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Existing tuning rules for mid-ranging control can be improved. In this paper a novel strategy for mid-
ranging control based on Internal Model Control (IMC) principles is presented. The design reformulates 
mid-ranging control specifications in terms of classical bandwidth and sensitivity requirements. The 
performance of this design is demonstrated through simulation studies. The overall benefits of the IMC 
design are that it provides transparent and flexible tuning, and that it offers a natural framework for anti-
windup. Both classical IMC and modified IMC structures are considered for anti-windup. Their 
performance during saturation is demonstrated through simulation studies, where minimal degradation is 
observed. 
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1. INTRODUCTION

The term mid-ranging control typically refers to the class of 
control problems where two control inputs i.e. actuators are 
manipulated to control one output. Furthermore there is the 
condition that one input should return to its midpoint or some 
setpoint. The inputs usually differ in their dynamic effect on 
the output and in the relative cost of manipulating each one 
with the faster input normally being more costly to use than 
the slower input (Henson et al., 1995). Therefore mid-ranging 
control schemes seek to manipulate both inputs upon an upset 
but then gradually reset or mid-range the fast input to its 
desired setpoint (Allison and Ogawa, 2003). 

Mid-ranging control is commonly implemented using the 
architecture shown in Fig. 1 where �1 is the fast input and �2
is the slow input. This structure is referred to as Valve 
Position Control (VPC) and �1 is usually chosen as a PI 
controller and �2 as an I-only controller. The VPC method 
for mid-ranging has been found to be sub-optimal (Allison 
and Isaksson, 1998, Allison and Ogawa, 2003). As such, 
improvements to the approach of mid-ranging control 
problems are suggested by many authors. Model predictive 
control (MPC) has also been suggested by Allison and 
Isaksson (1998) as an advantageous approach to mid-ranging
given that it is inherently a multi-variable control problem. 
Henson et al. (1995) also propose MPC as well as a Direct 
Synthesis approach for the design of habituating controllers. 
The habituating control described by Henson et al. (1995) is
essentially a mid-ranging control problem. Allison and 
Ogawa (2003) put forward a Modified Valve Position 
Control (MVPC) scheme which combines the simplicity of 
conventional VPC with the systematic tuning of Direct 
Synthesis. Allison and Ogawa (2003) compare the 
performance of MVPC with that of both conventional VPC 
and Direct Synthesis.  

Fig. 1 Block diagram of VPC strategy (Allison and Ogawa, 2003)

For many applications MVPC works fine and has the 
advantage that it can be implemented using the standard VPC 
structure in Fig. 1 with PID control blocks. However, MVPC 
is not optimal; Henson et al. (1995) show that better 
performance (and implicitly better robustness) can be
obtained by using a more general structure which includes
both feedforward and feedback elements. This is 
acknowledged by Allison and Ogawa (2003). The Direct 
Synthesis design, unlike MVPC, also allows enhanced 
performance such as decoupling between �1� and �. MVPC 
does not achieve this decoupled response though �1 tracks 
changes in  �1�   correctly.

The mid-ranging design proposed by Henson et al. (1995)
uses both feedback and pre-filters. The design criteria are 
focused on:

� obtaining a desired response from �� to �

� obtaining a desired response from �1� to �1

� obtaining a decoupled response from �1� to �.

In this paper, a similar general structure is utilised where the 
decoupling can be achieved through the use of pre-filters. 
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Fig. 2 Desired frequency response of complementary sensitivities

The mid-ranging design proposed in this paper focuses on the
respective disturbance responses of �, �1 and �2 and exploits 
both the structure and tuning methodology of internal model 
control (IMC). This makes the design trade-offs transparent.

Allison and Ogawa (2003) do not discuss anti-windup for 
MVPC.  However Haugwitz et al. (2005) have shown that for 
some applications an additional feedback block can 
significantly improve the anti-windup performance of 
MVPC. The IMC structure provides a natural framework for 
both anti-windup (discussed in this paper) and robustness 
analysis (see Morari and Zafiriou, 1989, for the general case). 

