
MPC: Current Practice and Challenges 

Mark L. Darby*, Michael Harmse**, Michael Nikolaou***
�

*CMiD Solutions, Houston, TX 
USA (Tel: 713-477-7791; e-mail: darbymark@sbcglobal,net).

**IPCOSAptitude Ltd., Cambridge, United Kingdom (e-mail:Michael.Harmse@ipcosaptitude.com)
*** Chemical and Biomolecular Engineering, Houston, TX  (e-mail:nikolaou@uh.edu)

Abstract: Linear Model Predictive Control (MPC) continues to be the technology of choice for 
constrained multivariable control applications in the process industry.  Successful deployment of MPC 
requires “getting right” multiple aspects of the problem.  This includes the design of the regulatory 
controls that receive setpoints from MPC, design of the multivariable controller(s) themselves, test design 
for model identification, model development, and dealing with nonlinearities. In the following, we 
highlight approaches and techniques that are successfully applied in practice and provide an overview of 
recent technological enhancements that are being made to MPC.  While significant progress has been 
made in both the technology and practice, there are challenges with MPC, mostly related to the effort 
required to develop an application and to ensure adequate performance over time.  Suggestions for 
addressing these issues are included as possible research directions. 

Keywords: model predictive control, model-based control, constraints, control system design, modeling, 
process identification. 

�

1. INTRODUCTION 

Model predictive control (MPC) is a mature technology.  It is 
the standard approach for implementing constrained, 
multivariable control in the process industries today.  MPC 
provides an integrated solution for controlling  interacting 
systems with complex dynamics and constraints.  A key 
aspect of MPC is its ability to deal with degrees of freedom, 
that may arise when there are more or fewer inputs 
(manipulated variables) than outputs (controlled variables), or 
when zone limits for controlled variables are used, which is 
the typical situation in practice.  Broadly defined, MPC refers 
to a control algorithm that explicitly incorporates a process 
model to predict the future response of the controlled plant.   
While the model may be linear or nonlinear, we consider 
linear MPC as it is used in the majority of industrial 
applications in the refining and petrochemical industries 
today (and increasing, in other industries).  For these 
applications, the plant model is identified based on data 
generated from a dedicated plant test.  Today, there are a 
number of technology vendors which provide MPC solutions, 
including software to facilitate the development of MPC 
applications and monitoring of the performance of these 
applications over time.  The last 10-15 years has seen 
significant efforts by technology suppliers to improve the 
usability of MPC products.   

While the “science” of MPC has advanced and the 
technology is now easier to apply, there is still an “art” aspect 
to the application of MPC that largely comes from 
experience.  The success of an MPC application depends on 
the multiple technical decisions that are made by the control 
engineer in the course of an implementation.  In addition, 

there are both technical and organizational issues that are 
critical to ensuring that MPC benefits are sustained in the 
longer term once an MPC is commissioned (Darby and 
Teeter, 2005).  Based on our experience, we find that the 
success rate of MPC across the industry is uneven.  Some 
companies are consistently successful in deploying MPC, 
whereas others are not.  In the following, our main emphasis 
concerns the technical aspects of MPC that arise in the course 
of an implementation. 

MPC is positioned above a regulatory control level as shown 
in Figure 1. The manipulated variables for the MPC are 
typically setpoints of PID controllers, executed in a 
distributed control system (DCS).  The MPC may also 
directly manipulate valve position signals rather than, e.g.,   
flow.  
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Figure 1. Control hierarchy 

     



 
 

 

The DCS executes a at a higher sampling rate than the MPC, 
typically sub–second to multi-second sample time, compared 
to a 30 sec to 2 min execution period  for MPC. 

Certain targets and objectives for MPC come from higher 
level functions such as planning and scheduling, typically 
communicated to the operator in an open-loop fashion, or 
from a real-time optimizer, if present.  Note that there it not 
necessarily a one-to one-translation of decisions from upper 
level functions to targets and limits in the MPC.  Economic 
objectives and priorities may also be involved.  Examples 
include gasoline vs. diesel objectives (winter vs. summer) in 
a refinery and the priority of feed stocks in an ethylene plant.  
In addition, there are day-today issues that may arise such as 
a late shipment, or a product tank becoming full.  

