
    

Soft sensing for two-phase flow using an ensemble Kalman filter  

A. Gryzlov*, M. Leskens**, R.F. Mudde* 
 

* Department of Multi-Scale Physics, Delft University of Technology, Delft, 2628 BW,  
the Netherlands (Tel: 31(0)152783210; e-mail: a.gryzlov@tudelft.nl)  

** Department of Process Modelling and Control, TNO Science and Industry, 
 Eindhoven, the Netherlands (e-mail: martijn.leskens@tno.nl) 

Abstract: A new approach for real-time monitoring of horizontal wells, which is based on data 
assimilation concepts, is presented. Such methodology can be used when the direct measurement of 
multiphase flow rates is unfeasible or even unavailable. The real-time estimator proposed is an ensemble 
Kalman filter employing a dynamic model of the pipe flow and information from several downhole 
pressure sensors with a single measurement of the flow velocity and composition. By means of 
simulation examples it is shown that the proposed algorithm operates quite accurately both for noisy 
synthetic measurements and artificial data generated by the OLGA simulator. 
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1. INTRODUCTION 

The growing demand for hydrocarbon production has 
resulted into improved oilfield management with various 
monitoring and optimization strategies (Glandt, 2003, Jansen 
et al., 2008). These strategies in turn strongly rely on the 
efficiency of downhole equipment which is used to obtain 
real-time oil and gas production rates with sufficient spatial 
and temporal resolution. In particular, multiphase flowmeters 
installed downhole can improve the production of long 
horizontal wells by allocating the zones of oil, gas and water 
inflow. However, existing multiphase meters are expensive, 
inaccurate or accurate only within a limited operating range 
and therefore such monitoring is unrealistic. 

To overcome these problems one can use so-called 
multiphase soft-sensors, i.e. to estimate flow rates from 
conventional meters, such as downhole pressure gauges, in 
combination with a dynamic multiphase flow model. Despite 
the variety of soft-sensing techniques (which are also referred 
to as data assimilation methods), one can note two principal 
approaches. Variational data assimilation, which is based on 
the minimization of a cost function within a certain time 
interval, and sequential methods or filtering when the state of 
the system is updated every time instant data becomes 
available. One way to solve these sequential data assimilation 
problems is to use Kalman filtering (Kalman, 1960). This 
method, which was originally developed for linear models, 
has got numerous extensions (Jazwinski, 1970, Evensen, 
1994 and Julier et al., 2000) to deal with non-linearity, which 
is the case for most industrial processes. 

Although there are numerous applications of soft-sensing 
techniques in oil and gas industry, they mainly deal with the 
estimation of reservoir properties (Naevdal et al., 2003, 
Evensen et al., 2007). The range of wellbore flow application 
includes gas-lift wells (Bloemen et al., 2004) and 

underbalanced drilling (Lorentzen et al., 2001). Also, the 
Kalman filter has been used for tuning the parameters of two 
phase flow models (Lorentzen et al., 2003). Leskens et al.
(2008) considered the simultaneous estimation of downhole 
oil, water and gas flow rates from downhole pressure and 
temperature measurements in a single well. This approach 
has been extended by de Kruif et al. (2008) to the multi-
lateral well case both for the two-phase (oil and gas) and 
three-phase (oil, gas and water) cases.  

Despite the variety of applications considered, little attention 
has been given to the inflow allocation problem. More 
specific, long horizontal wells with a continuous inflow 
profile from a reservoir to a wellbore require the use of soft-
sensing techniques for the gas breakthrough prediction.  

Fig. 1. Schematic view of a horizontal well. 

Gas coning is a phenomenon where the gas-oil contact of a 
reservoir moves towards a producing well (see Figure 1). At a 
certain moment the gas-oil contact will reach the well and gas 
breakthrough can happen causing a large gas influx. 
Consequently, the gas phase may start to dominate 
production making the well uneconomical. In order to handle 
or prevent this, several strategies are available. However, the 
most convenient countermeasure is to isolate gas producing 
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zones of a wellbore by means of inflow control valves. The 
purpose of a soft-sensor is to provide the inflow control 
valves with information of the downhole flow rate 
distribution. 

This study discusses the feasibility of such multiphase soft-
sensors. In particular, the required and sufficient set of 
measurements is defined. Furthermore, the influence of 
model error and measurement noise on the quality of 
estimates is studied. 

This paper is organized as follows. First, the pipe flow model 
and the computational setup for soft-sensing are given. Next, 
the description of the used soft-sensing algorithm is 
presented. Finally, the simulations results are given.  