In Sections 2 to 5 the IMC tuning method for mid-ranging is 
presented followed by simulation studies in Section 6 that
demonstrate the performance of IMC compared to Direct 
Synthesis. Anti-windup in IMC mid-ranging is discussed in
Section 7 with an example that shows how the classical IMC 
structure presented in the previous sections and a modified
IMC structure perform during saturation of the inputs.

2. MID-RANGING CONTROL OBJECTIVES

The plant model is (see Fig. 1),  

� =  �1 �1 + �2 �2 +  �

where �1 is the fast input and �2 is the slow input. The 
objective is to use the both inputs to control � and mid-range 
�1 i.e. to return �1 to its setpoint,  �1� . 

The transfer function between �� and � can be defined as the 
fast complementary sensitivity, �	 . The response from �� to �
when �1 is set to zero can be defined as the slow 
complementary sensitivity, �
 (corresponding to the control 
action with the slow actuator alone). These are chosen to
produce desired responses to setpoint changes such that the 
frequency response looks like Fig. 2. The proposed IMC mid-
ranging design is to specify not only �	 but also �
. With two 
degrees of freedom, the rest follows as illustrated in Sections
3 and 4.

3. IMC STRUCTURE FOR MID-RANGING

Firstly the general IMC structure shown in Fig. 3 is 
considered. Assuming that the model is perfect (� = ��), �
and � can be derived as:

� = �� + �         (1)

Fig. 3 IMC mid-ranging structure

� = �(�� 
 � + ��) + ��1�         (2)

Equations (1) and (2) can expressed as:       

� = ��� 
 �� + ��1�         (3)

� = ���� + (� 
 ��)� + ���1�         (4)

For classical feedback control,

� = �(�� 
 �) + ���1�

where � is the equivalent feedback controller and �� is the 
equivalent pre-filter. 

� can be found by expressing (2) as: 

� = (� 
 ��)
1�(�� 
 �) + (� 
 ��)
1��1�         (5)

This gives:

� = (� 
 ��)
1�

    = �(� 
 ��)
1              (6)

For mid-ranging the following are defined as:

� = �
�1
�2

� , � = [�1 �2], � = ��1
�2

� and � = ��1
�2

�

4. IMC MID-RANGING DESIGN

From (4), �	 and �
 can be expressed in terms of �1 and �2. 
This gives the conditions for the controller design:

  Controller Design Conditions:

  �	 = �� = �1�1 + �2�2

  �
 = �2�2

The sensitivity, �	 is defined as �	 = 1 
 �	 such that (4) can 
be expressed as, 

� =  �	 �� + �	 �+ ���1�

To achieve the control objectives,

�	 |

 = �1�1 + �2�2|
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�1|

 = 0

 
Magnitude

Ts Tf

Frequency

Q Gu+

-
yr

+

-

+

dPu1r

+

+

+
y

 �� 



This means that �
|

 = �2�2|

 = 1. 

The decoupling between �1� and � is achieved through the 
use of pre-filters. From (4), to obtain a decoupled response
between �1� and �, the following condition must be satisfied:

  Pre-filters Design Conditions:

  �� = �1�1 + �2�2 = 0

The design algorithm is then as follows:

1. Choose �


2. �2 is then designed such that �2 =  �

�2

3. Choose �	

4. �1 is then designed such that �1 =  
(�	 
�
)

�1

5. To design pre-filters, �� = 0 must be satisfied. There
are different ways to achieve this:

a. Let �1 = 1 and �2 = 
 �1 �2�

b. Let �1 =  �2 �2|

� and �2 = 
 �1 �2|

�

c. Let �2 =  �2

�2

+ where �2
+ is minimum phase and 

�2

 is non-minimum phase, then let �1 = ��2




where ��2

|

 = 1 and �2 = 
� �1 �2

+�

�1 and �2 can be either minimum phase or non-minimum 
phase. This design above can be extended for non-minimum 
phase systems as follows:

1. Choose �
 such that �
 = �s

��
 where �s


 includes the 
non-minimum phase components (including delays) of 
both �1 and �2 i.e. so that �
 �1� and �
 �2� are both 
casual and stable.

