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Abstract: Overflow metabolism characterizes cells strains that are likely to produce inhibiting metabo-
lites resulting from an excess of substrate feeding and a saturated respiratory capacity. The critical
substrate level separating the two different metabolic pathways is generally not well defined. This paper
proposes two non-model based extremum-seeking strategies preventing a too important accumulation
of inhibiting metabolites in fed-batch cultures, by estimating the critical substrate level on the basis
of 3 simple measurements related to the feeding, oxygen and carbon dioxide. A simple substrate
controller based on Lyapunov stability arguments is then designed and tested in combination with the
two extremum-seeking schemes.
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1. INTRODUCTION

Industrial vaccine production is usually achieved using fed-
batch cultures of genetically modified yeast or bacteria strains,
which can express different kinds of recombinant proteins.
From an operational point of view, it is necessary to determine
an optimal feeding strategy (i.e. the time evolution of the input
flow rate to the fed-batch culture) in order to maximize produc-
tivity.
The main encountered problem comes from the metabolic
changes of such strains in presence of feeding overflow. This
”overflow metabolism”, also called ”short-term Crabtree ef-
fect”, is a metabolic phenomenon that is induced when the rate
of glycolysis exceeds a critical value, leading to a generally
inhibiting by-product formation from pyruvate (for not well
understood reasons). It occurs for instance in S. cerevisiae cul-
tures with aerobic ethanol formation, in P. pastoriswith aerobic
methanol formation, in E. coli cultures with aerobic acetate
formation or in mammalian cell cultures with the aerobic lac-
tate formation. To avoid this undesirable effect, a closed-loop
optimizing strategy is required, which could take various forms
(Pomerleau (1990), Chen et al. (1995), Akesson (1999), Renard
(2006), Dewasme et al. (2007)).
In this study, a non-model based extremum-seeking strategy is
chosen. Two original techniques are proposed and compared.
The first one is related to the work of Blackman in the 60’s,
revisited and improved in Ariyur and Krstic (2003) while the
second one is based on a simple recursive least squares tech-
nique (RLS). Non-model based extremum-seeking has already
been applied succesfully to dynamic optimization of continuous
cultures in Wang et al. (1999).
Alternatively, model-based extremum-seeking strategy as pre-
sented in the works of Guay et al. (2004), Titica et al. (2003a)
and Titica et al. (2003b) could also be considered for the on-line
determination of the critical glucose concentration. However,

the convergence of this adaptation scheme is slow and lacks
robustness (Dewasme and Vande Wouwer (2008)).

2. MODEL AND CONTROL OBJECTIVES

2.1 Modeling cultures of micro-organisms exhibiting overflow
metabolism

In this study, we consider a generic model that would, in princi-
ple, allow the representation of the culture of different strains
presenting an overflow metabolism (yeasts, bacteria, animal
cells, etc). This model describes therefore the cell catabolism
through the following three main reactions:

Substrate oxidation : S+ k5O
r1X
→ k1X+ k8C (1a)

Overflow reaction (typically fermentation) :

S+ k6O
r2X
→ k2X+ k4P+ k9C (1b)

Metabolite product oxidation : P+ k7O
r3X
→ k3X+ k10C (1c)

where X, S, P, O and C are, respectively, the concentration in
the culture medium of biomass, substrate (typically glucose or
glycerol), product (i.e. ethanol or methanol in yeast cultures,
acetate in bacteria cultures or lactate in animal cells cultures),
dissolved oxygen and carbon dioxide. ki are the yield coeffi-
cients and r1, r2 and r3 are the nonlinear specific growth rates
given by:

r1 =min(rS,rScrit ) (2)
r2 =max(0,rS− rScrit) (3)

r3 =max
(
0,min

(
rP,
k5(rScrit − rS)

k7

))
(4)

where the kinetic terms associated with the substrate consump-
tion rS, the critical substrate consumption rScrit (generally de-



Fig. 1. Illustration of Sonnleitner’s bottleneck assumption for
cells limited respiratory capacity.

pendant on the cells oxidative or respiratory capacity rO) and
the product oxidative rate rP are given by:

rS = µS
S

S+KS
(5a)

rScrit =
rO
k5

=
µO
k5

O
O+KO

KiP
KiP+P

(5b)

rP = µP
P

P+KP
(5c)