Part of the challenge in implementing MPC is that the 
regulatory control layer is not a given (or should not be taken 
as a given).  The design problem is really one of deciding on 
the best overall structure for the regulatory level and MPC, 
given the control objectives, expected constraints, at least 
qualitative knowledge of the expected disturbances, and 
robustness considerations.  Similarly, the selection of the 
controlled variables for MPC is not one of simply deciding 
which subset of available measurements should be selected. It 
may be that available measurements are insufficient and 
additional sensors are needed.  In addition, not all variables 
that need to be controlled may be available on a frequent-
enough basis; therefore, we have the problem of inferring 
qualities from secondary measurements.  The above decisions 
are by no means trivial and represent key aspects of the 
controller synthesis problem that have attracted significant 
attention over the past four decades (Buckley, 1964; Weber 
and Brosilow, 1972; Morari et al., 1980; Larsson and 
Skogestad, 2000; Stephanopoulos and Ng, 2000).  

Once the regulatory level is decided upon, the remaining 
decisions relate to how to structure the MPC layer: Should 
one controller or multiple MPC controllers be used?  For 
each controller, there is the issue of deciding on the 
manipulated variables, the controlled variables, and the 
feedforward variables. Non-linearities are other issues that 
must also be addressed, if significant in an application.  Note 
that the techniques discussed here are based on approaches 
that retain a linear(ized) dynamic model at the core of the 
MPC engine. 

The typical MPC project sequence is as follows: 

Pretest and Preliminary MPC design. 

Plant Testing. 

Model and Controller Development. 

Commissioning and Training. 

In the pretest phase of work, the key activity is one of 
determining the base level regulatory controls for MPC, 
tuning of these controls, and determining if current 
instrumentation is adequate.  The outcome of this phase is a 
list of issues that must be fixed or resolved before plant 
testing can proceed.  Typical problems that are identified are 

valve issues (sizing and excessive valve stiction), faulty 
instruments, and sensor location.  The other task that begins 
in this phase is one of learning the process and understanding 
the operational challenges and expected constraints.  In 
addition, a preliminary design for the MPC is typically 
performed, i.e., identification of controlled and manipulated, 
and  number of MPCs. 

Plant testing consists of generating plant data for model 
identification.  Additional process knowledge and insight 
comes from this phase of work.  Testing requires moving all 
inputs that may be manipulated variables for the MPC.  
Testing may be performed manually or automatically.   
During this phase of work, frequent lab measurements are 
collected, if an inferential model of product qualities is 
required. 

In the next phase or work, modeling of the plant is 
completed, including any required inferential s and non-linear 
compensators.  It is here that the models are analyzed for 
consistency.  The final design for the controller or controllers 
is completed and simulations performed to test the model and 
tune the controller.   

Commissioning involves turning on the controller and 
observing its performance on the plant and making tuning 
adjustments as needed to obtain a properly functioning 
controller.  Training of operations staff on the live controller 
is begun in this phase.   

In the following, we provide a high level description of MPC, 
MPC, without much emphasis on the particular theoretical 
properties of the MPC algorithm, for which there is already a 
substantial body of work (Mayne et al., 2000.).  
Subsequently, we present a detailed discussion of the key 
tasks and decisions that are made in the course of an 
implementation.  Where appropriate, current practice is 
highlighted and guidelines are given.  The impact of recent 
technological enhancements that have appeared are 
discussed.  Lastly we suggest areas where improvements may 
be made. 

2.  MPC OVERVIEW 

A simplified block diagram of the typical MPC is shown in 
Figure 1.  Key functionality of the components shown in the 
figure are described below. 

Target Selection: Target selection determines the best 
feasible, steady-state operating point, ,s s

k kx u  based on steady-
state gains of the model.  It can be implemented on the basis 
of minimizing deviations from desired steady-state “resting 
values” or as the result of an economic-based steady-state 
optimization, typically either a linear program (LP) or a 
quadratic program (QP). 

Controller: The controller determines optimal, feasible future 
inputs to minimize predicted future errors, over a moving 
horizon, from targets determined by target selection.  Tuning 
parameters (e.g., weights) are used to establish the dynamic 

     



 
 

 

objectives and trade-offs.  A QP is typically used to perform 
the controller optimization. 

