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Abstract: Dynamics are inherent characteristics of batch processes, which can be divided into short time-
scale dynamics within a batch duration and long time-scale dynamics across several batches. The
interactions between process variables make different types of dynamics confounded. Under such
situations, it is difficult to perform efficient fault diagnosis. In this paper, a batch process monitoring
scheme is proposed to separate different types of process variations for modeling and perform monitoring
and fault diagnosis with multi-time-scale dynamic principal component analysis (PCA) models.
Simulation results show that the fault diagnosis efficiency is enhanced.
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1. INTRODUCTION

In today’s industrial manufacturing, batch processes are
widely applied to manufacture high-value-added products. To
ensure operation safety and product quality, the multivariate
statistical monitoring methods, such as multiway principal
component analysis (MPCA) (Nomikos and MacGregor,
1994; Nomikos and MacGregor, 1995) which is an extension
of principal component analysis (PCA), have been utilized in
batch process monitoring and fault diagnosis.

Dynamics are inherent characteristics of batch processes,
including short time-scale dynamics within a batch duration
and long time-scale dynamics across several batches.
Different types of batch dynamics are usually caused by
different values of variable response time which measures the
time process variables take to react to given inputs. Fast-
response variables have small response time constant, while
slow-response variables have large values which may be
longer than a batch duration. To model batch process
dynamics better, several multivariate statistical monitoring
methods have been proposed. Batch dynamic principal
component analysis (BDPCA) (Chen and Liu, 2002) captures
within-batch dynamic information, while two-dimensional
dynamic principal component analysis (2-D-DPCA) (Lu, et
al., 2005) can model both long and short time-scale dynamics
in a two-dimensional (2-D) model structure.

In batch processes, variable correlations always exist.
Especially, changes in slow-response variables can also affect
fast-response variable trajectories. This makes different types
of variable dynamics confounded, and causes difficulties in
process fault diagnosis, as shown later. Therefore, it is
desirable to have a method which can decouple process
variation information according to dynamic time scales and

monitor different types of variations separately. Thus, the
fault diagnosis efficiency and accuracy can be enhanced.

Several existing multivariate statistical methods can divide
process variations into blocks, scales or levels, but none of
them can be utilized directly to handle the situation
mentioned above. Multiblock PCA or partial least squares
(PLS) methods (Westerhuis et al., 1998) group process
variables into meaningful blocks and concern both the inner
relationship within each block and the inter relationship
among blocks. Although the variables with different response
time can be divided into different blocks, two kinds of
dynamics information are not separated due to variable
correlations. Multiscale PCA (Bakshi, 1998) makes use of
wavelet analysis techniques to transform each variable signal
from time domain to frequency domain, and performs PCA
on wavelet coefficients at each scale. However, the different
dynamics characteristics of each variable are not taken into
consideration. Multilevel component analysis (MLCA) and
multilevel simultancous component analysis (MLSCA)
(Timmerman, 2006) separate within-batch variations and
between-batch variations. But only the static variations are
extracted, while process dynamics are not modeled. Besides,
none of the methods reviewed in this paragraph can deal with
long time-scale dynamics across several batches.

In this paper, a batch process monitoring scheme is
developed. This scheme makes use of variable response time
information which can be easily achieved, and separate
process variations into different levels corresponding to
dynamics time scales. 2-D-DPCA method is adopted to build
multi-time-scale models. Thus, faults occurring to a certain
level can be accordingly detected with the level model. Then,
diagnosis can also be performed in the corresponding level,
indicating the causing of the fault more clearly.



The article is organized as following. In section 2, the 2-D-
DPCA method is reviewed. Then, a multi-time-scale batch
process monitoring scheme is proposed and described detail
in section 3. Simulation results are given in section 4. A
batch process with both long time-scale and short time-scale
dynamics is simulated to compare the monitoring and
diagnosis efficiencies between the conventional 2-D-DPCA
method and the proposed scheme. Finally, a conclusion is
given in section 5 to summarize the paper.

2. TWO-DIMENSIONAL DYNAMIC PCA (2-D-DPCA)

2-D-DPCA method proposed by the authors can model both
long and short time-scale batch process dynamics with a
parsimonious two-dimensional (2-D) time series model
structure together with PCA technique (Lu, et al., 2005).

Process dynamics can be indicated by the correlations
between current measurements and lagged measurements.
Long time-scale dynamics often behave as a kind of two-
dimensional (2-D) dynamics, which means the current
measurements are dependent not only on lagged
measurements in the past time direction in the same batch,
but also on lagged measurements in some past batches. These
lagged variables form a region called the support region or
the region of support (ROS). In 2-D-DPCA, an expanded

data matrix X is formed by including all the lagged
measurements in ROS, together with current measurements.
For more details about ROS determination, please refer to
Yao et al.’s work (2008).

