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Abstract: Distributed Model Predictive Control (DMPC) has received significant attention in the 
literature. However, the robustness of DMPC with respect to model errors has not been explicitly 
addressed. In this paper, an online algorithm that deals explicitly with model errors for DMPC is 
proposed. The algorithm requires decomposing the entire system into N subsystems and solving N 
convex optimization problems to minimize an upper bound on a robust performance objective by using a 
time-varying state-feedback controller for each subsystem. Simulations on two typical examples were 
considered to illustrate the application of the proposed method. 
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1. INTRODUCTION 

Distributed model predictive control (DMPC) has received 
significant attention in the literature in recent years. The key 
potential advantages of DMPC are: i) it can provide better 
performance than fully decentralized control especially when 
the interactions ignored in the latter are strong, and ii) it can 
maintain the flexibility with respect to equipment failure and 
partial plant shutdowns that may jeopardize the successful 
operation of centralized MPC. The basic idea of DMPC is to 
partition the total system of states and controlled and 
manipulated variables into smaller subsystems and to assign 
an MPC controller to each subsystem. The design of all the 
reported DMPC strategies is composed of three parts: (1) 
Modeling; each controller has access to a local dynamic 
model of the corresponding subsystem along with an 
interaction dynamic model that represents the influence of the 
other subsystems. These models can be obtained by directly 
decomposing a centralized model of the process (Rawlings 
and Stewart 2008). (2) Optimization; each MPC solves a 
local optimization problem. Some reported strategies use 
modified objective functions that take into account the goals 
of other controllers to achieve full coordination (Venkat 
2006; Zhang and Li 2007) whereas some others use strict 
local objectives (Li et al. 2005), e.g. a Nash-equilibrium 
objective. (3) Communication; at every control time interval 
all the controllers exchange the measurements of their local 
states that are used for subsequent local optimization. These 3 
steps are executed at each time interval in an iterative manner 
until convergence among the controllers is reached. Venkat 
(2006) showed that increasing the iterations allows the 
DMPC strategy to reach the optimal centralized solution and 
the termination at any intermediate iteration maintains 
system-wide feasibility. Zhang and Li (2007) analyzed the 
optimality of the iterative DMPC scheme and derived closed-
form solution for an unconstrained DMPC and showed that it 
is identical to centralized MPC solution. The common feature 
of the reported strategies is that they employ a nominal model 
of the plant and rely on feedback to account for plant-model 

mismatch. However, plant–model mismatch may have a 
significant impact on stability and performance. Thus, the 
robustness of DMPC to model errors has been identified as a 
key factor for a successful application of DMPC (Rawlings 
and Stewart 2008). Kothare et al. (1996) proposed a 
methodology for robust centralized constrained MPC design 
that maintains robust stability and minimizes a bound on 
performance in the presence of model errors. The problem is 
formulated as a convex optimization problem with linear 
matrix inequalities LMI that is solved efficiently using 
available algorithms (Boyd et al. 1994) and can be used for 
on-line implementations. This method has been recognized as 
a good potential candidate for use in process industry to 
handle the issue of plant-model mismatch (Qin and Badgwell 
2003).  

The aim of this paper is to present a methodology for Robust 
DMPC (RDMPC) that explicitly deals with model errors. An 
LMI-based predictive control formulation (Kothare et al. 
1996) has been modified to design an on-line iterative 
algorithm for RDMPC. Issues of robust stability and 
convergence are analyzed and discussed. Two case studies 
are used to illustrate the algorithm: a distillation column 
example (Venkat 2006) when “bad” input-output pairings are 
chosen and a high-purity column example (Skogestad and 
Morari, 1988) with high condition number. 

 2. Definitions and Methodology  

2.1 Models 

In this work, it is assumed that the process model is given by 
a linear time-varying (LTV) model of the form:  

( ) ( ) ( ) ( ) ( )k 1 k k k k+ = +x A x B u                                      (1) 

where the real plant lies within a polytope that is represented 
by the convex hull: 
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Each vertex l corresponds to a linear model obtained from 
linearizing a nonlinear model or identification of a linear 
model in the neighbourhood of a particular operating point. It 
is assumed that the states are fully measured. The states and 
the controlled and manipulated variables in model (1) can be 
decomposed into N subsystems as follows: 
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where  { }   ii in m
ii ii 1, ,N ; ;∈ ∈ℜ ∈ ℜx u� . For example, in 

model (3) the ith controller for the ith subsystem is based on 
the following model: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
N

i i i i i j j
j 1
j i

k 1 k k k k k k
=
≠

+ = + +�x A x B u B u   (4)  

and similar to the representation given in (2) it is assumed 
that for the ith subsystem (4): 
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where i 11 ii NN, , , , ′� �′ ′ ′ ′=
� �

x x x x�� �� is the vector of 

states of subsystem i containing states xii that can be 
measured locally augmented with states xjj that affect 
subsystem i measured in the other subsystems and 
communicated among the subsystems. Therefore the matrix 