Estimator: The estimator updates the model estimate to 
account for unmeasured disturbances and model errors.  It 
includes a deterministic part that models the effect of 
controller-manipulated process inputs (and other measured 
process inputs) on the process outputs, and a stochastic part 
(which may only be implicit) that models the effect of 
unmeasured disturbances on the process outputs.  The 
simplest form for the estimator is the original MPC output 
correction (and still widely used today), where the current 
offset between the measurement and the model prediction is 
used to bias future model predictions.  A state space model 
represents a more general and flexible approach to modeling 
unmeasured disturbances in the estimator. 

 

Figure 2. Simplified MPC block diagram 

Various model forms are used in the various MPC products 
available today.  Most common are the finite step response 
(FSR) or finite impulse response (FIR), but state space model 
formulations are also found.  Recent controller products 
suggest a trend towards increased use of state space model 
formulations, because of the flexibility they offer to represent 
stable, integrating, and unstable processes in a single 
structure. 

Our intent is not to delve into differences between the 
formulation and options of the various products.  The 
interested reader is referred to Maciejowski (2002) and Qin 
and Badgwell (2003) Suffice it to say that differences exist 
among the products as to the approaches taken, but that they 
address important features such as prioritization of  
constraints, economic objectives and tuning parameters to 
influence CV vs. MV variance trade-offs. Most MPC 
controllers today force consistency between the sequence of 
input moves generated by the controller and the steady-state 
solution determined by the target selection.  This consistency, 
which is equivalent to the imposition of a terminal constraint, 
provides nominal and robust stability (Genceli and Nikolaou, 
1993; Rawlings and Muske, 1993; Ying and Joseph, 1999) 

1. DCS STRATEGY 

In deciding upon an appropriate DCS strategy for the MPC, 
there are several factors that need to be considered and 
balanced.  Major factors are disturbance rejection, process 

interaction, robustness to model errors, and constraint 
considerations.   Another factor is the influence of the DCS 
strategy on the settling time of the system, which affects the 
control horizon in MPC. 

Fortunately, when implementing MPC, an existing DCS 
strategy is in place that can be evaluated and changed, if 
necessary.  We are aware that some practitioners choose to 
use existing DCS schemes “as is” as opposed to modifying or 
pairing the PID loops in a different way.  However, such 
modifications can have a significant impact on both MPC 
control performance and the ease of implementation (e.g., 
testing).  Note that with modern DCS systems a different 
DCS strategy (“fall-back”) may be used when MPC is 
switched off or fails.  

 A typical decision concerns whether to incorporate a 
cascade, such as temperature to flow cascade on a distillation 
column, or a temperature to pressure cascade on a direct-fired 
heater.  As we have discussed, the DCS typically operates at 
a higher sample frequency than the MPC; therefore an 
existing cascade, if tuned well, will likely have much better 
disturbance rejection capability than the MPC.  An additional 
advantage is that a cascade may help to linearize important 
CVs controlled by the MPC (because of the linearizing effect 
of feedback in the inner loop in a cascade scheme).  This can 
be advantageous in providing acceptable control over a wider 
range of, e.g., plant feed rates. 
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The thinking with respect to cascades with MPC has clearly 
evolved over the years. In earlier days of MPC, it was often 
thought preferable to “break” an existing TC cascade and 
design the MPC to manipulate flow controllers. The 
motivation was that this would lead to simpler (overdamped) 
models and allow the interaction to be addressed by the 
MPC.  What was missed with this approach was the rejection 
capability of the DCS via the higher sampling frequency, and 
the robustness that results from incorporating a TC into the 
MPC strategy.  Consider the case of the two-by two 
subsystem associated with the product purities of a binary 
distillation column, controlled in the reflux-boilup 
configuration (so called L-V configuration).  Consider two 
cases: 1), MPC control of compositions via L and V and 2) 
MPC control of the compositions via L and a stripping 
section TC controller that manipulates boilup.  We assume 
that the controlled temperature correlates well with the 
bottoms product composition.  The model relationships for 
these two cases are 
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Due to its lower triangular structure, L-TC is a more robust 
formulation compared to a full decoupling strategy with 
manipulated variable L and V, especially if the process is ill-
conditioned, or more accurately, has large RGA elements 
(Skogestad and Morari, 1987).  In most cases a temperature 

     



 
 

 

cascade would be retained if it performs well.  In a 
distillation column, it may be necessary to select another tray 
temperature if the existing one does not correlated well with 
product quality.  Note that dual-ended temperature controls 
would normally be avoided because of interactions and the 
potential for the controllers to wind up (i.e., saturate) , if a 
section of the temperature profile shifts to a region of 
insensitivity (e.g., due to a feed composition change).  