Suppose X has been normalized to have unit variances and
zero means. PCA algorithm is performed on it:

X=TP' +E. (1)

where 7 and P are score matrix and loading matrix
respectively, and E is the residual matrix. The number of
scores retained in the score space can be determined using
cross-validation (Wold, 1978). Thus, the original process data
are divided into two subspaces. Score space extracts
systematic variation information, including both 2-D
dynamics and cross-correlation information among variables,
while normal distributed noises are retained in residual space.
Therefore, SPE statistic and corresponding control limits can
be calculated for process monitoring in residual space. After
a fault is detected by the SPE control plot, contribution plots
with control limits (Westerhuis et al., 2000) are used in fault
diagnosis to find the causes of the faults.

When a batch process only has short time-scale dynamics, its
ROS is selected as a region containing several steps of lagged
measurements in current batch. In such a case, 2-D-DPCA
model is similar to BDPCA model (Chen and Liu, 2002).

3. MULTI-TIME-SCALE MONITORING SCHEME

3.1 Motivations

As mentioned in introduction section, in batch processes,
fast-response variable trajectories are often affected by

disturbances in slow-response variables. Take injection
molding process as an example. In that process, temperature
variables’ response time constants are often longer than a
batch duration, while pressure variables response fast.
Suppose a disturbance occurs to barrel temperature. It takes a
long time for barrel temperature to recover. During this
period, the material properties, such as viscosity and density,
change gradually due to the temperature change. This further
causes slow drifts in pressure variable trajectories, although
pressures are fast-response variables. From this example, it
can be seen that both short and long time-scale dynamics are
confounded in fast-response variable trajectories.

As shown in the simulation example in section 4, such
confounding leads to difficulties in fault diagnosis results.
Therefore, it is desirable to decouple process variation
information into several levels according to dynamic time
scales. Then, level models can be built and different types of
variations can be monitored and diagnosed separately, so that
the fault diagnosis efficiency and accuracy can be enhanced.

3.2 Variable classification

As a kind of external information, variable response time is
easy to be estimated from process open-loop tests which are
regular steps in controller designs. Such information is used
to classify variables into groups. It is the first step of multi-
time-scale modeling and monitoring.

In many cases, the variables can be simply divided into two
groups. One contains fast-response variables, while the other
contains slow-response variables which can cause long time-
scale dynamics beyond a batch. In some other situations, it
may be desired to further divide the above two groups into
sub-groups. Suppose there are M number of variable divided
into the fast-response variable group. Take each variable’s
response time constant as a pattern. The k-means clustering
algorithm (Jain et al., 1999) is adopted for partitioning the M
number of patterns. The final cluster number is determined
automatically with a specified threshold of the minimal
distance between two cluster centers or the maximal radius of
a cluster. A larger threshold results in fewer variable groups;
vice versa. The slow-response variable group can also be
further divided in the same way. By doing so, the process
variables with similar response time constants are clustered
into the same group.

3.3 Multi-time-scale level separation

Without losing generality, first, suppose the process variables
are divided into two groups. As discussed in section 3.1, two
types of dynamics may confound in the trajectories of the
variable in the fast-response variable group. To solve this
problem, the operation data in this group should be
decomposed into two parts: one part can be explained by the
variable measurements in the slow-response variable group,
and the other part can not be explained by them and only
contains short time-scale dynamics. The level separation is
based on the idea of external analysis, which was originally
proposed by Takane and Shibayama (1991) and further



discussed by Yoon and MacGregor (2001). Kano et al. (2004)
made use of this idea to distinguish faults from normal
changes in operating conditions.

Consider a batch process data matrix X (I xJxK), where I,

J, K are the number of batches, variables and time intervals
respectively. Unfold this three-way data matrix into a two-
way matrix X (/K xJ) by keeping the variable dimension

and merging the other two dimensions. Suppose X have been
normalized. After variable classification, X can be described
as X = [F S], where F consists of Jz number of fast-response
variables and S consists of Jg= J- Jr number of slow-response
variables. To decompose F, regression analysis is performed
by regarding S and F as inputs and outputs respectively. If
variables in § are independent of each other, the ordinary
least square (OLS) regression can be used:

®=(S'S)'S'F, )
where @ is the regression coefficient matrix. The significance
of regression can be tested (Montgomery, 2005) to show
whether there are correlations between S and F. If there is no
correlation, the levels are naturally seperated. The short time-
scale level consists of D°= F, while the long time-scale level
consists of D" = S. Otherwise, calculate (3).