( )i kA contains all the elements of the matrix ( )kA . Model 
(4) also includes the effect of local controller ui and the other 
controllers uj with their corresponding matrices defined as: 
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The model in (4) is general and can be used to represent 
special limiting cases such as the decentralized case where all 
the interactions are ignored, e.g. [ ] { }'

j j 1,...,N , j i= ∀ ∈ ≠B 0 . 

2.2 Robust Performance Objective 

Kothare et al. (1996) proposed a formulation for a centralized 
problem whereby an upper bound on a robust performance 
objective is minimized. In the current work a similar 
formulation is used but the minimization is simultaneously 
done for every subsystem i defined by (4) for which the 
following min-max problem is solved: 
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In general, the local objective Ji(k) is defined as follows: 
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where i� > 0, Ri > 0, Rj > 0. The local objective given in (8) 
takes into account the goals of the other controllers, third 
summation in the RHS, in order to achieve the global 
objective of the entire system. The superscript “•” indicates 
that the solution was obtained in a previous iteration and 
remains fixed in the current iteration as will be explained 
later. It should be pointed out that one can easily modify the 
problem in (8) to solve particular objectives such as Nash 
equilibrium or decentralized control. Both strategies are 
based on minimizing strictly local objectives of the 
subsystems. The difference is that for Nash the interaction 
information is shared among the subsystems while for 
decentralized control the interaction information is neglected. 
Accordingly, for both Nash and decentralized control i� and 
Ri in (8) are modified to contain all zeros except for the 
weights corresponding to the local subsystem and the third 
summation in the RHS of (8) is excluded.  On the other hand 
the interaction term in (4) is included for Nash but it is 
ignored for decentralized control.  

Since the objective in (8) has an infinite horizon, the problem 
of finding infinite ui is computationally intractable. Instead, a 
state-feedback law is sought for each subsystem i as follows: 
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similarly, 
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Using these state-feedback laws in (4) leads to the following 
closed loop model: 



 
 

     

 

( ) ( ) ( ) ( )( ) ( )i i i i i ik 1 k k k k+ = +x A B F u x�                        (11) 

( ) ( ) ( )where   
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It is assumed that there exists a quadratic function 

( ) ( ) ( )  i i i i iV k k k ,′= x P x P > 0, so that, for any plant in (6), 
this function satisfies the following stability constraint: 
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Using (11), the robust stability constraint in (12) becomes: 
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which, for all n 0≥ , turns out to be: 
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By defining an upper bound, i.e.  

( ) ( ) ( ) ( )i i i i i iJ k k k V k γ′≤ = ≤x P x                                    (15) 

and substituting the parameterization 1
i i i

−′=F Y Q , 1
i i iγ −=Q P , 

followed by performing Schur complements (Boyd et al. 
1994) on (14) and (15) it can be easily shown that the 
minimization of ( )iJ k is equivalent to the minimization of 

its upper bound iγ   as in the following linear minimization 
problem with LMI constraints (Kothare et al. 1996): 
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The key difference between the centralized control algorithm 
proposed by Kothare et al. (1996) and the distributed strategy 
proposed in this work is that every controller in the set 

{ }i 1, ,N∈ � solves a local problem as in (16) and then the 
solutions are exchanged in an iterative scheme that is further 
explained in the next subsection. It should be remembered 
that one of the key reasons to use distributed MPC strategies 
is to address real time computation issues when dealing with 
large-scale processes (Li et al. 2005). Although the proposed 
iterative scheme tends to increase the computational time, the 
problem defined in (16) is numerically advantageous as 
compared to solving the same problem for the whole system 
(centralized control). The reason is that the state feedback 
controller for each subsystem i is obviously of smaller 
dimensions than a state feedback controller of the centralized 
MPC strategy. For instance, iY  for subsystem i is of 
dimension (n × mi) instead of (n × m) for centralized system 
where m is the total number of manipulated variables of the 
entire process.  