Another cascade decision concerns level to flow cascades, 
associated with feed drums, reflux accumulator drums and 
distillation column sumps.  The questions is: should a flow be 
controlled directly by the MPC (with the associated level 
controlled by the MPC)?  A motivation for doing so is to 
obtain a direct handle on inflows, without the dynamics of the 
level controller.  Such an approach is useful when a plant 
capacity constraint exists, such as column flooding, and unit 
feed rate is also manipulated by the MPC. By directly 
manipulating column feed, tighter control of a plant capacity 
constraint can be achieved by taking advantage of liquid 
holdup in intermediate drums.  Additional justification is to 
shorten system settling time by removing the dynamics of 
level controllers.   

A disadvantage of including levels in the MPC is that levels, 
which are integrating variables with respect to flow, are that 
they harder to keep in bounds during an open-loop plant test.  
Levels are affected by both material and energy balance 
effects. While material balance effects may be 
straightforward to model, energy balance contributions 
affects must also be modeled, which tend to contribute over a 
longer time frame.  Part of the challenge with integrating 
variables is related to the identification problem, as it is   
common to identify the first difference of an integrating CV, 
which decreases the signal-to-noise content.  Note: in some 
FIR-based ID methods a double difference is used - one 
difference for the integrator and an additional difference (for 
both inputs and outputs) to remove integrating or slow 
disturbance effects.  An additional challenge is that it is 
common for an MPC controller to contain logic to switch off 
if an integrating variable cannot be balanced (zero difference) 
at steady state., thus making integrating variables more 
sensitive to measurement spikes.   

An alternative to controlling the level in MPC is to keep the 
level cascade in the DCS and manipulate the level setpoint to 
influence the corresponding flow rate (taking advantage of 
buffering capacity).  In this case, the level measurement 
could also be brought into the MPC as a CV (and controlled 
within bounds).  For this situation, model relationship 
between level setpoint and flow is zero gain (i.e., dynamic 
response only, zero steady-state gain). We should note that 
practitioners are divided on what is the best approach, 
although most of the experience is with FIR- or FSR-based 
MPC.  Examples of step response models for these two cases 
are shown in Figure 3. 

We should note that the theory and experience-to-date 
indicate that integrating variables are more easily handled 
within a state-space formulation, as it allows more flexibility 
in the unmeasured disturbance model – i.e., selection of the 

disturbance channels and incorporation of additional output 
measurements (Qin and Badgwell, 2003; Froisy, 2009).  
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Figure 3. Step response models for integrating level: open-
loop vs. closed-loop with PID 

An important issue concerns valve positions of PID loops 
that are directly manipulated by MPC or that are affected by 
other manipulated variables of the MPC.  For example, 
manipulating an FC controller setpoint will affect the valve 
position associated with the FC as well as the valve position 
associated with a downstream pressure controller.  When a 
valve approaches a saturated state (either fully open or 
closed), not only is PID control lost for its associated 
controlled variable, but model mismatch (and nonlinearity) is 
introduced to all MPC-controlled variables that depend on the 
PID controller response.  As a result, the MPC needs to keep 
PID controller outputs in a controllable range.  This can be 
achieved by bringing the PID controller output into the MPC 
as a controlled variable.  This approach is illustrated in Figure 
3a.  In this case, MPC manipulates the setpoint of the PID 
controller setpoint as necessary to keep the controller output 
in range.  How well the PID output can be controlled and 
how close to saturation the MPC limit can be placed depends 
on: PID tuning, disturbances characteristics, and the degree 
of nonlinearity.  It may be necessary to retune the PID loop 
based on the response of the controller output (a smooth 
response in the valve, without significant proportional “kick” 
is desirable).   
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Figure 4. Alternate MPC strategies for maintaining valve 
positions in controllable range – (a) MPC to PID and (b) 
direct output to valve. 

