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Abstract: In this paper, a coordinated-distributed model predictive control (MPC) scheme
is presented for large-scale discrete-time linear process systems. Coordinated-distributed MPC
control aims at enhancing the performance of fully decentralized MPC controllers by achieving
the plant-wide optimal operations. The ‘price-driven’ decomposition-coordination method is
used to adjust the operations of the individual processing units in order to satisfy an overall
plant performance objective. Newton’s method, together with a sensitivity analysis technique,
are used to efficiently update the price in the price-driven decomposition-coordination method.
The efficiency of the proposed control scheme is evaluated using a model of a fluid catalytic
cracking process.
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1. INTRODUCTION

Since the late seventies, the design of chemical processes
has evolved towards integrated operations that have in-
creased plant’s efficiency. The improvement in the design
of chemical processes included, among other things, energy
and mass integration, and the use of recycle streams. As
a result, processes became more complex and processing
units became more tightly interconnected. Control of such
integrated large-scale processes has been typically per-
formed with decentralized schemes because of the diffi-
culties in implementation and maintenance of centralized
control frameworks.

Centralized and decentralized control are two distinct con-
trol strategies. In centralized control, no real distinction
is made among processing units. The centralized control
framework is formulated as a monolithic control problem
that incorporates all process variables with no unit-level
decomposition. While a centralized strategy can lead to
optimal plant-wide performance, it presents some dis-
advantages (e.g., the large-dimensionality of the control
problem and lack of flexibility in terms of operation and
maintenance), which make centralized control unsuitable
for industrial processes. In decentralized control, each en-
gineering unit is optimized separately by neglecting the
interactions with the other units. The decentralized ap-
proach is the most commonly used in the industry because
of its robustness and its resiliency to systems failures.
Nevertheless, decentralized control does not generally lead
to the desired plant-wide optimal operations (Lu (2003);
Sun and El-Farra (2008)).
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A compromise between centralized and decentralized con-
trol is desired in order to improve plant operations. Dis-
tributed control has emerged as a promising control strat-
egy that can lead to the plant-wide optimal operations,
while keeping manageable controllers for each subunit
in the plant. In the distributed control framework, it is
assumed that each subsystem computes its own optimal
solution while considering all or certain degree of inter-
actions with the other subsystems. To attain the desired
control performance, information related to each subsys-
tems’ optimal solutions is generally exchanged among
the subsystems. In this work, we present a coordinated-
distributed model predictive control (CDMPC) framework
for constrained dynamic processes. In CDMPC control,
data is exchanged with each individual MPC controller
via a ‘coordinator’ or ‘master’.

1.1 Distributed MPC Control

Distributed MPC control has attracted the attention of
many researchers in recent years. Dunbar and Murray
(2004) formulated MPC platforms for nonlinear inter-
acting subsystems (multi-vehicle formations) whose state
variables are coupled in a single objective function. For lin-
ear interconnected systems, Venkat et al. (2005) proposed
a communication-based MPC that can converge to a Nash
equilibrium. The communication-based MPC was further
improved by a cooperation-based MPC that leads to the
Pareto optimal feasible solution. Cheng et al. (2008, 2007)
proposed a coordinated scheme for MPC steady state
target calculation based on Dantzig-Wolfe decomposition
and price-driven coordination methods, respectively.



The main contribution of this work is to propose the
price-driven decomposition-coordination algorithm, as de-
scribed in Cheng et al. (2007), for the control of con-
strained process systems whose dynamics are represented
by discrete-time models. The CDMPC control scheme
presented in this paper achieves the centralized optimal
operations and can be implemented when step-response
models are available for the process. Since our control
formulation uses models obtained from step-test data, it
does not need estimation of unavailable process variables
(as it might be required when formulating MPC controllers
based on state-space models). Furthermore, the proposed
CDMPC control scheme allows for bias correction in the
predicted outputs through feedback.

An illustration of CDMPC is shown in Fig. 1. The price-
driven decomposition-coordination method is used in the
formulation of the CDMPC controllers. In the price-driven
decomposition-coordination method, the coordinator sets
up a price, ‘p’, for the subsystems’ interacting variables
(Fig. 1). The price provided by the coordinator is then

Fig. 1. Illustration of CDMPC Control

adjusted to alter the subunits’ calculated control actions
towards the overall plant optimum. In this work, the price,
p, is updated based on Newton’s method. An iterative
procedure is established between the coordinator and the
subunits until the desired plant-wide optimal solution is
achieved.