2.3 Robust DMPC Algorithm 

This section presents the main result of the paper where an 
on-line algorithm for RDMPC is proposed. It is assumed that 
there is an ideal communication network available so that the 
controllers can exchange their information with no delays. 
The goal of performing communication and exchanging 
solutions among controllers is to achieve the optimal solution 
of the entire system in an iterative fashion. The algorithm 
proceeds according to the Jacobi iteration method used for 
the solution of systems of algebraic equations. The procedure 
is summarized in Algorithm 1 below. 

Algorithm 1 (RDMPC) 

Step0 (initialization): at control interval k=0 set Fi=0. 

Step1 (updating) at control interval (k) all the controllers 
exchange their local states measurements and initial 
estimates Fi’s via communication, set iteration t = 0 and 

( 0 )
i i=F F . 

Step2 (iterations)  

while t ≤ tmax 

Solve all N LMI problems (16) in parallel to obtain the 

minimizers ( ) ( )t 1 t 1
i i,+ +Y Q  to estimate the feedback 

solutions ( ) ( ) ( )t 1 t 1 1 t 1
i i i

+ + − +′=F Y Q . If problem is infeasible 

set ( ) ( )t t 1
i i

−=F F . Check the convergence for a specified error 

tolerance iε  for all the controllers 

    if ( ) ( ) { }1   1t t
i i i i ,...,Nε+ − ≤ ∀ ∈F F  

          break 
    end if    
Exchange the solutions (Fi’s)  and set t = t + 1 

end while 



 
 

     

 

Step3 (implementation) apply the control actions ui = Fixi to 
the corresponding subsystems, increase the control interval 
 k = k + 1, return to step1 and repeat the procedure. 

Algorithm1 is implemented in MATLAB® and problem (16) 
is solved via MATLAB® LMI solver. Convergence of the 
iterations in Step 2 and stability properties are discussed in 
the following subsection. 

2.4  Convergence and Robust Stability Analysis of RDMPC 
Algorithm 

Regarding convergence, it can be shown that at each time 
interval, each one of the N convex problems defined in 
Algorithm1 will converge to the same solution which is the 
solution of the centralized problem, i.e.  

1 2 i Nγ γ γ γ γ= = = = = =� �  where γ  is the performance 
upper bound of centralized MPC. For brevity, a two 
subsystem situation, i.e. N=2 is considered without loss of 
generality. It is also assumed that the solutions are feasible. 

Define: 

( )
( )

( ) ( )
t

1

t t t 1
11 1 2for subsystem1 min ( , )γ γ −=

F
F F  

( )
( )

( ) ( )
t

2

t t 1 t
22 1 2for subsystem 2 min ( , )γ γ −=

F
F F  

Then,  ( ) ( )t t 1
1 2γ γ −≤  (a) 

and the reason being that both sides of this inequality are 

using the same value of ( )t 1
2 2

−=F F but the LHS minimizes � 
with respect to F1 whereas the RHS of the inequality uses a 

not necessarily optimal value of ( )t 1
1 1

−=F F . Following the 
same argument: 

( ) ( )t t 1
2 1γ γ −≤  (b) 

Thus, the �i’s decrease until (a) or (b) become equalities. 
Since the minimizations are convex and lead to global 

optimal solutions, this occurs only when ( ) ( )t t 1
1 1

−=F F and 
( ) ( )t t 1

2 2
−=F F and consequently ( ) ( )t t

sub1 sub2γ γ γ= = , i.e. the 

minimization with respect to both F1 and F2 give the same 
solution which must be, following convexity of problem (16), 
equal to the global optimum of the centralized control 
problem that has an identical formulation to (16). The robust 
stability of Algorithm1 follows from the fact that for each 
subsystem, a robust stability related constraint is enforced by 
one of the linear matrix inequalities in problem (16). Thus 
each one of the N controllers satisfies robust stability. 
Although theoretical convergence of the Jacobi iteration can 
be proven, it was found that numerical noise exists due to 
inaccuracies of the LMI solvers in obtaining the solution of 
problem (16). Consequently, to speed up convergence in the 
presence of this numerical noise when Algorithm1 is 
implemented, the successive Relaxation (SR) method is 
employed (Hageman and Young 1981). The SR method is 
applied to the solution obtained from (16) for each subsystem 
to estimate a weighted average between the current and 

previous iterate solutions. The method is given by the 
following recurrence formula: 

( ) ( ) ( ) ( )t 1 t 1 t
i i i1α α+ += + −F F F                                             (17) 

where α  is a parameter to be specified by the user in order to 

accelerate convergence. ( )t 1
i

+F  denotes the solution obtained 

at the current iteration from (16) whereas ( )t 1
i

+F  is the 
estimate to be used in the next iteration. Typically, α can be 
chosen from values between 0 and 2 and when it is set to 1 
the normal iterative scheme is retrieved. Since there is no 
systematic way to select a value for α  in advance, 
simulations with different values of α  have to be performed 
as shown in the first example.  