     



 
 

 

If a valve associated with a PID controller saturates more 
than 25% of the time, or if economics dictate operation at a 
fully open or closed-loop state, it may be preferable to 
directly manipulate the controller output directly, as shown in 
Figure 3b. In this way, the valve limit can be strictly 
enforced, resulting in control closer to the true valve limit.  In 
this situation, additional disturbances may result from 
opening the PID loop that need to be addressed by the MPC 

Regardless of the strategy, valves issues often arise in a 
project.  Significant valve stiction (if greater than say 2%) 
must be corrected.  In addition, valve nonlinearities may 
require compensation as part of the MPC strategy. 

Example To illustrate how the various considerations 
discussed previously influence the MPC design, consider the 
two-column configuration shown in Figure 5, which is to be 
part of an MPC application that maximizes plant feed rate 
(not shown).  

The following convention is used: ZC.sp denotes the setpoint 
of a PID loop to control Z; ZC.pv denotes the process 
variable or feedback variable for loop ZC; and ZC.op 
represents the output signal sent to the valve position.   

For this example, assume it is known that the second column 
is susceptible to flooding, as indicated by a high value in 
DP1.pv, and that PC2op often saturates fully open.  Because 
flooding is a constraint for column two, we would consider 
breaking the LC2 cascade and directly manipulating flow 
FC3.sp in the MPC.  Due to the saturation potential of PC2, 
we would also consider directly manipulating its valve via 
PC2.op and controlling pressure within the MPC.  If both 
temperature controllers perform well and the associated 
temperatures are good indicators of composition, they would 
be retained.  These considerations then lead to an MPC with 
the following manipulated variables: 

FC2.sp - column 1 reflux flow controller setpoint. 

TC1.sp - column 1 temperature controller setpoint. 

PC1.sp - column 1 pressure controller setpoint. 

FC3.sp - column 2 feed flow controller setpoint. 

FC5.sp - column 2 reflux flow controller setpoint. 

TC2.sp - column 2 temperature controller setpoint. 

PC2.op - column 2 pressure controller output. 

Figure 5. Example process to be controlled by  MPC 

 

2. PLANT TESTING 

 

The plant test and subsequent model identification are the 
most important steps in an MPC project, and incur the most 
time, often representing more than 50% of the total project 
time.  The importance of the accuracy of the plant model for 
MPC cannot be overstated. One cannot simply tune an MPC 
controller to compensate for a poor model.  Further the effort 
involved in testing and identifying an MPC model is not a 
one-time event.  To ensure adequate performance of an MPC 
application and sustain its benefits over time, it is necessary 

to re-perform plant testing to update the MPC model (all or in 
part) when control performance deteriorates due to a process 
change such as a process revamp. 

Until the mid 90’s, it was typical practice to conduct manual, 
open-loop tests, concentrating on the testing of one 
manipulated variable at a time, but moving other process 
inputs as necessary to maintain process operation in a desired 
region.  Automatic testing via uncorrelated binary sequences 

     



 
 

 

such as PRBS or GBN increased in popularity in the mid to 
late 1990’s, and closed-loop testing approaches started 
appearing in the early 2000’s.  Today we are witnessing 
increased use of multivariable closed-loop testing methods in 
the industry as a means to reduced costs (human effort and 
time) and improved model accuracy due to richer data sets.  
Of course, an initial model must be available to perform a 
closed-loop test.  An initial model may be available from an 
existing controller; otherwise, an initial model may need to 
be developed (e.g.,  from pretest data). 

All of the above testing methods continue to be used today.  
Some MPC engineers continue to advocate manual testing 
methods, arguing that it is more conducive to developing 
process knowledge.  While this is indeed an important step, 
we believe that sufficient process knowledge can come from 
the pretesting phase and the early stages of an automatic or 
closed-loop test, where the testing may start with just a few 
inputs.   

Regardless of the testing approach, it is important to generate 
data in the frequency range of interest. This requires varying 
the pulse widths of the input signals, e.g., from 10% to 125% 
of the estimated settling time.  A typical guideline is to 
achieve an average pulse width of an (uncorrelated) input 
signal equal to 1/3rd of the open loop settling time of the 
process. Automatic signals can easily be generated to achieve 
a desired average pulse width.  Input amplitudes are selected 
to keep process inputs and process outputs within desired 
ranges, but should be large enough to overcome valve stiction 
limits.  Larger amplitude moves are preferred as long as the 
process responses remain within a linear range (unless 
linearizing transformations are used).  A goal is to obtain a 
signal-to-noise ratio of at least 6-to-1. 