2. �2 is then designed such that �2 =  �

�2

 

3. Choose �	 = �	

��	 where �	


 includes the non-
minimum phase component (including delay) of �1 i.e. 
so that �	 �1� is casual and stable.

4. �1is then chosen as �1 =  
(�	 
�
)

�1
.

5. �1 and �2 are chosen as before. 

The IMC approach concentrates on the disturbance responses 
i.e. the third column of the sensitivities matrices (17) and (28) 
in Henson et al. (1995) where nine sensitivities are discussed.
Equation (7) shows the sensitivities for the IMC design. 

�
�
�1
�2

� = �
�� �� (� 
 ��)
�1 �1 
�1
�2 �2 
�2

� �
��

�1�
�

�        (7)

Fig. 4 Complementary sensitivities �	 (solid) and �
 (dashed) and sensitivity, 
�	 (dotted) for all examples.

From a classical point of view, the disturbance responses 
correspond to the sensitivity �	 and two control sensitivities, 
�1 and �2. For the mid-ranging problem, it is required that
the slow actuator should have a control sensitivity that is low  
bandwidth only; meanwhile the fast actuator should have a 
control sensitivity that is mid-frequency only and goes to zero 
at steady state, giving mid-ranging. IMC is advantageous 
because it gives the control sensitivities of the fast and slow 
actuators directly as �1 and �2. 

5. IMPLEMENTATION IN VPC STRUCTURE

The IMC mid-ranging design described in Section 4 can be 
extended for implementation using the VPC structure. This 
structure is similar to Fig. 1 but includes the pre-filters �1 and 
�2. Without the pre-filters this design does not achieve the 
decoupled response between �1� and �; it can only track �1
to �1 = �1� .

For the VPC structure in Fig. 1,

�
�1
�2

� = � �1

�2�1

� (�� 
 �)

From (6),

� �1

�2�1

� = ��1
�2

� �� 
 [�1 �2] ��1
�2

��

1

Therefore, 

� �1

�2�1

� = ��1 (� 
 �1�1 
 �2�2)�
�2 (� 
 �1�1 
 �2�2)� �

This gives,

�1 =
�1 

(� 
 �1�1 
 �2�2)

�2 = 

�2 
�1



6. SIMULATION STUDIES

The performance of the IMC design in the previous sections 
is demonstrated via simulation of four examples. The 
examples are all linear, stable systems. Examples 1, 2 and 3 
are taken from Henson et al., (1995) to compare the 
performance of IMC controllers to the Direct Synthesis 
controllers. Therefore �	 and �
 for examples 1 to 3 are 
chosen to correspond to �� �

and �� � given in Henson et al. 
(1995). In example 1, both �1 and �2 are minimum phase 
systems.  For examples 2 and 3, �1 is minimum phase 
whereas �2 has a right half plane zero and a time delay 
respectively. Example 4 is an original example where both �1
and �2 are non-minimum phase. Additional first order 
setpoint filters are included in both control schemes 
according to Henson et al. (1995). 

The process model transfer functions for the examples are 
given below. 

Example 1: � =  1
2
+1

�1(
) + 1
5
+1

�2(
) + 1

+1

�(
)  

Example 2: � =  1
2
+1

�1(
) + 
2s+1
(2
+1)2 �2(
) + 1


+1
�(
)

Example 3: � =  1
2
+1

�1(
) + e
2


2
+1
�2(
) + 1


+1
�(
)

Example 4: � =  
s+1
(2
+1)2 �1(
) + 
2s+1

(2
+1)2 �2(
) + 1

+1

�(
)

�	 and �
 are as follows:

Example 1: �	 = 1
0.5
+1

and �
 = 2
(2
+1)(
+2)

