch than nominal
MPC. These features are expected to contribute to better
closed loop performance, easier maintenance, easier tun-
ing, and longer lifetime of model predictive controllers for
chemical processes.
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