These expressions take the classical form of Monod laws where
µS, µO and µP are the maximal values of specific growth rates,
KS, KO and KP are the saturation constants of the corresponding
element, and KiP is the inhibition constant.
This kinetic model is based on Sonnleitner’s bottleneck as-
sumption (Sonnleitner and Käppeli (1986)) which was applied
to a yeast strain Saccharomyces cerevisiae (Figure 1). During a
culture, the cells are likely to change their metabolism because
of their limited respiratory capacity. When the substrate is in
excess (concentration S > Scrit ), the cells produce a metabo-
lite product P through fermentation, and the culture is said in
respiro-fermentative (RF) regime. On the other hand, when the
substrate becomes limiting (concentration S < Scrit ), the avail-
able substrate (typically glucose), and possibly the metabolite P
(as a substitute carbon source), if present in the culture medium,
are oxidized. The culture is then said in respirative (R) regime.
Component-wise mass balances give the following differential
equations :

dX
dt

= (k1r1+ k2r2+ k3r3)X−DX (6a)

dS
dt

= −(r1+ r2)X+DSin−DS (6b)

dP
dt

= (k4r2− r3)X−DP (6c)

dO
dt

= −(k5r1+ k6r2+ k7r3)X−DO+ OTR (6d)

dC
dt

= (k8r1+ k9r2+ k10r3)X−DC− CTR (6e)

dV
dt

= Fin (6f)

where Sin is the substrate concentration in the feed, Fin is the
inlet feed rate, V is the culture medium volume and D is the
dilution rate (D= Fin/V ). OTR andCTR represent respectively
the oxygen transfer rate from the gas phase to the liquid phase
and the carbon transfer rate from the liquid phase to the gas
phase. Classical models of OTR andCTR are given by:
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Fig. 2. Scrit as a function of ro.

OTR= kLa(Osat−O) (7a)
CTR= kLa(P−Psat) (7b)

where kLa is the volumetric transfer coefficient and, Osat and
Psat are respectively the dissolved oxygen and carbon dioxide
concentrations at saturation.

2.2 Control objectives

First, we show that the respiratory capacity has an influence
on the critical substrate concentration level. In the optimal op-
erating conditions (S = Scrit ), the fermentation and metabolite
product oxidation rates are equal to zero and the substrate con-
sumption rate rS is equal to rScrit or rOk5 . Consequently, after a
trivial mathematical manipulation of (5a), a relation between
the critical substrate concentration level and the cell respiratory
capacity is obtained as:

Scrit =
KSrO

k5µS− rO
(8)

Figure 2 shows a plot of this relation where the point [0,0]
corresponds to a totally inhibited respiratory capacity, prevent-
ing any growth, and the point [romax ,Scritmax ] corresponds to
maximum productivity (i.e. absence of metabolite product in
the culture medium and a sufficient level of oxygenation). Ob-
viously, the presence of the product in the culture medium can
decrease the respiratory capacity and in turn the value of the
critical substrate concentration S = Scrit . In order to maintain
the system at the edge between the respirative and respiro-
fermentative regimes, it would be necessary to determine on-
line the critical substrate concentration (Scrit ) and to control
the substrate concentration in the culture medium around this
value (Dewasme and Vande Wouwer (2008)). Unfortunately,
the substrate concentration measurement is a difficult task as
typical concentration levels are below the resolution of cur-
rently available probes (or sensors).
An alternative solution is to reformulate the problem not as a
maximazition of the respiratory capacity but as the maximiza-
tion of the substrate consumption rate coupled to the minimiza-
tion of the fermentation rate.
This can finally be formulated as follows:

maxScritY = maxScritϕ1−ϕ2 (9)
where:

• Y is the assumed measurable cost function;
• ϕ1 and ϕ2 correspond to the reaction rates r1X and r2X ,
respectively.
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Fig. 3. Reaction rates and optimization criteria as a function of
S.