Example 2: �	 = 1

+1

and �
 = 
2s+1
(2
+1)(
+1)2

Example 3: �	 = 1

+1

and �
 = e
2s

(
+1)2

Example 4: �	 = 
s+1
(
+1)2 and �
 = (
s+1)(
2s+1)

(2
+1)(
+1)3

The frequency response of sensitivity, �	 and the 
complementary sensitivities, �	 and �
 for the examples are 
shown in Fig. 4.  �	 is chosen to determine the closed-loop 
bandwidth and �
 to determine the relative work done by �1
and �2. 

Figs. 5 to 8 show setpoint and disturbance responses for the 
IMC controllers (solid line) and Direct Synthesis controllers,
both parallel (dashed line) and series (dotted line).

It can be seen from Figs. 5 to 7 that identical output 
responses are obtained for Direct Synthesis and IMC 
schemes. This is expected since both pairs of controllers are 
tuned with the same time constants. The Direct Synthesis 
parallel architecture and IMC structure are identical when (6) 
is satisfied where �1 and �2 are the habituating controllers, 
��11 and �� 21 from Henson et al. (1995).

Fig. 5 Example 1: IMC (solid), Direct Synthesis parallel (dashed) and series 
(dotted) responses to unit changes in �� at t=0, � at t=10 and �1�  at t=20.

Fig. 6 Example 2: IMC (solid), Direct Synthesis parallel (dashed) and series 
(dotted) responses to unit changes in �� at t=0, � at t=10 and �1�  at t=20. 

Fig. 7 Example 3: IMC (solid), Direct Synthesis parallel (dashed) and series 
(dotted) responses to unit changes in �� at t=0, � at t=10 and �1�  at t=20. 



Fig. 8 Example 4: IMC (solid) response to unit changes in �� at t=0, � at
t=10 and �1�  at t=20.

Direct Synthesis implemented in the series architecture 
responds differently from the IMC and the parallel 
architecture in example 1 because the relationship given by 
(11) in Henson et al. (1995) is not satisfied (because of the 
choice of �� 21 in the design). For all examples, both methods 
produce completely decoupled response between �1� and �. 
However the IMC design gives more flexibility since � in
Section 4 can be adjusted to tune the response to allow faster 
setpoint tracking of �1� .

From (7), �1 and �2 are directly related to the output setpoint 
and disturbance responses. Therefore it is simple to adjust 
these controllers because in the absence of model uncertainty, 
closed loop stability is automatically guaranteed as long as 
�1 and �2 are stable (Prett and Garcia, 1988). Henson et al. 
(1995) state that the controller �� 21 can also be used to tune 
the responses of the two inputs to changes in �� and �. The 
effect on closed loop performance of adjusting this tuning 
parameters is however not obvious. Neither is it obvious for 
what parameter values the closed loop system is stable. 

7. ANTI-WINDUP IN MID-RANGING CONTROL

Haugwitz et al. (2005) propose anti-windup schemes for 
MVPC when �1 saturates. Guidelines are given on how to 
tune mid-ranging controllers to maintain the same control 
action of �2 in the saturated case as in the unsaturated case. 
Furthermore a modified anti-windup scheme is presented that 
achieves increased control action in �2 to further reduce 
performance degradation. However, if the MVPC structure is 
to be modified, then significantly improved performance can 
be achieved for the saturated case by using the IMC approach 
in this paper.

In this section, the performance of the classical IMC structure 
used for mid-ranging (see Fig. 3) is considered when the 
inputs �1 and �2 saturate. This IMC structure works for most
cases but as demonstrated by Zheng et al. (1994), sometimes 
IMC requires a modified structure. The modified IMC 
structure presented by Zheng et al. (1994) can be utilised for 

Fig. 9 Modified IMC mid-ranging structure for anti-windup 

the proposed IMC mid-ranging design as shown in Fig. 9.  
The performance during saturation of this modified IMC 
structure (Fig. 9) is also considered in this section. 