2. DYNAMIC FLOW MODEL 

A model describing one-dimensional two-phase flow in pipes 
consists of non-linear partial differential equations describing 
mass and momentum conservation for each phase. This 
model is obtained from cross-sectional averaging of the 
Navier-Stokes equations and replacing diffusion terms by 
empirical correlations. Since the main purpose of this work is 
the application of estimation techniques, no detailed flow 
description is required. Therefore, it was assumed that the gas 
and liquid are travelling with the same velocity u (Vicente, et 
al., 2001). 

The simplified mass conservation equations are 
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Where Η  is the liquid volume fraction, ρg is the gas density, 
ρl is the liquid density, t denotes time and s denotes the 
coordinate along the length of the pipe. Φl and Φg are the 
mass sources representing the inflow from a reservoir to the 
pipe. These sources are normally time dependent. 

Although the continuity equations have been written for each 
phase it is common to write the momentum equation for the 
mixture. 
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Where ρm is the mixture density defined by 

(1 )m g lH Hρ ρ ρ= − +       (4) 

A frequently used model for frictional losses in the 
momentum equation has the form 

2

2fr mS u
d

λ
ρ=           (5) 

Here d is the pipe diameter and λ is the friction factor, which 
is a function of the Reynolds number and pipe roughness k. 
In this study the Techo formula is used: 
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Here Re is the Reynolds number defined as 

Re /m mud ρ μ= (7) 

with the mixture viscosity μm calculated in terms of liquid 
volume fraction and gas μg  and liquid μl viscosities 

(1 )m g lH Hμ μ μ= − +  (8) 

The gas is treated as a compressible phase with a 
corresponding equation of state given in the form 

( )g f pρ =         (9) 

The closure of the problem is given by the following 
boundary conditions.  

( , ) outp s L t p= = , ( , 0) outp s t p= =  (10) 

inf( 0, )u s t u= = , inf( , 0)u s t u= =  (11) 

inf( 0, )H s t H= = , inf( , 0)H s t H= =  (12) 

Here the subscripts inf and out refer to inflow and outflow 
cross-section of the pipe respectively. L denotes the length of 
the pipe. 

3. DATA ASSIMILATION  

3.1 State-space form of the model equations 

Due to the nonlinearity of the given equation system (1)-(12) 
the numerical solution is needed in order to solve it for the 
dependent variables. For the discretization of the simulation 
domain a staggered grid approach has been used, meaning 
that the different grids are used for the continuity and 
momentum equation. Afterwards, the governing equations 
are integrated over different control volumes. Any solution 
procedure can be applied for solving the non-linear system of 
algebraic equations. Finally, the model can be written in the 
following state-space notation (Crassidis, 2004): 

( )1 1,k k kx f x u− −=    (13) 

Here uk-1 is the model input representing the inflow from 
reservoir to wellbore. xk-1 is the state vector evaluated on the 
previous time step. Using the primitive set of variables, the 
state vector can be written as 

[ ]Tx p u H=  (14) 

Here p, u and H are the vectors, representing pressure, 
velocity and liquid volume fraction related to the spatial grid. 

3.2 Formulation of the inverse problem 

The computational setup for the inverse problem is shown in 
Figure 2.  It should be noted here, that only the horizontal 
part of the well is being modelled, and the outflow 
measurements are assumed to be available directly at the 
outflow cross-section of the horizontal part. 



    

Fig. 2. Scheme of the computational setup for soft-sensing. 

For the soft sensing purposes the augmented state vector is 
introduced: 

T

i i i g i l iX p u H= Φ Φ� �
 
       (15) 

Here i indicates the number of the cell defined by the 
numerical discretization. 

It is assumed that several downhole pressure measurements 
are available. Moreover, outflow information about flow rates 
is also known, giving the following measurement vector: 

[ ]T

i out outy p u H=   (16) 

Finally, the data assimilation problem can be formulated as 
follows: with the measurements (16) and the flow model (1)-
(12) available the components of the augmented state vector 
should be estimated. 

Due to a lack of experimental data, a set of synthetic 
measurements has been used as a source for soft-sensing. 
First, a twin experiment concept has been implemented. Here 
the same mathematical model was used both for generating 
measurements with predefined inflow distribution and the 
inverse modelling, when missing dynamic variables are 
estimated by means of the soft-sensing algorithm. In order to 
mimic the situation of testing the soft-sensor with “real-life” 
data, simulation results from the commercially available flow 
simulator OLGA were used in the second test case. 

3.3 Ensemble Kalman filtering 

One way to solve estimation problems via the sequential data 
assimilation algorithm is by using the Kalman filter 
equations. The Kalman filter is a stochastic recursive 
estimator, which estimates the values of model states and 
unknown input by integrating measured data in a 
mathematical model in real-time. Due to its straightforward 
numerical implementation and recursive nature, the Kalman 
filter algorithm is very well adapted to online model 
calibration. 