E=F-SO, 3)
where S@ contains a part of information in F which is
explained by slow-response variable, while the filtered data
matrix £ dose not contains long time-scale dynamics. When
the slow-response variables are not independent, PLS or
principal component regression (PCR) can be utilized to
avoid the collinearity problem. Thus, the process variation
information is separated into two levels according to different
time scales of dynamics: D°= E and D"=[S® S].

When there are more than two groups, the time-scale level
separation is performed in an iterative way. Unfolded data
matrix X is described as X = [X 10 X 20 X 2] , Where

X ,;f is the filtered data matrix of the ith variable group after
the jth iteration run in time-scale level separation, consisting
of J; number of variables. When j =0, X ,,f represents the data
before performing iteration steps. C is the total number of

variable groups, and the variables in X response faster than

the variables in X’ . In the jth run, let $' = X/ = and

C—j+l

F’ = [X]H el XC/:I/ ] . @ is then calculated in the
similar way as (2), and the data are filtered as
E'=F -s'o =[x]" x/ X2 -x0 @

. . _ G
[x/ X xl]
After C-1 cycles of iteration, all levels are separated. The
shortest time-scale level consists of D' = E'. The second
shortest time-scale level consists of D*= [S“'@“! §'. ...
The longest time-scale level consists of D= [S'®' §'].

3.4 Multi-time-scale dynamic PCA modeling, monitoring
and fault diagnosis

After level separation, 2-D-DPCA is adopted to construct
level models for online monitoring and fault diagnosis.

Take a C level separation as an example. In level j (7>1),
D=[S @ §9 Since ST'@ " is completely

dependent on S’ | it only represents redundant
information in a process monitoring context. Therefore, the

variation information in each level is reorganized as
G =E"",G=8", ..., G =5" with matrix dimensions
of (IKXJy), (IKXJy), ..., (IKXJc) respectively. These
matrices are rearranged into three-dimensional arrays with
dimensions of (I XJ; XK), IXJ,XK), ..., IXJ-XK). Then,
following ordinary procedures, 2-D-DPCA models can be
established for each level. The SPE control limits are
calculated for online monitoring. For a level belonging to
short time-scale dynamics, the 2-D-DPCA model reduces to a
BDPCA model. For these levels, the 7° control limits can
also be calculated, since there is no batch-wise dynamics.

In online monitoring, the new data are firstly filtered based
on (4) using coefficient matrices @', @, ..., @' in turns.
Thus, the variations contained in the new data are separated
into different time-scale levels. The corresponding 2-D-
DPCA model is utilized to monitor each level. After faults
are detected in some levels, the contribution plots can be used
for fault diagnosis in these levels accordingly.

4. SIMULATION EXAMPLE

4.1 Batch process modeling

In this section, a simulated batch process with both long and
short time-scale dynamics is utilized to compare the
monitoring and fault diagnosis efficiency of the proposed
multi-time-scale dynamic PCA models with the conventional
2-D-DPCA model. The process model is given as below,

x,(1,k)=0.5%x,(i,k 1)+ 0.8%x, (i—1,k)— 0.3%*x,(i— 1,k —1)

X, (i, k) = 0.44% x, (i —1,k) +0.67*x, (i, k1) = 0.11* x, (i — 1,k —1)» (5)
X, (i, k) = 0.4%x,(i,k —1)+0.25% x, (i, k) + 0.35% x, (i, k)

x,(i,k) = 0.8%x, (i,k —1)+0.53* x,(i,k) - 0.33%x, (i, k)

where i is the batch index; k is the time index; x; and x, are
two independent slow-response variables with long time-
scale dynamics described in a 2-D structure; x; and x4 are
fast-response variables correlated to their own values at one
step before in the current batch, which are also affected by x,
X,. Gaussian noises with variance 0.01 are added into the data.

For
determined as

conventional 2-D-DPCA modeling, the ROS is
x(i,k=1),x(i—1L,k),x(i—1,k—1) , where

x(i,k=1)=[xG,k) x,(i,k) x(i,k) x,(i,k)]. So that,

there are totally 16 variables in the augmented data matrix X,
including 4 current variables and 12 lagged variables in the
ROS.
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Fig. 1. Monitoring and diagnosis results of fault 1 based on 2-
D-DPCA: (a) monitoring result; (b) fault diagnosis result.
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Fig. 2. Filtered variable trajectories in fault 1: (a) e3; (b) ey.