2. CDMPC CONTROL FOR DYNAMIC PROCESS
SYSTEMS

In this section, the CDMPC control scheme is presented.
Since we consider the centralized performance as the ideal
benchmark, we begin the CDMPC control formulation
by decomposing the centralized control problem into N
smaller subproblems that are easier to solve. Then, an
efficient mechanism is used to achieve the same solution
as the one obtained in the centralized control problem.

2.1 Process Model

Consider the overall plant process, modelled by step-
response coefficients:

yz(k + l) =

T−1X
h=1

rX
w=1

Szw,h∆uw(k + l − h) +

rX
w=1

Szw,T uw(k + l − T ), (1)

∀z = 1, . . . ,m,

where yz (∀z = 1, ...,m) ∈ <m denote the process out-
puts; uw ∈ <r and ∆uw ∈ <r (∀w = 1, ..., r) denote the
manipulated variables and the change in the manipulated
variables, respectively. The coefficients S11,h, ..., Smr,h rep-
resent the step-response coefficients for hth time step. The
step-response weight S11,h is the coefficient between ∆u1

and output y1 for the hth time step. In a similar manner,
Smr,h is the coefficient between ∆ur and output ym for the
hth time step.

2.2 Centralized MPC Formulation

For the centralized MPC implementation, it is convenient
to arrange process model (1) in a matrix form as following:

Ŷ (k + 1) = S∆Û(k) + Y 0(k + 1) + D̂(k + 1), (2)
where the output variables, input variables and change in
input variables predicted along the prediction horizon Hp
and control horizon Hu are defined as:8>>>><>>>>:

Ŷ (k + 1) = [ŷ(k + 1|k)>, ..., ŷ(k +Hp|k)>]>,

ŷ(.) = [ŷ1(.), ..., ŷm(.)]>,

∆Û(k) = [∆û(k|k)>, ...,∆û(k +Hu − 1|k)>]>,

∆û(.) = [∆û1(.), ...,∆ûr(.)]
>, û(.) = [û1(.), ..., ûr(.)]

>.

(3)

The m×Hp vector of unforced responses Y 0(k + 1) is:(
Y 0(k + 1) = [y0(k + 1)>, ..., y0(k +Hp)>]>,

y0(.) = [y0
1(.), ..., y0

m(.)]>.
(4)

The vector D̂(k+1) has been incorporated in (2) to correct
through feedback the discrepancies between the measured
and predicted outputs. The vector D̂(k + 1) is defined as:

D̂(k + 1) = [Im, ..., Im]>| {z }
Hp times

[y(k)− ŷ(k|k − 1)],

where Im is the m×m identity matrix. It is assumed that
the difference between the measured and predicted outputs
at time k remains constant throughout the prediction
horizon.
In (2), the matrix of step-response coefficients S is defined
as:

S =

26666666664

S1 0 . . . 0
S2 S1 0 0
...

...
. . . 0

SHu
SHu−1 . . . S1

...
...

. . .
...

SHp
SHp−1 . . . SHp−Hu+1

37777777775
, (5)

where Sh is the m× r matrix of step-response coefficients
for the hth time step (∀h = 1, ..., Hp):

Sh =

264 S11,h S12,h . . . S1r,h
... . . . . . .

...
Sm1,h . . . . . . Smr,h

375 . (6)

The centralized MPC controller is formulated to mini-
mized the following objective function:



min
Ŷ ,∆Û

J =
1

2

“
(Ysp − Ŷ (k + 1))>Q(Ysp − Ŷ (k + 1)) +

∆Û(k)>R∆Û(k)
”

(7)

subject to:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

Process model (2)-(6), and

û(k + l|k) =

lX
h=0

∆û(k + h|k) + u(k − 1),

∆û(k + h|k) = 0, Hu ≤ h ≤ Hp − 1,

ymin ≤ ŷ(k + l + 1|k) ≤ ymax,
umin ≤ û(k + l|k) ≤ umax,
∆umin ≤ ∆û(k + n|k) ≤ ∆umax,

∀l = 0, . . . , Hp − 1, and ∀n = 0, . . . , Hu − 1,

(8)

where Ysp is the vector of desired set-points, Q = diag{Q(l+
1)} and R = diag{R(n)} are positive definite matrices of
appropriate dimensions.