Kalman filtering was initially developed for linear dynamic 
systems. Although several extensions of the Kalman filter 
exist for non-linear system, here the ensemble Kalman filter 
(EnKF) is used (Evensen, 1994). In this approach, the 

approximation of the error covariance matrix is calculated 
using an ensemble of possible model realizations, which are 
propagated according to the full dynamics of the system. 

In order to initialize the filter the initial ensemble is 
generated. Here a mean value of the initial augmented state 
vector 0

aX  and a corresponding covariance matrix Qo is 
required. The mean value of the initial ensemble should be a 
good estimate of the true initial state. The members of the 
ensemble are generated randomly according to a Gaussian 
distribution. The j’th member of the ensemble is defined as 

0, 0 0,

a a

j jX X w= +        (17) 

With an EnKF the augmented state vector, which also 
contains the inflow input, is estimated in a recursive manner 
through the following two steps: 

1) The forecast step, which consists in running the flow 
model one time step forward for each member of the 
ensemble. This leads to 

( ), 1, ,

f a

k j k j k jX f X w−= +  (18) 

Here wk,j is a Gaussian zero mean white noise with the 
corresponding covariance matrix Qk representing the model 
error. This noise is only added to components of the state 
vector, which produce the most uncertainty in a simulation. 
These are in this case the inflow sources Φl and Φg. 

Using the calculated forecast of ensemble states, the error 
covariance matrix can be calculated using the covariance 
matrix of the ensemble. The mean value of the ensemble is 
given by 

,
1

1 N
f f

k k j
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X X
N =

= �  (19) 

And the error covariance matrix is then calculated as 
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where N is the number of members in the ensemble. 

2) The analysis step, which takes into account measurements. 
The errors in the measurements are assumed to be statistically 
independent with known variances. This leads to a diagonal 
covariance matrix for the measurement errors. As it has been 
pointed out in Burgers et al. (1998), it is necessary to define 
new measurements for the proper error propagation. 
Therefore, a new observation vector is introduced for each 
member of the ensemble 

, , ,k j k k j k jM X vy = ⋅ +  (22) 

Here Mk is the measurement matrix and vk,j is the 
measurement noise generated from a normal distribution with 
zero mean and covariance matrix Rk.
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The Kalman gain is then calculated as follows 
1( )f T f T

k k k k k k kK P M M P M R −= +  (23) 

The analyzed state for each member of the ensemble is given 
by 

, , , ,( )a f f

k j k j k k j k k jX X K y M X= + −  (24) 

The mean value of the analyzed ensemble is  

,
1

1 N
a a

k k j
j

X X
N =

= �  (25) 

The unknown inflow sources are updated at each time step 
measurements are available and extracted from the 
augmented state vector. The analyzed error covariance 
matrix, from which the estimation error of the inflow 
parameters can be defined, is then approximated by 

( )a f

k k k kP I K M P= −  (26) 

An important issue with the use of the EnKF is the size of the 
ensemble. Based on the experience of data assimilation for 
large-scale atmospheric models (Houtekamer and Mitchell, 
1998), 100 ensemble members have been chosen for the 
ensemble Kalman filtering. The optimal size of the ensemble 
is, however, not known and it is a subject for future research. 

4. RESULTS AND DISCUSSIONS  

4.1 Soft sensing under measurement error 

A first test case considered uses a twin experiment concept. 
Here the same mathematical model is used for generating the 
measurements with predefined inflow distribution. This study 
deals with two-phase liquid/gas flow and the details of the 
initial data are given in Table 1. The sketch of the simulation 
domain is given in Figure 3. The inflow profiles are given 
only as a reference since they are unknown and have to be 
estimated via the proposed data assimilation procedure.  

Fig. 3. Computational setup for soft-sensing. 

Initially the well produces a mixture of liquid and gas with a 
total flow rate of 10 kg/s. After 20 minutes of production, gas 
is injected in three locations of the wellbore. The amount of 
gas injected increases linearly up to 0.5 kg/s during next 30 
minutes and afterwards kept constant for the last 10 minutes 
of simulation.  

The soft-sensor has been tested using the following 
measurement layout. The number of pressure measurements 
was taken equal to number of grid nodes obtained from the 
discretization. The velocity and liquid volume fraction 
measurements are located at the last grid block of the 
simulation domain. 