3. Case Studies 

3.1  Example 1 

A distillation column control problem studied by Venkat 
(2006) is considered with the difference that uncertainties in 
the steady-state gains of the model are added to illustrate the 
robustness of the proposed algorithm. Accordingly, the real 
model lies within a polytope defined within the two vertices: 
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  (21) 

A state-space model, not shown for brevity, is obtained from 
a canonical realization of equation (21). To demonstrate the 
effectiveness of the proposed method the bad pairings, 
according to the Relative Gain Array RGA, are selected, i.e. 
the RGA element �11 is -1.0874 and accordingly the “bad” 
pairings are u1-y1 (subsystem1) and u2-y2 (subsystem2).  The 
physical constraints on manipulated variables are given by: 

( ) ( )  1 2u k n 1.5; u k n 2; n 0+ ≤ + ≤ ≥                             (22) 

For the purpose of comparison between different cases, a cost 
function is defined as follows: 

( ) ( ) ( ) ( ) ( )( )
Ns N

cos t i i i i i i
j 0 i 1

J 1 / 2Ns j j j j
= =

′ ′= +�� x x u R u�   (23) 

where Ns is the simulation time. The following parameters 
are used for the two controllers: y1� = y2� = 50 so that  

i�  = Ci’ yi� Ci +10-6I where Ci is the measurement matrix 

such that yi=Cixi; R1=R2=1; α=0.95. The value of α is 
selected, as mentioned above, based on simulations by trial 
and error to speed convergence of the Jacobi iteration. The 
number of iterations that was required to satisfy the 
convergence criteria of Algorithm1 for different values of α  



 
 

     

 

is given in Table1. α=0.95 resulted in the fastest 
convergence.  

Table 1.  Effect of αααα  on convergence with εεεε1=εεεε2=10-3  

α # iterations 
1.05 55 
1.00 38 
0.95 28 
0.90 32 
0.8 38 
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Fig. 1. Dynamic response in controlled and manipulated 
variables for set-point changes in y1 and y2.  

Three cases are considered for the application of Algorithm1; 
fully decentralized, RDMPC with one iteration, and RDMPC 
with 10 iterations. It should be remembered that as indicated 
in section 2, the cost � decreases monotonically with the 
number of iterations.  Thus, even after one iteration, a 
performance improvement is expected. The motivation for 
using a small number of iterations, as mentioned earlier, is to 
use distributed MPC strategies to address real time 
computation issues when dealing with large scale processes.  
The decentralized strategy used in this study is obtained, as 
explained in Section 2.2, with Algorithm1 by ignoring 
interactions in equation (4). Then, the performance of 
Algorithm1 with these 3 different schemes was compared to 
the centralized strategy in Figure1. The simulations 
correspond to simultaneous changes in set-points of both 
controlled variables y1 and y2 by -1 and 1; respectively. 

In comparison with the centralized scheme, the performance 
of RDMPC approaches that of the centralized scheme as the 
number of iterations is increased. The fully decentralized case 
resulted as expected in the worst performance. A comparison 
of the cost in (23) for different schemes is given in Table2. 
This table illustrates that Algorithm1 can be used, depending 
on the chosen number of iterations, to obtain a performance 
that varies between two extremes corresponding to the fully 
decentralized and the centralized strategies; respectively. It is 
also clear, from figures 1(c) and 1(d), that the constraints 
given in (22) are satisfied.  

Table 2.  Cost for different strategies (example1)   

Strategy Cost (23) 
Centralized 0.92 
RDMPC (10 iteration) 0.93 
RDMPC (1 iteration) 2.43 
Fully decentralized 35.9 

3.2  Example 2 

This example considers the high-purity column originally 
studied by Skogestad and Morari (1988). The nominal 
transfer function of this system is given by: 
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                                   (24) 

A state-space model is obtained based on a canonical 
realization of equation (24) and not shown for brevity. Due to 
the high condition number, this process has been used in the 
past to illustrate closed-loop sensitivity to model errors. The 
model uncertainty is given by errors in steady-state gains. 
The gains in the first column of the transfer matrix in (24) are 
expected to change by up to +80% whereas the gains in the 
second column are expected to change by up to -80%. The 
constraints on manipulated variables are represented by 
|u(k+n)| ≤ 1, n≥0. The system given above was decomposed 
into two subsystems; viz., y1-u1 (subsystem1) and y2-u2 
(subsystem2). The controllers parameters used in simulation 
are; 1� = 2� =1, R1= R2=1, α=1, ε1=ε2=10-2.  