2.3 Decomposition of Centralized MPC Formulation

We propose a decomposition of the overall optimization
problem (7)-(8) into N subproblems ‘i’. We consider that
the plant dynamics and constraints can be decomposed
into N subunits, followed by a block decomposition of the
tuning matrices Q and R. As a result of the centralized
problem decomposition, each subunit i (∀i : 1, . . . , N)
solves its own optimization problem given by:

min
Ŷi,∆Ûi,V̂i

Ji =
1

2

“
(Yi sp − Ŷi(k + 1))>Qii(Yi sp − Ŷi(k + 1)) +

∆Ûi(k)>Rii∆Ûi(k)
”

+ p>ΘiZi(k) (9)

subject to:

Ŷi(k + 1) = Sii∆Ûi(k) + V̂i(k) + Y 0
i (k + 1) + D̂i(k + 1), (10)

V̂i(k) = Sij∆Ûj(k), ∀j 6= i, (11)
and8>>>>>>>>>>><>>>>>>>>>>>:

ûsi (k + l|k) =

lX
n=0

∆ûsi (k + h|k) + usi (k − 1),

∆ûsi (k + h|k) = 0, Hu ≤ h ≤ Hp − 1,

ysi min ≤ ŷ
s
i (k + l + 1|k) ≤ ysi max,

usi min ≤ û
s
i (k + l|k) ≤ usi max,

∆usi min ≤ ∆ûsi (k + n|k) ≤ ∆usi max,

∀l = 0, . . . , Hp − 1, and ∀n = 0, . . . , Hu − 1.

(12)

The vector ŷsi is a subset of the plant predicted outputs
(ŷsi ⊂ [ŷ1, ..., ŷm]) and represents the predicted output
variables of subsystem i, ∀i = 1, ..., N . Similarly, the
vector ûsi is a subset of the plant predicted inputs (ûsi ⊂
[û1, ..., ûr]) and represents the predicted input variables
of subsystem i, ∀i = 1, ..., N . According to the proposed
decomposition, the predicted change in input variables
and predicted outputs can be arranged in vector form as
∆Ûi(k) = [∆ûsi (k|k)>, ...,∆ûsi (k + Hu − 1|k)>]> and Ŷi(k +

1) = [ŷsi (k + 1|k)>, ..., ŷsi (k +Hp|k)>]>, respectively.

In (10) and (11), the matrix Sii corresponds to the step-
response coefficient matrix between ∆Ûi(k) and predicted

output variables Ŷi(k+1); while the matrix Sij corresponds
to the step-response coefficient matrix between the inter-
acting variables ∆Ûj(k) and predicted output variables
Ŷi(k + 1). The matrices Sii and Sij can be obtained by
decomposing matrices (5) and (6) into N subsystems.

Finally, the variables V̂i(k) represent the interacting or
linking variables among the different subunits in the plant.
The interacting variables account for the effect that inputs
from unit j have on unit i, with i 6= j. In the objective func-
tion (9), Zi(k) = [Ŷi(k + 1)>,∆Ûi(k)>, V̂i(k)>]> represents
the vector of decision variables for subunit i; the matrix
Θi is the coefficient matrix for the linking variables, which
is constructed according to (10) and (11), and p is a price
vector provided by the coordinator.

For simplicity, we re-write problem (9)-(12) as:

min
Zi

Ji =
1

2

“
Zi(k)>ΥiZi(k)

”
+ Φ>i Zi(k) +

p>ΘiZi(k) (13)

subject to:(
B
eq
i Zi(k) = b

eq
i ,

B
ineq
i Zi(k) ≤ bineqi ∀i = 1, ..., N.

(14)

The optimization problem (13)-(14) can be straightfor-
wardly obtained by arranging (9)-(12) in a matrix form
for the entire prediction and control horizons. The op-
timization problem described by (13)-(14) forms part of
the price-driven decomposition coordination method. The
price-driven decomposition-coordination method was dis-
cussed in Jose and Ungar (2000, 1998) to solve algebraic
optimization problems such as resource allocation or auc-
tion problems. This method was successfully adapted and
implemented in Cheng et al. (2007) to solve the MPC
steady-state target calculation problem. In this work, we
use the price-driven method to solve MPC dynamic calcu-
lation problems.