In order to estimate the cost functionY online, we use a pseudo-
steady state assumption. Indeed, assuming that the variations of
substrate, oxygen and carbon dioxyde concentrations are equal
to zero, we obtain from (6b), (6d) and (6e):

D(Sin−S) = (r1+ r2)X (10a)
−DO+OTR= (k5r1+ k6r2+ k7r3)X (10b)
DC+CTR= (k8r1+ k9r2+ k10r3)X (10c)

Dilution terms can be considered as negligible in comparison
with OTR, CTR and DSin. Replacing the reaction rates riX by
ϕi (i= 1,2,3), (10) can be written:

DSin = ϕ1+ ϕ2 (11a)
OTR= k5ϕ1+ k6ϕ2+ k7ϕ3 (11b)
CTR= k8ϕ1+ k9ϕ2+ k10ϕ3 (11c)

From this on, after some basic mathematical manipulations,
it is possible to express a relation evolving proportionaly to
ϕ1−ϕ2, as a function of the yield coefficients, OTR, CTR and
DSin. We decide to call DSin the ”substrate intake rate” (SIR)
and we finally obtain:

Y = ϕ1−ϕ2 ∝ y
y= 2 k10 OTR−2 k7 CTR+(k7k9− k5k10+ k8k7− k6k10)SIR

(12)
This optimization criteria can thus be evaluated on the basis of
3 measurements (OTR, CTR and SIR) coupled to a sufficiently
good identification of several yield coefficients. Figure 3 shows
the evolution of the reaction rates and the criteria (scaled 20
times higher) as a function of the substrate concentration for
a model of S. cerevisiae where the respiratory capacity is as-
sumed to be constant (no oxygen limitation and no inhibition).

3. ADAPTIVE MODEL-FREE EXTREMUM-SEEKING
STRATEGIES

Two adaptive extremum-seeking techniques are proposed in the
following.

3.1 Extremum-seeking through a bank of filters

The objective of the extremum-seeking strategy is to deter-
mine on-line the parameter θ̂ (which in this case represents
the critical glucose concentration). To this end, the system is
excited by injection of a relatively slow sinusoidal dither signal
d = Asin(ωt), as shown in Figure 4.

Fig. 4. Extremum-seeking scheme with a bank of filters.

The following equations describe the extremum-seekingmethod:
The corresponding equations to Figure 4 are:

y= f (θ̂+Asin(ωt)) (13a)
θ̂ = kξ (13b)
ξ̇ = −ωlξ+ ωl(y−η)Asin(ωt) (13c)
η̇ = −ωhη+ ωhy (13d)

where:

• y= f (θ̂ +Asin(ωt)) is the measurable cost function;
• θ̂ is the estimation of the unknown parameter;
• k is the gain of the integrator;
• ξ can be seen as the gradient estimation (≈ dθ̂

dt );
• ωl is the cut-off frequency of the low-pass filter;
• ωh is the cut-off frequency of the high-pass filter;
• η is an intermediate variable explaining the absence of the
low frequencies rejected from y in y−η by the high-pass
filter;

A first high-pass filter is used in order to reject the continuous
component of y. The output is then multiplied by the dither
signal in order to be ”demodulated”.As the dither signal and the
output of the high-pass filter can only be in phase (θ̂ < θ∗) or out
of phase (θ̂ > θ∗), there exists another continuous component
inside the result of this demodulation. The second low-pass fil-
ter is used in order to isolate this new component containing the
information of interest and sometimes residual mid-frequencies
signals. This signal ξ is then filtered one last time by an integra-
tor in order to attenuate the last ”parasite” components and to
recover the estimation of the unknown parameter from the in-
tegration of the continuous component. Following the theorem
demonstrated in Krstic andWang (1997), by choosing adequate
values for all the parameters of the optimizing loop, the system
should exponentially converge to anO(ω+A)-neighborhoodof
the optimum.

3.2 Extremum-seeking through a RLS scheme

This second technique presents a scheme somewhat equivalent
to the previous one where the bank of filters is actually replaced
by a continuous recursive least squares (RLS) (Sastry and Bod-
son (1989)) scheme (see Figure 5) that computes the gradient ξ
using a linear relationship, which is inspired from the shape of
r1− r2 as a function of the substrate concentration:



Fig. 5. Extremum-seeking scheme with RLS.

y= ξ̂Φ (14)
where:

• y= ϕ1−ϕ2
• ξ̂ = [ξ̂1 ξ̂2]
• Φ = [1 Scrit ]

In comparison with the previous extremum-seeking technique,
(14) can be seen as the new relation replacing (12). The vector
parameter ξ̂ is then identified through the continuous RLS
scheme that follows:

e= y− ξ̂Φ (15a)
˙̂ξ = KR−1ΦT e (15b)
Ṙ= K(ΦTΦ−λR) (15c)

where:

• K is the strictly positive and constant adaptation gain;
• R is the inversed covariance matrix acting as a directional
adaptation gain;

• λ is a forgetting factor used in order to avoid a ”covariance
wind-up problem” due to the absence of bounds in R
growth (if λ = 0, Ṙ≥ 0 (Sastry and Bodson (1989))).