Table 1. Initial data for the numerical experiments

Quantity Value 
Pipe diameter, m 0.05 
Pipe length, m 100 

Liquid density, kg/m3 1000 
Liquid viscosity, Pa.s 0.001 

Gas reference density, kg/m3 118.9 
Gas viscosity, Pa.s 1.82.10-5

Time step, s 60 
Inflow liquid rate Fl, kg/s 9.5 
Inflow gas rate Fg, kg/s 0.5 

x1, m 15 
x2, m 45 
x3, m 75 

Absolute roughness, m 0 
Number of grid nodes 12 

The Kalman filter initialization is based here on the outflow 
values of velocity and liquid volume fraction, which are 
assumed to be known from a flow meter. Since all the 
pressure measurements are available, pressure is initialized 
from the current pressure distribution. The synthetic 
measurements representing downhole pressure and liquid 
outflow flow rate are generated using equations (1)-(12). A 
zero mean white Gaussian noise is then added to mimic the 
uncertainty in measurements. 

Table 2.  Measurement noise used in simulations 

Uncertainty in pressure measurements 0.5% 
Uncertainty in outflow velocity 

measurements 
1% 

Uncertainty in liquid volume fraction 
measurements 

1% 
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Fig. 4. Comparison of estimated and true flow velocity. 
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The results of the simulation are given in Figures 4-5. Figure 
4 shows the comparison between the estimated and true 
velocity distributions along the pipe length. Flow velocity is 
used to allocate the zones where a fluid is entering or leaving 
the wellbore. In order to identify the type of fluid, the 
distribution of the estimated liquid volume fraction is 
required. It is depicted in Figure 5. The results are given for 
three time instants 30 minutes, 40 minutes and 50 minutes. 
Since the pressure is available continuously from the 
measurements it is not depicted as a soft-sensing result.  
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Fig. 5. Comparison of estimated and true liquid fraction. 

The results show that the proposed soft-sensor, for the given 
simplified setup, is very well capable of reproducing the flow 
rate and liquid volume fraction distributions along the 
considered well part, even when measured data contains a 
certain measurement error. Therefore, it is capable to detect 
multiple fluid sources as it is depicted in the figures. 

4.2 Soft sensing under model error 

The second study provides an assessment of the influence of 
the model error on the soft-sensing estimation results. A 
similar soft-sensing setup was used as depicted in Figure 2 
for case study 1. An important difference, however, was that 
the “true” well was not the same as the model used in the 
soft-sensor. The true wellbore measurements were obtained 
from the commercially available simulator OLGA. This was 
done to assess the inevitable effect of the model error on the 
soft-sensing estimation results. Here both transient gas and 
liquid sources are present in a computational setup. Liquid is 
injected in the first part of the pipe, while a gas source is 
present close to its outflow cross-section. This situation is a 
rough approximation of the gas breakthrough scenario. The 
scheme of the simulation domain is given in Figure 6. 

Due to differences between the flow model used in OLGA 
simulator and the soft-sensor developed, one can point at the 
following sources of the model error: 

- Friction factor correlation 

- Fluid properties 

- Simulation grid 

- Mathematical model 

Fig. 6. Computational setup for soft-sensing. Test case 2. 

A particularly important modelling assumption for 
performing OLGA simulations was to keep a dispersed 
bubble flow regime, since the model used for soft-sensing is 
valid only for that type of multiphase flow. This was possible 
using the same set of input parameters, as for the test case 1.  
The OLGA simulations were performed with 10 grid nodes, 
where the source term for liquid has been defined in the third 
grid block, and for gas in the eighth grid block. This 
consequently led to a soft-sensing setup with 10 available 
pressure measurements. 

Figures 7 and 8 represent the estimated flow velocity and 
liquid volume fraction.  
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The results obtained under model error are not as accurate as 
for the twin-experiment. However, it is still possible to 
allocate easily zones of liquid or gas inflow. A displacement 
of the estimated profiles with respect to the true ones is 
observed. This can be explained by the use of a different grid 
in the OLGA simulator and different interpolation of the flow 
variables between grid nodes and edges. 

5. SUMMARY AND CONCLUSIONS 

By means of two case studies, some limitations and 
possibilities of soft-sensor multiphase flow meters have been 
studied. The proposed soft-sensor is based on the ensemble 
Kalman filter approach and requires as the input the dynamic 
model of the pipe flow together with pressure measurements 
available downhole and one composition and velocity 
measurement at the outflow. 

It has been shown, that for a two-phase flow formulation it is 
possible to reconstruct the distributions of the flow velocity 
and liquid volume fraction along a pipe and to allocate the 
inflow of certain fluids in a specific location along it.  

The results indicate that the proposed method is quite stable 
for a certain range of wellbore operational conditions, and 
capable of taking into account measurement and model error.  
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