The closed-loop testing approaches that have been developed 
for MPC also utilize uncorrelated binary signals.  In Zhu 
(2001), generalized binary signals (GBN) (Tulleken, 1990) 
are applied to selected manipulated variables as dithers 
(added to MPC-generated manipulated variables) and to 
certain MPC-controlled variable setpoints.  In Kalafatis et al. 
(2006), a closed-loop testing approach is described in which 
GBN binary signals are generated within the multivariable 
controller to maximize MV amplitude while keeping 
predicted CVs within preset constraints.  Control action is 
only applied when predicted CVs exceed their limits. 

Important quantities not measured online may require 
development of an inferential model.   Generating data for 
inferential model development represents a much better 
approach than using only historical data, which typically has 
insufficient excitation and feedback effects.  To ensure 
adequate data for model development, the process is moved 
to different steady-state operating values during the course of 
the plant test.  Note that it is important to get accurate time 
stamps of the lab samples so that the data can be properly 
synchronized with measured plant test data for model 
identification. Due to the importance of the plant model, it is 
important not to stop a plant test prematurely.  As a result, it 
is good practice to perform model identification throughout 
the testing phase until model quality is deemed adequate. 

3. IDENTIFICATION METHODS 

Dynamic Modeling. Various model structures are routinely 
used in the identification of models for MPC. Low order, 
parametric techniques continue to find application; however, 
these are nonlinear approaches, which require specification of 
model order (which is not straight forward).  Processes with 
heat integration, recycle and/or embedded PID loops 
typically require higher order models to capture the resulting 
complex input-output behavior.  As a result, we continue to 
find that finite impulse response (FIR) and high-order ARX 
(auto-regressive with exogenous input) models remain 
popular in MPC applications, both of which can be identified 
with linear least squares methods.   For the FIR structure, 
smoothing techniques are used to reduce parameter variance 
(e.g., Dayal and MacGregor (1996)). Model reduction 
techniques are typically used with high-order ARX models to 
reduce parameter variance  (see, e.g., Zhu (1998)). 

We have witnessed increased use of subspace identification 
methods in industrial MPC applications over the past 10 
years.  This follows the development of these algorithms in 
the 90’s (Larimore, 1983; Larimore, 1990; Overschee and De 
Moor, 1994).  A key advantage of a subspace method is that 
it directly yields a multivariable state space model, which is 
an advantage for a state-space controllers.  However, even for 
FIR- or FSR-based MPC, a subspace method offers 
advantages as it considers the correlation of the output 
measurements in the identification, thus leading to a 
potentially more accurate and robust model.   Industrial 
experience with a subspace identification method has been 
discussed in Zhao et al. (2006).  Their experience has shown 
that complex relationships can be accurately modeled with a 
state space model of relatively modest order (range of 5 to 
15), which captures both slow and fast dynamics.  
Advantages compared to a parametric technique are that the 
model order selection can be automated and only linear 
methods are required.  Compared to FIR models, their 
experience has shown that subspace leads to more accurate 
estimates of gain and gain ratios, which are critical to 
capturing the true degrees of freedom in the MPC and 
ensuring reliable LP performance.  

For the closed-loop situation, traditional subspace methods 
are biased; thus, special treatment is required.  Modifications 
can be made to subspace methods that lead to consistent 
estimates (as summarized in (Qin, 2006)), although in theory, 
prediction error methods (e.g., ARX) lead to estimates with 
lower parameter variance.  A challenge with closed-loop 
identification (using a direct approach) is the importance of 
obtaining an accurate noise model, which is problematic in 
practice, since typical process disturbances cannot be 
captured by white noise, passed thru a linear filter.  In 
practice, one can attempt to minimize the bias by  
“overwhelming” noise feedback in the frequency range of 
interest (Jorgensen and Lee, 2002).  

Important decision made during the model identification step 
relate to the following: 

     



 
 

 

Data slicing Determining the sections of data should be 
included/excluded in the identification. 

Data pre-processing  Includes such option as spike removal, 
offset correction, prefiltering/detrending options, and shifting 
data based on known delays.  

Selection of input and outputs – inputs include both candidate 
manipulated variables and measured disturbances. 