2.4 Coordination of CDMPC Controllers

In the previous section, a decomposition of the overall
problem into N smaller subproblems was presented. A
key step in the formulation of CDMPC controllers is to
design an efficient coordination mechanism that ensures
convergence of the distributed optimal solutions to the
centralized optimum. In this section, we extend the results
obtained in Cheng et al. (2007) for the MPC steady-state
target calculation to the MPC dynamic calculation.

As discussed in Jose and Ungar (2000), a large-scale
problem:

max
z1,...,zn

nX
i

fi(zi)

s.t.

nX
i

Ri(zi) ≤ R̄, zi ∈ Ωi,

with zi ∈ <ni decision variables, Ri vector of shared
resources, and vector R̄ representing the availability of
shared resources, can be decomposed into N subproblems:



max
zi∈Ωi

fi(zi)− (p+ qRi(zi))
>Ri(zi). (15)

In (15), ‘p’ represents the price vector, and the variable q is
a nonnegative scalar that could be assumed to be zero for
quadratic programming problems. In this work, we assume
q = 0.

It was shown in Jose and Ungar (2000) that, when the sub-
problems present concave objective functions and compact
convex feasible sets, they can be successfully coordinated.
Moreover, at equilibrium, the following condition is satis-
fied:

∆R(p, q) =
X
i

Ri(p, q)− R̄ ≤ 0,

with p>(∆R(p, q)) = 0, and p ≥ 0.

Coordination of subproblem (13)-(14) for i : 1, ..., N to
achieve the plant-wide optimal solution can be performed
by using an efficient price-update technique, such as New-
ton’s method. Based on Newton’s method, the price vector
can be updated as follows (Cheng et al. (2007)):

p[κ+1] = p[κ] − αJ−1∆R[κ], (16)
provided that the matrix J is invertible. In the price
update mechanism (16), the superscripts ‘[κ]’ and ‘[κ+ 1]’
denote the iteration steps; α is the step size in Newton’s
method, ∆R[κ] = ∆R(p, q), and J can be calculated as:

J =
d∆R[κ]

dp[κ]
=
X
i

dR
[κ]
i

dp[κ]
. (17)

For the problem formulation described by (13)-(14), the
shared resources or linking constraints are defined as
R

[κ]
i = ΘiZ

[κ]
i , with Z[κ]

i representing the decision variables
at each iteration step ‘κ’. Therefore, the Jacobian matrix
J in (17) becomes:

J =
X
i

dR
[κ]
i

dp[κ]
=
X
i

Θi
dZ

[κ]
i

dp[κ]
. (18)

The Jacobian matrix (18) requires information of the sen-
sitivity matrix dZ

[κ]
i /dp[κ]; that is, in order to efficiently

adjust the price vector, the coordinator should be aware
of how the price affects the decision variables Z[κ]

i at each
iteration. A sensitivity analysis was proposed in Wolbert
et al. (1994) for an algebraic optimization of a process
flowsheet, and it was extended in Cheng et al. (2007) for
the MPC steady-state target calculation. This approach
can be followed to solve problem (18). By performing a sen-
sitivity analysis, the matrix dZ

[κ]
i /dp[κ] can be calculated.

This requires solving the following system of equations:

Γi

2664
∇pZi(k)
∇pλi
∇pAµi
∇pIσi

3775 = −

2664
Θ>i
0
0
0

3775 , (19)

where

Γi =

266664
Υi B

eq>

i AB
ineq>

i 0

B
eq
i 0 0 0

AB
ineq
i 0 0 0

IB
ineq
i 0 0 I

377775 , (20)

assuming that Γi is full-rank. We refer the reader to Cheng
et al. (2007) for a detailed derivation of equations (19) and
(20).

2.5 Implementation of CDMPC Control Scheme

In the traditional MPC implementation, a control action
sequence is determined at each sampling interval by op-
timizing an objective criterion over a finite-time horizon.
Only the first control signal is applied to the process, while
the rest of the calculated control inputs are discarded
(Camacho and Bordons (1999); Maciejowski (2002)). At
the next sampling interval, new process measurements are
available and the optimization is repeated to calculate a
new control action sequence.

In a CDMPC control platform, the coordinator imposes an
extra step to the traditional MPC implementation. Before
the control input is applied to the process, the control
action calculated by each distributed MPC controller
needs to converge to the optimal centralized control action.
Convergence of the CDMPC solutions to the centralized
performance can be achieved by allowing the coordinator
to iteratively adjust the price vector, and therefore the
optimal solution of each subsystem, according to the plant-
wide objective.