ξ̂2 can be considered as the gradient estimation. This one is
pushed to zero in average using an integral control of the form:

˙̂Scrit = kiξ̂2 (16)
The conclusions about the convergence error are identical to the
previous extremum-seeking technique.

3.3 Controller design

We derive adaptation and control laws from the consideration
of a candidate Lyapunov function ensuring system stability.
First, equation (6b) can be rewritten as follows:

dS
dt

= −νX−D(S−Sin) (17)

where ν = r1+ r2 is considered as an unknown kinetic parame-
ter. Defining:

Zs = Scrit +d−S (18)
the control error variable, where d = Asin(ωt), is the periodical
”dither signal”.

ν̃ = ν− ν̂ (19)

the estimation error on ν, we consider the following Lyapunov
candidate function:

V =
1
2
Z2s +

1
2γ

ν̃2 (20)

where γ is a strictly positive tuning parameter.
A stabilizing controller is obtained if one can prove the strict
negativity of the Lyapunov function derivative. Differentiating
V and considering Scrit constant in order to decouple the control
law from the extremum-seeking scheme (this can be done
assuming that the controller converges significatively faster
than the extremum-seeking scheme), we obtain:

V̇ = Zs
[
νX+D(S−Sin)+ ḋ

]
+ ν̃(−

˙̂ν
γ
) (21)

Replacing (18) and (19) in (21) and forcing V̇ to be negative as
in:

V̇ = −kpZ2s (22)
where kp is a strictly positive tuning parameter, we obtain:

−kpZs = ν̂X+D(S−Sin)+ ḋ (23)
provided that:

˙̂ν = −γZsX (24)
Finally, the control law is given by:

D=

[
kpZs+ ḋ+ ν̂X

]
Sin−S

(25)

This last expression explains the presence of the derivative ḋ in
the controller (Figure 4 and 5).

4. SIMULATION RESULTS

Coupling the controller designed in the subsection 3.3 with the
extremum-seeking schemes, we apply the complete loop to a
small-scale simulated yeasts culture (typically 20 l bioreactor).
The initial and operating conditions are: X0 = 0.4g/l, S0 =
0.5g/l,E0= 1g/l,O0=Osat = 0.035g/l,C0=Csat = 1.286g/l,
V0 = 5l, Sin = 350g/l where E0 is the initial concentration of
ethanol. For the kinetic and yield parameter values, the reader
is referred to Sonnleitner and Käppeli (1986).

4.1 Application of the bank filters technique

The parameters for this extremum-seeking scheme are A =
0.007, ω = 2π

0.2 h
−1, ωh = 0.1ω h−1, ωl = 1.5ω h−1, k = 100

and kp = 100. The culture time is fixed to 24 h. Figures 6 and 7
show the results when no inhibition from ethanol accumulation
is considered. This seems to be realistic as the ethanol concen-
tration is below 4 g/l.
However, inhibition is an important phenomena that has to be
taken into account. When included in our bioprocess model,
the extremum-seeking results are as shown in Figure 8 and 9.
It is apparent that the biomass level that can be achieved is
significantly affected by the presence of ethanol, despite the set-
point adaptation. Note that these results are very satisfactory in
view of the situation where a constant substrate concentration
is regulated. Indeed, a small error on Scrit would lead to a dra-
matical accumulation or reconsumption of ethanol and biomass
growth would probably be affected beyond model prediction.
As it is explained in Ariyur and Krstic (2003), the output error
of the extremum-seeking algorithm achieves a local exponential
convergence to an O(A2)-neighborhood of the origin if it is
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Fig. 7. Convergence of the optimization criteria r1 − r2 to
the optimum when no respiratory capacity inhibition is
considered.