Model Structure This includes decisions such as FIR model 
length, model orders of ARX or subspace, integrating 
variable or not 

Nonlinearities Do nonlinearities warrant additional 
modeling? 

Each of the above steps are typically iterative.  With data 
slicing, the important issue is removing data that would 
otherwise lead to model bias.  This includes time periods 
with significant unmeasured disturbances or plant upsets, 
such as pump shutdown, or where valve saturation occurs 
with PID loops.  Prefiltering/detrending, can significantly 
impact the identification results.  It is important to pre-
filter/detrend to suppress slow drifts and minimize their 
contribution to model bias.  In some MPC identification 
packages user options for prefiltering/detrending are not 
provided.  Data differencing is often used, but since it 
suppresses low frequency information can lead to model gain 
errors.  

In the selection of inputs and outputs, one will have a good 
idea of which are the manipulated and controlled variables, 
but it may not be as clear as to which other inputs should be 
selected as disturbance variables.  Note it may be desirable to 
include a disturbance variable simply as part of the 
identification step to improve the quality of the models to the 
key manipulated variables, and not use it as a feedforward 
variable in the controller.  With a subspace identification 
method, due to the fact that it explicitly considers the 
correlation of the outputs, the proper selection of output 
variables can improve the model accuracy of a given input-
output channel, regardless of whether the additional outputs 
are used in the controller.  

An aspect of model structure selection is whether to model a 
controlled variable as an integrating variable.  Many times, 
process knowledge will guide this decision (such as liquid 
level to flow).  However, slow responding stable variables 
(slower than the controller prediction horizon of the 
controller) often lead to improved control if modeled as an 
integrator, especially if they are subjected to input-type of 
disturbances.   

Nonlinearities are typically handled with a static linearizing 
transformation on inputs and/or outputs.  This is the familiar 
Hammerstein and Weiner model structures, as shown in 
Figure 6.  In typical MPC practice, these static nonlinear 
functions are SISO (one-to-one) as opposed to MIMO.  This 
is because a MIMO structure would be problematic when 
constraints are imposed.  With physical insight, one may have 
knowledge as the functional forms such as valve-flow 
relationships or logarithm of distillation product impurity. 
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Figure 6. General Hammerstein-Wiener model structure; Hf  

is the Hammerstein static nonlinear transformation, Wf  is the 
Weiner  static nonlinear transformation. 

For the general case, when a specific nonlinear 
transformation is unknown, a piece-wise linear relationship 
can be empirically derived, assuming testing is over a range 
wide enough to capture the nonlinearity.  An example is 
shown in Figure 7 for the case of a valve position (controller 
output) and an associated measurement (e.g., flow). This 
transformation could be used with either of the valve position 
scenarios shown in Figure 4.    
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Figure 7.Example piece wise linear transformation 

Many of the commercial MPC include the necessary pre- and 
post-processing capability to handle Hammerstein and 
Weiner transformations.   To deal with dynamic nonlinearity 
one can use multiple models and “schedule” these based on 
knowledge of the operating point.  Although this would be an 
easy thing to do, it is not commonly done with empirical 
models.  An example of where multi models are routinely 
used is in ethylene applications, where there is a different 
furnace model for each major feed type. 

Inferential modeling.  For the situation where an inferential  
model must be developed for product qualities that are not 
measured online (measured infrequently by lab), a couple of 
approaches can be used.   

The most common is to develop a regression model of the 
quality from directly measured variables such as flow, 
temperatures, and pressure.  It is common for the multiple 
measurements (for example temperatures) used as inputs to 
the regression to be correlated.  This requires multivariate 
regression techniques such as principal component regression 
(PCR), principal component analysis (PCA) and partial least 
squares (PLS).  The key idea is to project the measurement 
values into a reduced number of important directions 

     



 
 

 

(number of directions less than the number of measurements) 
to avoid problems associated with correlation/ill-
conditioning. Improved regression modeling is possible if a 
steady-state simulation model is available.  In this case, 
measurements can be selected to minimize steady-state offset 
in the primary variables (lab measured) for expected 
disturbances and setpoint changes (Pannocchia and 
Brombilla, 2003; Hori et al., 2005). 