(b) 

(c) 

(d) 

(a) 



 
 

     

 

Figure 2 depicts the performance of Algorithm1 compared 
with centralized MPC for a unit set-point change in y1 and it 
illustrates that RDMPC algorithm results in an identical 
response as the centralized MPC. For this example, the 
RDMPC algorithm converges very quickly in about three 
iterations after which the error tolerances specified above 
(ε1=ε2=10-2) are met. Figure 3 shows the convergent 
behaviour of the RDMPC algorithm obtained in the first 
sampling interval. The upper bounds  and 1 2γ γ  for 
subsystems 1 and 2 respectively, obtained by solving (16) in 
parallel and by applying Algorithm1, converge to the same 
value after about 3 iterations and this value is identical to that 
obtained for centralized MPC. The cost, defined by equation 
(23), for both strategies, is equal to 7.48. To show the ability 
of the method to deal with different objective functions an 
RDMPC with a Nash equilibrium objective and a robust 
decentralized MPC were designed by proper choice of the 
weights i�  and Ri as explained in section 2.2. The results 
with the Nash-equilibrium based controller, shown also in 
Figure 2, are similar to the centralized case and the cost was 
7.55, slightly larger than the centralized MPC cost. The 
decentralized MPC, not shown in the Figure, resulted as 
expected in a slightly higher cost than Nash of 7.73. 
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Fig. 2. Dynamic response to unit set-point change in y1. 
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sampling time.  

4. CONCLUSIONS 

The main goal of this work was to propose an on-line 
algorithm for DMPC strategy that explicitly considers model 
errors. The main idea of the proposed method is to 
decompose the model of the whole system into N subsystems 
and then obtain a local state feedback controller by 

minimizing an upper bound on a robust performance 
objective for each subsystem. The subsystem performance 
takes into account the objectives of the other subsystems in 
order to achieve the goal of the entire system. The method 
was also suitable for pursuing other objectives such as Nash 
equilibrium or decentralized control in the presence of model 
errors. The problem was converted into N convex problems 
with linear matrix inequalities and solved iteratively by using 
the Jacobi iteration method with successive relaxation (SR). 
Although convergence of the iterative solution was proven, 
the SR feature was helpful for filtering numerical noise in the 
LMI solutions resulting in faster convergence. When 
convergence was reached, the algorithm led to the same 
solution of the centralized MPC problem. The examples 
showed that RDMPC can achieve, after a sufficient number 
of iterations, equivalent performance to centralized control. 
Moreover, the examples illustrated that improvements in 
RDMPC performance as compared to decentralized control 
can be achieved with a relatively small number of iterations. 

ACKNOWLEDGMENT 

The first author would like to thank the General Secretariat of 
Higher Education of Libya for financial support. Also, the 
authors acknowledge additional support of Natural Sciences 
and Engineering Research Council of Canada (NSERC). 

REFERENCES 

Boyd, S., El.Ghaoui, L., Feron, E., and Balakrishnan, V. 
(1994). Linear matrix inequalities in system and control 
theory, SIAM, USA. 

Hageman, L. and Young, D. (1981) Applied iterative 
methods. Academic Press, NY. 

Kothare, M. V., Balakrishnan, V., and Morari, M. (1996) 
Robust constrained model predictive control using linear 
matrix inequalities. Automatica, 32 (10), 1361-1379.  

Li, S., Zhang, Y., and Zhu, Q. (2005). Nash-optimization 
enhanced distributed model predictive control applied to 
the shell benchmark problem. Information science, 170, 
329-349. 

Qin, S. J. and Badgwell, T. A. (2003). A survey of industrial 
model predictive control technology. Control 
engineering practice, 11, 733-764. 

Rawlings, James B. and Stewart, Brett T. (2008). 
Coordinating multiple optimization-based controllers: 
new opportunities and challenges. Journal of Process 
Control, 18, 839-845. 

Skogestad, S. and Morari, M. (1988). Robust control of ill-
conditioned plants: high-purity distillation. IEEE 
transactions on automatic control, 12, 1092-1104. 

Venkat, A. N. (2006). Distributed model predictive control: 
theory and applications, PhD thesis, USA.  

Zhang, Y., and Li, S. (2007). Networked model predictive 
control based on neighbourhood optimization for serially 
connected large-scale processes. Journal of Process 
Control, 17, 37-50. 

 
. 
 