For multi-time-scale dynamic PCA modeling, x; and x,
belong to the slow-response variable group S, while x; and x4
are divided into the fast-response variable group F. The
regression model between F and S is built to remove the
effects of x; and x, from x3 and x4, as described in (2) and (3).
Supposing e; and e, are the filtered values of x; and x,, the

variation information is separated into G* = [e3 64] as the

short time-scale level and G* = [x] xz] as the long time-

scale level. Then, 2-D-DPCA is performed on each level to
model the two different types of dynamics. Let

x(i,k—1)= [xl(i, k) xz(i,k)] . In the long time-scale level,
the ROS is selected as x(i,k—1),x(i —Lk),x(i—1,k—1).
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Fig. 3. Monitoring results of fault 1 based on short time-scale
level model: (a) SPE plot; (b) T° plot.

The 2-D-DPCA model is calculated based on 2 current
variables in Xx(i, k) and 6 lagged variables in the ROS. In the

short time-scale level, the algorithm is performed on 4

variables including e, (i,k),e,(i,k),e,(i,k—1),e,(i,k-1).

4.2 Online modeling and fault diagnosis

Two faults are introduced into the process. Fault 1 occurs to
the slow-response variable x,. From batch 61, x, is
formulated as (6) to simulate a fault:

%, (1,k) = 0.6%x,(i—1,k)+0.3%x,(i,k 1)+ 0.2 * x,(i— 1,k —1) - (6)

Fig. 1 shows the monitoring and the fault diagnosis results
based on conventional 2-D-DPCA, respectively. The SPE
control chart shows that the fault can be detected from the
beginning of batch 61. However, from the contribution plot
of batch 61, Fig. 1(b), it is hard to say which variable is faulty.
Due to the variable correlations, many variables (including
the lagged variables) are outside the control limits.

In multi-time-scale monitoring, variable x; and x, are filtered
to get short time-scale dynamic signals e; and e4. Since the
fault occurs to the slow-response variable x,, and the effects
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Fig. 4. Monitoring results of fault 1 based on long time-scale
level model: (a) monitoring; (b) diagnosis.

of x; and x, have been removed from the short time-scale
level, there is no significant difference between the
trajectories of e; and e; in a normal cycle and those in the
faulty cycles, as shown in Fig. 2. The monitoring results in
Fig. 3 confirm this. Neither SPE nor T° plot in this level is
affected by the fault significantly. At the same time, the SPE
control plot in the other level detects the fault efficiently, as
Fig. 4(a) shows. This points out that the fault happens in the
long time-scale level. Then, contribution plot in this level is
plotted to find out the reason of the fault. From Fig. 4(b), it is
very easy to conclude that x; is the faulty variable.

Fault 2 is about the fast-response variable x;. From batch 61,
the formulation of x; becomes:

x,(i,k) = 0.5%x, (i —1,k) + 0.25%x, (i,k) + 0.35*x,(i,k) . (7)

As shown in Fig. 5, again, the conventional 2-D-DPCA
detects the fault very quickly, but the contribution plot can
not give a clear indication about the reason of the fault.

Fig. 6 shows the trajectories of e; and e4. Obviously,
significant magnitude differences exist between the trajectory
of e; in a normal batch and that in faulty batches. So that, this
fault is hopefully to be detected by the 7° control chart in the
short time-scale level, which is confirmed by Fig. 7(a). The
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Fig. 5. Monitoring and diagnosis results of fault 2 based on 2-
D-DPCA: (a) monitoring; (b) diagnosis.
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Fig. 6. Filtered variable trajectories in fault 2: (a) e3; (b) ey.

monitoring in the other level, as shown in Fig. 8, dose not
show the fault, as it only occurs to a fast-response variable
and dose not affect the long time-scale dynamics. The fault
diagnosis is only needed to be performed in the short time-
scale level. The contribution plot diagnoses the reason of the
fault clearly and correctly, as Fig. 7(b) shows.

5. CONCLUSIONS

Batch process variables have various response time constants,
causing dynamics with different time scales. The trajectories
of the fast-response variables are often affected by the slow-
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response variables, confounding different types of dynamics
and causing trouble in fault diagnosis.

A multi-time-scale dynamic PCA monitoring scheme is
proposed in this paper. The process variations are separated
into different levels according to the dynamics time scales.
Then 2-D-DPCA method is adopted to model each level for

online monitoring. The simulation results show that the fault
diagnosis accuracy is largely improved.

In this paper, variable response time constants are assumed to
be known as a kind of external information. It is better if such
information can be achieved from the analysis of the
operation data. This issue will be studied in the future
researches to make the method completely data-based.
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