Implementation of the CDMPC controllers is carried out
according to the following steps:

(1) Initialization: The coordinator sets up an initial
price vector p[κ] for the interacting variables (ΘiZi,
∀i = 1, ..., N) and sends that information to every
subsystem.

(2) Optimization performed by each subsystem:
Based on the price provided by the coordinator,
each subsystem solves its own optimization problem
(13)-(14) and calculates the resources R[κ]

i = ΘiZ
[κ]
i ;

as well as dZ
[κ]
i /dp[κ], according to (19)-(20). This

information is communicated back to the coordinator.

(3) Price update: The coordinator gathers the infor-
mation from each subsystem; it calculates ∆R[κ], and
J given by (18). Then, the coordinator determines
the step size α (with 0 < α ≤ 1) and updates the
price vector p[κ] as per (16). The new price vector is
informed to each subsystem.

(4) Iteration until convergence: Steps (2)-(3) are re-
peated until convergence of the price-driven decom-
position coordination algorithm. Convergence of the
algorithm is achieved when ||∆R[κ]|| ≤ ε, where ε is a
tolerance error.

(5) Implementation of control action: Once the
decomposition-coordination algorithm converges, the
control actions calculated for the first sampling in-
terval are implemented in each subsystem and the
optimization problem (steps (1)-(4)) is initiated again
for the next receding horizon.

3. SIMULATION EXAMPLE

In this section, a case study is performed to illustrate the
effectiveness of the proposed algorithm. We consider a fluid



catalytic cracking (FCC) process given in Grosdidier et al.
(1993). A diagram of the FCC system is shown in Fig. 2.

Fig. 2. FCC process (Grosdidier et al. (1993))

In the FCC unit, gas oil is converted into hydrocarbons of
shorter chains. A description of the FCC process, together
with the limit values for the controlled and manipulated
variables are given in Grosdidier et al. (1993). The model
of the FCC process, as well as, the models of the regulatory
controllers are shown in tables 1 and 2, respectively. The
continuous-time transfer function models were obtained
through identification analysis of step-test data and in-
clude seven outputs and six inputs. The transfer function
matrix for the overall process, including the models for
the regulatory controllers, can be obtained by multiplying
each transfer function model in table 1 by the correspond-
ing input model in table 2, except for transfer functions
between y5 − u5 and y6 − u5, which do not require that
multiplication (Grosdidier et al. (1993)). To implement the
CDMPC controllers, step-response models were obtained
based on the process dynamics given in tables 1 and 2.
The sampling interval used for simulations was 1 [min].

3.1 Simulation Results

We begin by decomposing the centralized problem into
two subsystems. The first subsystem includes outputs y1
to y3 and inputs u1 to u3, while the second subsystem
includes outputs y4 to y7 and inputs u4 to u6. The
following parameters were used in the simulation study:
weighting matrices Q(l+1) = diag{5; 10; 0.001; 5; 5; 5; 0.001},
R(n) = diag{100; 100; 100; 100; 100; 100}, for l = 0, ..., Hp − 1
and n = 0, ..., Hu − 1. The weighting matrices Q(.) and
R(.) are decomposed as Q11(.) = diag{5; 10; 0.001} and
R11(.) = diag{100; 100; 100} for the first subsystem, and
Q22(.) = diag{5; 5; 5; 0.001} and R22(.) = diag{100; 100; 100}
for the second subsystem. The prediction horizon Hp and
the control horizon Hu considered for the simulation are
50 and 5, respectively.

A set-point change of 0.5 was performed in output y1 at
initial time, while the targets for the remaining outputs
were kept at the origin. The results of the simulation are
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Fig. 3. a) Output variables for subsystem 1: set-point for
y1 (dashed line), y1 (solid line), y2 (dotted line), y3
(dash-dot line); b) Output variables for subsystem 2:
y4(dash-dot line), y5 (dashed line), y6 (solid line), y7
(dotted line); c) Input variables for subsystem 1:u1
(dashed line), u2 (dashed-dot line), u3 (solid line); d)
Input variables for subsystem 2: u4 (dashed-dot line),
u5 (solid line), u6 (dashed line)
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Fig. 4. a) Error in predicted change in input variables
∆Û(k); b) Error in predicted output variables Ŷ (k+1)

