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Abstract: Oil & Gas companies continuously try to create and increase business value of their 
installations (platforms, refineries, etc). Particularly the increasing energy consumption on a worldwide 
basis and, as a result, the substantial increase in prices volatility is a major drive for better advanced 
control and optimization technologies. Advanced control and optimization system can play an important 
role to improve the profitability and stability of industrial plants. This paper discusses the problems and 
challenges of advanced control and optimization in petroleum industries nowadays. It emphasizes the 
importance of control performance assessment technology to maintain a good regulatory control and the 
difficulties in using these technologies. It also shows the importance of malfunction detection and 
diagnosis advisory system for critical equipment in order to increase the operational reliability. Model 
predictive control (MPC) has become a standard multivariable control solution in the continuous process 
industries, but there are still many open issues related to accelerate a new implementation and maintain 
the controller with a good performance along the years. Real time optimization tools also impose new 
challenges for Oil & Gas industries application, which are discussed in this paper.  
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1. INTRODUCTION 

The advanced control and optimization systems in oil & gas 
and petrochemical plants are an industrial reality (Qin and 
Badgwell, 2003). These advanced systems provide many 
advantages for the process units, as improved stability and 
safety, respect to constraints and higher profitability. 
PETROBRAS has been investing in the development of these 
systems for several years. Advanced control system is already 
a consolidated technology in its refineries with many model 
predictive controllers implemented (Zanin and Moro, 2004). 
However, the application of real time optimization (RTO) is 
recent, although this technology can bring great economical 
earnings, besides to increase the energy efficiency and 
minimization of emissions. 
 
To install and maintain these advanced systems with good 
performance is a great challenge. Its performance is 
influenced by instrumentation problems, bad tuning of the 
regulatory and advanced control, unreliable process dynamic 
models (Ender, 1993; Kern, 2007), unmeasured disturbances, 
etc.  
 
This article will discuss the problems and challenges of 
advanced control and optimization in petroleum industries 
nowadays. It discusses some tools for diagnosis and tuning of 

the regulatory and advanced control, and the challenge 
associated with the real time optimizers. In spite of the 
several tools in the market that deal with industrial control 
and optimization solutions, PETROBRAS has decided to 
invest on the development of its own tools and solutions in 
many situations, usually in association with some Brazilian 
universities.  The goal of this paper is to show some 
challenges faced, solutions and results obtained in 
PETROBRAS facilities. 

2. REGULATORY CONTROL LEVEL 

Process control aims to maintain certain variables within their 
desirable operational limits and could be visualized as a 
pyramid. In the base of this pyramid, the first level is the 
regulatory control, that uses PID controllers (Campos and 
Teixeira, 2006; Ogata, 1982) and is configured in the digital 
systems (DCS - Distributed control system or PLC - 
Programmable logical controllers). In a second level, we have 
the advanced control systems that use for instance Model 
Predictive Control (MPC). This algorithm considers the 
interaction between control loops, and includes an 
optimization layer of the industrial plant. These algorithms 
are usually implemented in a process computer that 
communicates with DCS or PLC systems by the use of OPC 
protocol (OPC, 2008). The outputs of this advanced control 
are usually the set points of the PID controllers. The 



 
 

     

 

architecture is conceived in such a way that if there is a 
failure in the advanced control level, the plant operation 
continues with the last PID set points in the DCS. 
 
An advanced control system won't reach the expected 
benefits if is turned off constantly for the operators. 
Therefore, the instruments, valves and the regulatory control 
loops (PIDs) should operate appropriately. Hence, the 
performance of the regulatory control is fundamental for the 
success of the advanced control system. An industrial plant 
usually has hundreds of control loops, and less and less 
engineers to maintain the system. Therefore, the industries 
need tools to perform automatic analysis and diagnoses of the 
problems associated with the regulatory control. For example, 
these tools should be able to detect failures with the 
instrumentation (miscalibration, badly sizing, sensor noisy, 
out of scale, measurement resolution, etc.), non linear 
behavior in the process due to changes in the operational 
point, bad PID tuning (oscillation, stability, etc.) and  control 
strategy problems (coupling between control loops, degrees 
of freedom, etc.). 
 