7.1 Anti-windup in IMC

As with the controller design, firstly the general case is 
considered. For the unsaturated case in Fig. 9,

� =  (1 + �� )
1�	 (�� 
 � + ��) + (1 + �� )
1 ���1�  

From (2),

� = �(�� 
 � + ��) + ��1�    

Therefore it is desired that,

� =  (1 + �� )
1�	                       (7)

� = (1 + �� )
1 ��

For mid-ranging, �, �, � and � are defined as in Section 3.  
Additionally, ��, �	 and �� are as follows:

�� = ���1
��2

�,  �	 =  �
�	1
�	 2

� and �� = �
�� 1 0

0 �� 2
�. 

Extending the general case before for mid-ranging gives:

�
�1
�2

� = �� + �
�� 1 0

0 �� 2
�!


1

��"1
�"2

�

where ��"1
�"2

� = ���1
��2

� �1� + �
�	1
�	 2

� #�� 
 � + [�1 �2] �
�1
�2

�$
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Fig. 10 Example 1: Response of IMC scheme with no saturation (solid), 
6 = 0 (dashed) and 6 = 1 (dotted) for a unit changes in �� at t=10, � at t=30,
�1� at t=50 and t= 70.

From Zheng et al. (1994), �	 can usually be chosen by the 
following relationship:

�	 = 6�(7) + (1 
 6)�

� Condition 1: when 6 = 0, then �	 = � and from (7) 
�� = 0

� Condition 2: when 6 = 1, then �	 =  �(7) and  from (7) 
�� = (�(7) 
 �) ��

The classical IMC structure as shown in Fig. 3 corresponds to 
the condition where 6 = 0 and the modified IMC structure 
given by the block diagram in Fig. 9 corresponds to 6 = 1. 
For condition 2 above, �	1

cannot be chosen to be �(7)
because for the mid-ranging control problem it is required 
that �	1

(0) =  0. To ensure that �	1
(0) =  0, �	 can be 

chosen such that,

�	1
=  �1(7)




 + 81

where 81 is a pole of  �1. 

�	 2
can simply be chosen as �	 2

= �2(7). However, if �2

is strictly proper then �2 can be defined as:

�2 = �2� × �2


where �2� is bi-proper and �2
 is strictly proper so that 
�	 2

= �2� (7) × �2
. 

Fig. 10 shows the response of the system in example 1 
defined in Section 6 when �1 and �2 saturate. Responses for 
both the classical IMC structure (Fig. 3) and the modified 
IMC structure (Fig. 9) are considered. For this example the 
response when 6 = 0 and 6 = 1 is similar because �	1

=
�1.

When �1 saturates, output tracking is still achieved by the 
slow actuator. The control action of �2 is the same when �1

saturates as in the unsaturated case. When �2 saturates
however, the fast actuator compromises between input and 
output tracking. Therefore the classical IMC structure offers 
acceptable performance during saturation. In some cases, the 
modified IMC structure offers even better performance with 
saturation of �1 and �2. 

8. CONCLUSION

Many mid-ranging designs have been proposed and of them, 
MVPC and Direct Synthesis are most appropriate to address
the ad hoc nature of conventional mid-ranging tuning 
procedures. MVPC works sufficiently especially when 
restricted to conventional mid-ranging structure and PID 
control. However, when not restricted, the Direct Synthesis 
(Henson et al., 1995) and IMC approaches give better 
performance. The IMC mid-ranging design presented in this 
paper gives the same improved performance over MVPC as 
Direct Synthesis. Moreover, this approach gives insight to the 
design trade-offs of MVPC and Direct Synthesis by emphasis 
on bandwidth considerations. An added benefit of the IMC 
approach is the ability to integrate anti-windup to mid-
ranging control. Other mid-ranging approaches require 
additional control blocks and further modifications to achieve 
acceptable performance under saturation of the inputs. IMC 
mid-ranging is already a natural structure for anti-windup.
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