presented in Fig. (3)-(4). The closed-loop performance of
the CDMPC controllers for subsystems 1 and 2 is shown
in Fig. 3, where the trajectories are plotted in deviation
variables. It can be seen in Fig. (3a)-(3d) that the CDMPC
controllers provide a good performance since output y1
achieves the new set-point and outputs y2 to y7 are stabi-
lized at their new steady-state optimal values. Fig. (4a)-
(4b) show the normalized errors of the predicted inputs
(||∆ÛCDMPC − ∆Ûcen||/||∆Ûcen||) and predicted outputs
(||∆ŶCDMPC−∆Ŷcen||/||∆Ŷcen||) for the optimization per-
formed at the first sampling time. These prediction errors
are calculated as the difference between the CDMPC op-
timal solutions and the optimal solutions calculated with
a centralized MPC controller. It can be observed in Fig.
(4a)-(4b) that the solutions achieved with the CDMPC
controllers converge to the centralized performance within
2 iterations. The fast convergence observed in this simu-
lation study confirms the results reported in Cheng et al.
(2007) when using Newton’s method as price-adjustment
algorithm for the MPC steady-state target calculation. In
the numerical simulations performed for the FCC unit, the
same fast solution convergence (2 iterations) was observed
within each control execution.



Table 1. FCC process models

u1 u2 u3 u4 u5 u6

y1
0.097(1.7s+1)e−2s

19s2+6.5s+1
−0.87e−2s

13s2+4.9s+1

−0.092(0.25s+1)e−3s

3.7s2+4.7s+1
0.026e−7s

12s+1
−0.074(4.8s+1)

9.3s2+3.4s+1

−(0.48s)e−12s

(6s+1)(8s+1)

y2 0 0.55e−4s

27s2+8.7s+1
0.55e−4s

10s2+4.9s+1
0

0.74(1.7s+1)e−2s

11s2+7.3s+1
0.36e−11s

33s2+6.5s+1

y3 0 0.14e−11s

46s2+8.5s+1
0.14e−6s

46s2+8.5s+1
0

0.27(16s+1)

53s2+23s+1

0.015(12s+1)e−9s

66s2+27s+1

y4 0 0.25e−11s

17s2+7s+1
0.25e−7s

3s+1
0 0.70

3s+1
0.079(6.3s+1)e−10s

24s2+12s+1

y5 0 0.66e−s

2.5s+1
0.66e−s

2.5s+1
−0.9e−10s

6s+1
1

2s+1
−0.54e−11s

9s+1

y6 0 −0.84e−s

6.1s+1
−0.90
1.5s+1

0.35e−10s

5s+1
−(0.64s+1)

13s2+7s+1

0.23(0.5s+1)e−14s

3.6s2+11s+1

y7 0 0.81
6s+1

0.90
s+1

−0.35e−10s

5s+1
0.80 −0.26e−18s

7.1s+1

Table 2. Models between regulatory controller set-points usi and process inputs ui, for i = 1, ..., 6

(us1, u1) (us2, u2) (us3, u3) (us4, u4) (us5, u5) (us6, u6)

1
(0.75s+1)(4.5s+1)

1
(s+1)

1
1.7s2+2.1s+1

(3.3s+1)e−s

40s2+13s+1

(0.64s+1)

13s2+7s+1
1

Remark : For the ease of presentation, we decomposed
the overall FCC process into two subsystems of similar
dimensions. Nevertheless, the CDMPC control scheme can
be applied to N number of subsystems of different dimen-
sions. As future work, we will evaluate the efficiency of the
CDMPC control scheme on process systems that include
more subunits and there is a significant mismatch in the
size of the subunits.

4. CONCLUSION

In this paper, we presented a coordinated-distributed
model predicted control scheme for constrained dynamic
processes. The CDMPC control framework improves the
performance of decentralized controllers by achieving the
overall plant-wide optimal operations.
An important advantage of CDMPC controllers is the sim-
plicity in the control scheme, which does not require a radi-
cal new configuration of the decentralized MPC controllers
operating in the plant. The upgrade from the existing
decentralized MPC controllers to CDMPC controllers only
involves small modifications in the control formulation of
each subsystem and the addition of a coordinator.
The price-driven decomposition-coordination algorithm
was used to efficiently coordinate the dynamic behavior
of the CDMPC controllers. Newton’s method was selected
to update the price vector during the coordination pro-
cess. It was shown with a benchmark process system that
Newton’s method provides a rapid convergence of the unit
operations towards the plant-wide optimal performance.
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