There are several tools in the market that help engineers to 
maintain the regulatory control, but most of them require a 
well-trained engineers to interpret, analyze and  define the 
correct actions, for instance: to change a control valve, tune 
PID controllers or to implement a new control strategy 
(decoupling, feedforward), etc. These engineers should also 
know very well the process in order to evaluate the better 
actions to be taken. 
 
The great challenge for these tools will be to incorporate 
more "intelligence" to help engineers in the definition of the 
better actions. For instance, in certain case, only PID tuning 
could reach 80% of improvement in process variability 
reduction, and in some case, the process performance would 
improve only 10%. A lot of times in industries the engineer 
spends time and money with an action that won't bring great 
results. So, it is clear the importance of a tool that could 
perform the automatic diagnosis and assessment of the 
regulatory control (Farenzena et al., 2006). The most 
important features of this tool should be to have automatic 
ways to prioritize the actions for each process that might 
result in a better performance, and also to provide a 
standardized metric to compare different actions in different 
processes, even in different scales such as economical, 
environmental or safety (Harris, 1989; Kempf, 2003; 
Farenzena and Trierweiler, 2008). These features are a great 
development challenge for these tools. 
 
Despite the several tools in the market, PETROBRAS and 
Federal University of Rio Grande do Sul (UFRGS) have 
developed their own tool, the software called “BR-PerfX”. Its 
main purpose is to compute some universal key performance 
indicators that reduce the subjectivity in the analysis and help 
engineers in their assessments and decisions about problems 
affecting the regulatory control.  
 
In order to face the PID tuning problem, PETROBRAS and 
Federal University of Campina Grande (UFCG) developed 

the software "BR-Tuning" (Schmidt et al., 2008; Arruda and 
Barros, 2003), which is comprised by a group of techniques 
regarding open and close loop identification and the 
proposition of new tuning parameters. It communicates 
directly with the process automation system (DCS or PLC) 
using the OPC protocol. 
 
As it was said previously, the challenge is to develop an 
"intelligent" layer that helps to make a diagnosis based on 
several indexes or indicators. The integration between 
different tools is also an important concern. The use of the 
OPC standard for the exchange of information could be an 
option. So, each tool could make available their indicators to 
others tools through OPC. This way, the engineers' work 
would be facilitated, avoiding losses of time and money. 
 

 
Fig. 1. BR-Tuning interface. 

The challenges in relation to controllers' tuning are associated 
mainly with the identification of the models, the 
determination of the process non-linearities, interaction 
between control loops, as well as defining the desired 
performance for each control loop. 
 
There are some processes where the disturbances’ pattern can 
change with the time, as in some off-shore petroleum 
platform. The slug flow can change its intensity for example 
due to changes in the gas-lift. So, we don't have a PID tuning 
parameters that are good for all these different situations. In 
this case, it was developed an "intelligent" system that 
supervises the process plant and changes the PID tuning 
automatically when necessary. This control strategy is 
equivalent a "gain-scheduling" where the control 
performance (deviation between the process variable and the 
setpoint) is evaluated during a time, and the system decides 
what is the best tuning for that moment. All the possible 
values for the PID tuning are chosen off-line. This system 
was installed in several PETROBRAS' platforms. The figure 
2 shows the system changing the PID tuning parameters and 
the level performance. This project used a tool called MPA, 
which was developed by Catholic University of Rio de 
Janeiro (PUC-RJ) to PETROBRAS. 
 
Another challenge is the development of non-linear 
controllers for some special cases, for example to pH control 



 
 

     

 

in certain plants, although PID will continue to be the 
algorithm more used in this regulatory layer control for 
several years. 
 
Researches and developments for the regulatory control level 
are still necessary, and they can bring great economical 
earnings. For example, an application of these tools 
(evaluation, tuning and changes in control strategy) allows an 
increased of about 9% in the production of LGN (Liquefied 
Natural Gas) in a natural gas plant (Campos et al., 2007). 
 

 
Fig. 2. Performance of this control strategy in production 

platform (1 day). 