0 5 10 15 20 25
0

50

100
Biomass [g/l]

0 5 10 15 20 25

0.02

0.04

Substrate [g/l]

0 5 10 15 20 25
0

5

10
Ethanol [g/l]

Time [h]
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ethanol (E) concentrations evolutions when inhibition is
considered.

assumed that we are operating around a point of zero slope
as it is typically the case for a convex function. As it can be
observed in Figure 3, the criteria does not present a point of
zero slope as the function has a discontinuous derivative at
the optimum. Despite this difficulty, we see that the algorithm
converges well and more particularly, the error is around an
O(A)-neighborhood of the origin (Krstic and Wang (1997)).
This last remark, which won’t be elaborated in this paper, is
clearly a source of bias in the set-point when the ethanol in-
hibition is considered (cfr Figure 9). As A needs to be chosen
sufficiently large to create a significant variation on the system
dynamics, a small error cannot be avoided and the ethanol is
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Fig. 9. Convergence of the optimization criteria r1− r2 to the
optimum when inhibition is considered.
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Fig. 10. Extremum-seeking with RLS: Biomass (X), substrate
(S in blue and Ŝcrit in red), and ethanol (E) concentrations
evolutions when no respiratory capacity inhibition is con-
sidered.

accumulated while the algorithm goes on converging. As the
ethanol concentration grows, the respiratory capacity slightly
decreases and, following (8), Scrit does so.

4.2 Application of the RLS technique

The tuning parameters are defined as: A = 0.001, K = 100,
λ = 0.1, ω = 2π

0.2 , ki = 0.01 and kp = 100. The culture time
is still fixed to 24 h. Figures 10 and 11 show the new results
when no inhibition from ethanol accumulation is considered,
and Figures 12 and 13 when the inhibition term is taken into
account. The main observations are: (i) convergence is clearly
faster. (ii) convergence is achieved around Scrit so that the
ethanol concentration slowly decreases in the last hours.
When no inhibition is considered as in Figure 10, this set-point
bias has no consequence on the extremum while, in Figure 12,
when inhibition is taken into account, the set-point error is, by
chance, playing a positive role so that ethanol is consumed.
In this application, the RLS algorithm is less computationally
demanding, and easier to tune than the bank of filters strategy.

5. CONCLUSION

The high productivity of fed-batch cultures using genetically
modified strains exhibiting overflow metabolism relies on a
double condition: an optimal feeding strategy and the implied
limitation of the inhibiting by-product formation. To this end,
an adaptive controller using two different non-model based
extremum-seeking strategies is designed for a general case of
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Fig. 13. Extremum-seeking with RLS: convergence of the opti-
mization criteria r1− r2 to the optimum when inhibition is
considered.

overflow metabolized strain and is applied to the particular
case of S. cerevisiae. The tracking of the critical substrate
level (or, at least, its kinetic image), representing the optimum,
is correctly performed by both extremum-seeking techniques,
limiting the ethanol accumulation despite the considerations
of an ethanol-inhibited respiratory capacity and discontinuous
derivatives around the optimum.
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Wallonie-Bruxelles-Québec commission in the framework of
the research project between A. Vande Wouwer and M. Perrier.

REFERENCES

M. Akesson. Probing control of glucose feeding in Escherichia
coli cultivations. PhD thesis, Lund Institute of Technology,
1999.

K. B. Ariyur and M. Krstic. Real-Time Optimization by
Extremum-Seeking Control. John Wiley & Sons, INC., pub-
lication, wiley-interscience edition, 2003.

L. Chen, G. Bastin, and V. van Breusegem. A case study of
adaptive nonlinear regulation of fed-batch biological reac-
tors. Automatica, 31(1):55–65, 1995.

L. Dewasme and A. Vande Wouwer. Adaptive extremum-
seeking control applied to productivity optimization in yeast
fed-batch cultures. IFAC 2008, Seoul, Korea, July 2008.

L. Dewasme, F. Renard, and A. Vande Wouwer. Experimental
investigations of a robust control strategy applied to cultures
of S. cerevisiae. ECC 2007 , Kos, Greece, July 2007.

M. Guay, D. Dochain, and M. Perrier. Adaptive extremum
seeking control of nonisothermal continuous stirred tank
reactors. Proc. Adchem 2003, Hong Kong, China, pages 333–
338, 2004.

M. Krstic and H. H. Wang. Design and stability analysis of
extremum seeking feedback for general nonlinear systems.
Proceedings of the 1997 Conference on Decision and Con-
trol, San Diego, CA, (TA02-3), 1997.

Y. Pomerleau. Modélisation et commande d’un procédé fed-
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