3. ADVANCED CONTROL SYSTEM 

The multivariable predictive controllers (MPCs) are powerful 
tools for the process optimization and are available in many 
industrial plants. This system can increase feed and preferred 
product rates, reduce energy consumption and waste material. 
These benefits are more visible in complex processes where 
challenging dynamic responses (significant time delays, non-
minimum phase responses, control loop interaction, etc.) due 
to disturbances (feed flow and composition, energy 
integration, usefulness, etc.) that must be dealt with while 
taking into account process constraints and trying to pursue 
the best economic performance. As an example of the 
benefits achieved, figure 3 shows an increase of about 16% in 
the LPG yield due to the implementation of an Advanced 
Process Control (APC) system in a natural gas plant. 
 

 
Fig. 3. LPG yield increase in a natural gas plant due to 

MPC. 

However, even if MPC systems are nowadays seen as a 
commodity, there is still much to be done, due to the 

significant gap between the recent MPC technologies 
development in the academy and those effectively used on 
industrial plants. Most industrial MPC applications are based 
on the most traditional approaches: linear algorithms based 
on step-response models obtained through traditional step 
tests. 
 
MPC maintenance 

MPC performance decay throughout time is a well-known 
and widely reported fact (figure 4). If no maintenance work is 
done, the operators end up turning them off. There are many 
causes for this behaviour: 

 Changes in the units operational objectives;     
 Equipments efficiency losses (fouling);     
 Changes in the feed quality;     
 Problems in instruments and in the inferences;     
 Lacks of qualified personnel for the controller's 

maintenance. 
 

Therefore, the first great challenge associated with MPC 
control is to have reliable tools to keep performance and 
diagnose problems. 
 

 
Fig. 4. Advanced Control Performance during the time. 

Therefore, industry needs better tools to help maintenance 
personnel to answer the following questions: 

 Is advanced control system accomplishing their 
objectives? 

 What is its performance? 
 Is the process optimized? 
 What are the benefits? 
 How is the level of disturbances? 
 What is operational factor of the controller? 
 How are the operators adjusting the limits of the 

manipulated variables? 
 Are manipulated variables very limited? 
 What is the variability of the main controlled 

variable? 
 Is the process operating close to the constraints? 

 
It is necessary a tool not only to answer these questions, but 
the system point out the causes of the bad performance: bad 
models, bad controller tuning, inference problems, non-
linearities, frequent changes in the operation point, new 
constraints not considered in the design? 
 



 
 

     

 

 
Nonlinear models, Identification and Model mismatch 

Many different and even sophisticated approaches have been 
proposed in order to allow MPC algorithms to cope with 
process nonlinearity. Bequette (2007) presents a recent 
review on the subject. However, despite all this effort, 
industrial Nonlinear MPC (NMPC) applications are relatively 
few, and most of these are based on the simplest approaches. 
 
One possible reason for that might be simply that the 
nonlinear behaviour is not known, and any lack of 
performance is seen as a typical model mismatch.  
 
Another possibility might be that the nonlinear behaviour is 
known, but can not be easily determined with traditional 
plant tests. One way to overcome these problems might be 
the use of rigorous dynamic simulators, to improve the 
understanding of the process behaviour. Information obtained 
with dynamic simulation could be combined to the existing 
linear model in order to provide a reliable nonlinear one. 
Dynamic simulation might be useful also to find out the best 
way to characterize the observed nonlinearity. Once more, 
although there is availability of dynamic simulators, there is 
not much use of them in industrial applications. 
 
Process identification of complex processes is still a hard 
task, where a significant part of the effort on MPC 
implementation is spent.  
 
In order to address this problem, some commercial tools have 
been conceived in this decade for closed-loop identification. 
These tools are based on efficient ways to perform step tests 
allied to modelling strategies for minimization of the model 
order. While this approach has proved to be useful and 
promising, it is still a hard task to apply these techniques to 
complex processes, especially when dealing with noisy data. 
It seems to be a lot of space for development in this area. 
 
Another interesting way to reduce implementation time can 
be the use of algorithms for automation of the plant test.  
 
Tuning 

MPC tuning is another interesting issue, where new 
technologies might help to reduce implementation time and 
also on the maintenance task. 
 
Some interesting ideas have been proposed (Trierweiller and 
Farina, 2003) that try to combine desired and achievable 
performances. However, the controller tuning still consume 
time and is critical points for controller performance. 
Normally, all MPC tuning methods consider a square 
controlled variables x manipulated variables matrix, but, in 
fact all controller has a rectangular matrix that means 
different tuning scenarios depending on which constraints is 
active. 
 
Another big challenge is to reduce the application time and 
maintenance time. For this, it is believed that the main critical 
points are: 

 Tools for the development of inferences: 
o Use of rigorous dynamic simulators, or statistical 

methods for better inferences using less laboratory 
analysis data. 

 Dynamic models identification: 
o Automation of the identification tests, 

minimizing problems and loss of data; 
o Efficient tools for closed loop identification; 
o Characterization and identification of the non 

linearities of the process. 
 Better tools for tuning the predictive controller: 

o How to define the priorities in the several 
operating points of the controller and change 
automatically the tuning parameters. This activity 
is still done by trial and error in many industrial 
cases. 

 
New advanced controllers that contemplate these aspects will 
help the users to implement and maintain these industrial 
systems. 

4. REAL TIME OPTIMIZATION 

Real Time Optimization (RTO) technology is a powerful tool 
for the continuous search of the most profitable way to run 
petroleum and petrochemical process units. Cutler and Perry 
(1983) state that despite being a hard and complex task, its 
potential benefits are relevant and might provide profit 
increases around 6 to 10% when allied to Advanced Process 
Control (APC). 
 
The task of an RTO application is to make the best of an 
existing process unit, adjusting its process variables for every 
new change of external conditions, like operational variables, 
feed compositions and process constraints. The RTO benefits 
are usually associated with the maximization of products and 
minimization of the specific energy consumption and other 
resources, depending on the following factors: 

 Market availability 
 Products prices and feed costs 
 Safety and environmental constraints 
 Product specifications 

 
The central figure of an optimization application is the 
mathematical model. It is expected to represent the process 
behaviour on a wide range of operating conditions with good 
accuracy. It should not only guarantee that the predicted 
potential profitability matches that of the real process, but 
also that when the optimal solution is implemented the 
process constraints must not be violated. Most RTO systems 
used nowadays are based on rigorous, steady-state, first-
principles mathematical models.  
 
The good performance of an RTO system depends on a 
reliable mathematical model and on reliable input data. In 
order to obtain that, many procedures must be executed 
before the economic optimization problem can be solved: 

 Gross Error Detection 
 Steady-state Detection 
 Data Reconciliation  
 Parameter estimation 



 
 

     

 

Once that a reconciled data set and a fitted model have been 
obtained, the process optimization can be performed. The 
optimization problem usually consists of the maximization 
the operational profit (or minimization of operational costs) 
subject to a set of constraints. On most situations the 
optimization problem is posed as a non-linear programming 
problem (NLP). Most commercial applications are based on 
variations of the SQP (Successive Quadratic Programming) 
algorithm. This algorithm is also used to solve the previous 
Data Reconciliation and Parameter Estimation problems. 
 
Real Time Optimization at PETROBRAS 

Since 2004, RTO has been classified by PETROBRAS and 
its Strategic Downstream Committee as a “High Sustainable” 
technology. It means that RTO is seen as a key technology to 
improve PETROBRAS performance and profit, and therefore 
significant effort and resources will be spent on this subject. 
 
PETROBRAS implementations on RTO covered a wide 
range of alternatives, focusing both on profitability and on 
the search of the best way to deliver the technology: 

 Fluid Catalytic Cracking (FCC) and Crude 
Distillation Units (CDU); 

 Proprietary and commercial process models and 
RTO systems; 

 Sequential Modular (SM) and Equation Oriented 
(EO) approaches (Alkaya et al., 2003). 

 
The first RTO initiatives were taken using PETROBRAS' in-
house process simulator for FCC, with a small scope 
covering only the reactor/regenerator section. The proprietary 
process model used is based on a Sequential Modular (SM) 
approach. Though many difficulties were found (see next 
section), this initiative made possible to test the technology as 
well as to help our engineers to take a step further. 
 
Distillation Unit / SM approach (2004) 

This implementation took place at the Crude Distillation Unit 
(CDU) and the two Solvents Units of RECAP refinery 
(Gomes et al., 2008).  
 

 
Fig. 5 - Scheme of the CDU and the Solvents Units of  

RECAP/PETROBRAS. 

The process model was built using PETROX, a proprietary 
sequential-modular process simulator from PETROBRAS. 
The simulation comprises 53 components and pseudo-
components and 64 unit operation modules, including the 7 
distillation columns and a recycle stream. All modules are 
built with rigorous, first-principles models.  
 
For optimization applications, PETROX was linked to 
NPSOL, an SQP optimization algorithm. Procedures for 
Steady-state and Gross error detection, Data Reconciliation, 
Parameter Estimation and Economic Optimization were 
implemented. The economic optimization problem consisted 
of the maximization of the operational profit, constrained by 
limits related to product specifications, safety constraints, 
feed rate and performance parameters. The whole 
optimization problem involves 19 decision variables and 21 
constraints. 
 
Most of the reported problems of optimization based on 
sequential-modular models were observed in this application: 

 Low computational efficiency, due to slow recycle 
loops and the numerical derivatives that imply 
running the SM model several times. These 
derivatives are also inaccurate, which slows down 
the optimization process even more. 

 Lack of reliability: the SM model is computed many 
times and must converge always. If a single failure 
happens during the optimization, all the effort is 
lost.  

In order to minimize these problems, a lot of effort must be 
spent on the conception, customization and tuning of the SM 
model. However, that is no guarantee of success. When the 
Data Reconciliation and Parameter Estimation problems were 
implemented, the same problems were observed. 

Fig. 6 - SAO strategy applied to the metamodel-based 
optimisation. 

Metamodel approach 

In order to overcome some of these shortcomings, a 
metamodel approach has been studied. Metamodels or 
surrogate models (Gomes et al., 2008) are reduced models 
whose parameters are obtained with data that is generated 
with rigorous, first principles models. In this work, an 
optimization procedure was developed, combining 
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metamodels and rigorous models with a Sequential 
approximate optimization (SAO) algorithm. The optimization 
problem is solved based on the metamodel that is updated 
with data obtained from the rigorous model throughout the 
optimization procedure. The RECAP optimization problem 
was addressed with this approach, with kriging models and 
neural nets used as metamodels. Accurate results have been 
obtained with considerable reduction of the computational 
effort on most of the studied cases. 
 
Distillation Unit / EO (2005 to 2006) 

This was the first EO RTO project PETROBRAS 
implemented. After an International Bid, where 3 well-known 
companies were invited to submit their proposals, AspenPlus 
Optimizer (Aspentech, Inc.) was selected. The project scope 
included all 3 preheat trains as well as Pre-flash, Naphtha 
Stabilizer, Atmospheric, Vacuum and Pre-vacuum 
distillations towers. The unit was fully modeled with the 
RTO software, which allowed for instance the understanding 
about the implications that changes on the preheat train, like 
feed distribution, have on the Atmospheric tower. Or to study 
the best pumparound heat removal distribution along this 
tower and its effects on the preheat train. In order to do that, 
all pumparounds were modeled as external streams from the 
tower and not as an internal model within its model (see 
Figure 7), as it is common on SM simulators. 
 
The system is running on open loop since 2007. A few 
closed-loop tests were performed, but the unit had some 
operational problems which were solved on this last Oct/08 
turnaround. PETROBRAS intends to close loop in 2009 after 
making model tuning adjustments in order to incorporate the 
new atmospheric trays and other unit improvements. 
Nevertheless, by keeping the system running open loop 
(around 9 runs / day), we were able to improve our 
knowledge of the system itself, how to overcome non 
convergence problems (feed reconciliation and optimization) 
and attaining expertise on how to maintain such a real time, 
strongly data and instrumentation dependent system as well 
as evaluate potential benefits (around 13 000,00 dollars / 
day). 

 
Fig. 7 - Aspen Plus Optimizer Screenshot - Atmospheric 

tower. 

FCC Unit / EO (2007 to 2008) 

Following the success on the distillation unit implementation, 
PETROBRAS moved forward to implement an RTO on 
another very important unit. Again, after an international bid,  

ROMeo (Invensys, Inc.) was selected.. The project scope 
included the Reactor / Regenerator section, Main Fractionator 
and Gas Recovery Plant. Again the unit was fully energy and 
mass integrated modeled. 

 
Fig. 8 - ROMeo screenshot - Reactor/Regenerator Section. 

The system is running on closed loop (around 8 runs / day) 
since June/08 with most of the independent variables active. 
On average, around 60% of the successful runs are being 
accepted by Operations and targets are being sent to 
Advanced Control. PETROBRAS has evaluated an average 
gain of US$ 0.12 / bbl of FCC feed for this application, by 
comparing the unit performance with and without RTO. 
 
A few comments on both projects: 

 Lack of instrumentation on preheat train (FCC) – 
implied on simplifications, which has impacts on 
Main Fractionator heat balance and, thus, must be 
evaluated from time to time; 

 Low feed lab analysis frequency – There is a need 
for a better way to estimate feed characterization; 

 Non-convergence problems - Mainly, due to 
instrumentation faulty and/or out of service heat 
exchanger or other piece of equipment. Although 
there is a kind of standard procedure to deal with 
them, it is not possible to automate it. So each 
problem must be solved on a case to case, hands-on 
basis. 

 
These facts enforce the need for a fully dedicated RTO 
engineer for each application, not only to assess its results 
and make sure they are being implemented, but to keep the 
system running despite of the many daily issues the 
application faces. 
 

Modelling approach 

PETROBRAS experiences showed that the Equation 
Oriented (EO) approach is more suitable for RTO, when 
compared to the Sequential-modular process models, 
especially when process unities of higher complexity are 
addressed. 
 
Challenges associated with RTO 

Non-convergence tracking 

When the optimization process brakes down due to non-
convergence, it is sometimes a hard task to find out the origin 
of the failure, especially when the cause of the problem is not 



 
 

     

 

related to instrumentation or well-known process problems. 
Therefore, there is a need for better procedures or even an 
expert system that might identify the numerical failures and 
provide high-level analysis to support the user on the best 
actions to take. 
 
The improvement of the initialization techniques (Fang et al., 
2009) might also be useful to avoid convergence problems, 
especially for the data reconciliation problem. 
 

Scaling 

Scaling of variables is a subjective issue. Despite the 
available heuristic rules provided by the technology licensors, 
the users are sometimes required to define scaling factors or 
limits. However, it is possible that a numerical analysis of the 
system of equations to be solved might provide the best 
scaling factors. 

Integrating multiple process unities  

In order to take the most of process flexibilities, it might be 
important to expand the scope of the optimization problem to 
involve more than just one process unit. However, the 
increase of the problem size and the consequent shortcomings 
can be a challenge to be faced. In this case, the non-converge 
tracking procedures would become a key issue. 

Steady-State detection 

The steady-state detection procedures used nowadays in the 
commercial solutions require the definition of several 
parameters, which is a very subjective issue. This task 
demands from the user not only process experience, but also 
a long time of observation. It would be useful to have 
procedures that could drive a straightforward choice, 
especially when dealing with multiple-process optimization 
applications. 

Multi-scale optimization 

The integration and information exchange between different 
optimization levels is an issue that requires more attention. 
 
Multi-level optimization concepts could be applied in order 
that procedures for model re-fitting or tuning and the 
redefinition of search spaces could be done automatically, 
while the different optimization problems are being solved.   

Dynamic RTO 

Dynamic Real Time Optimization (DRTO) is an open issue. 
The use of rigorous dynamic models for large-scale 
applications might allow the simultaneous solution of process 
optimization and control problems. Ideally it would also 
avoid the requirement of steady-state detection procedures. 
However, with the present resources, DRTO solutions would 
demand a significant computational effort and, possibly, 
many numerical issues should be addressed before this 
technology can be widely used in industrial applications. 

5. CONCLUSIONS 

This article has discussed some challenges associated with 
advanced process control and optimization in petroleum 

industries as well as how PETROBRAS is overcoming them. 
Our vision is that there is still plenty of space for further nd 
research and development on the improvement of those 
technologies. The best accomplishment of this task will come 
if Industry and Academy work together. 
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