The other approach to inferential modeling utilizes a 
simplified, fundamental (nonlinear) model of the processes,  
where parameters in the model are tuned (or optimized) to 
best fit the model to lab samples.  In this case, the nonlinear 
model provides feedback to the MPC.  The advantage of this 
approach (assuming the model is adequate) is that less 
process testing is required to fit the inferential model and the 
model can be expected to operate satisfactorily over a wider 
range of operation compared to a purely regression model.  
See, e.g., Friedman  (2001), where a static nonlinear model is 
used for prediction of distillation product compositions. 

4. CONTROLLER  DEVELOPMENT 

An MPC application is typically applied to a unit such as a 
fluid catalytic cracking unit (FCCU) or ethylene unit.  A 
single MPC or multiple MPC controllers may be applied, 
depending on the unit objective and constraints.  Consider as 
an example the FCCU shown in Figure 8.  If the unit 
objective is to maximize unit feed and downstream 
throughput constraints exist, such as DC4 flooding, one 
would consider a single controller.  If there are no throughput 
constraints in the downstream columns, one would consider 
two MPC controllers: one for the reactor/regenerator/ main 
fractionator/wet gas compressor, and one for the all of the 
downstream distillation columns.  

Figure 8. Fluid catalytic cracking unit. 

A single unit controller is harder to implement and maintain, 
and if not implemented properly, or if sufficient engineering 
expertise is not available onsite, the result may be low MPC 
service factors or a controller that does not meet economic 
objectives.  When a controller is not performing correctly or 

is not understood by operations, operators will typically 
“pinch” manipulated variables (set upper and lower limits 
close to each other) to overly constrain the MPC in order 
keep control within a region that the operator feels 
comfortable.  When limited resources available are available, 
an alternative would be to first implement distributed 
controllers and later consolidate controllers after experience 
and confidence is gained. 

It is good practice to develop models on an individual 
equipment basis.  For example model reactors and distillation 
columns separately and build up the overall model from the 
various sub-models.  Thus, the modeling should not be 
treated as one black-box, linking all inputs to all outputs  
(Haarsma and Mutha, 2006).  If the modeling of the 
individual equipment is done properly, the key manipulated 
and controller variables have been identified and modeled 
and the manipulated variables for the overall model is the 
super set of MVs and CVs for the sub-models.  Note that 
feedforward variables in the sub-models need to be truly 
independent variables from the viewpoint of the assembled 
model for the MPC. 

With the above approach, it is typical to develop a sub-model  
based on its feed measurements (e.g., the feed rates to the 
primary absorber / stripper in Figure 8), but the overall MPC 
may require a model expressed in terms of unit feed. In this 
case, one can develop the required model from a  convolution 
of the primary absorber sub-model and a model from unit 
feed to primary absorber feed.  Note that the model prediction 
errors in the predicted feed to primary absorber feed can be 
used as a feedforward variable to the primary absorber / 
striper and DC4 with this arrangement.  This is sometimes 
known as a prediction error feedforward in MPC jargon. 

It is good modeling practice to ensure that the MPC model 
satisfy material balances (delta flows in equal delta flows 
out).  When levels are controlled in MPC, the material 
balance consistency implies that the rate of change of levels 
and flows equal zero at steady state.  Another area of 
consistency is where embedded PID loops imply a unity or 
zero gain. 

As we have mentioned previously, the accuracy of the 
steady-state gains is critically important as they determine the 
steady-state operating point (target selection layer in Figure 
2).  This, in turn, can have a significant effect on the control 
layer as both target selection and dynamic control are 
executed at the same frequency.  The challenge is that gains 
from an empirical model may not represent the true degrees 
of freedom that exist in the plant.  As a result, the target 
selection layer may exploit fictitious degrees of freedom, a 
problem that tends to get .worse with problem size (due to the 
increased number of possible submatrices).   

Consider the case that an LP is used as the target selection.  
At each execution , the LP will invert a square sub-matrix of 
the overall gain matrix.  If the sub-matrix is ill-conditioned, 
the resulting changes to the plant may be excessive, possibly 
leading to cycling or instability.  This normally becomes an 
issue when key manipulated variable handles are constrained 
(and therefore unavailable) and weaker manipulated variables 

     



 
 

 

must be used.  Note that a degree of freedom can be removed 
from the LP by fixing gain ratios (forcing exact colinearity). 
A key modeling issues is deciding whether a degree of 
freedom exists or not.  This decision can be guided by the 
models themselves and their uncertainty) or from engineering 
insight.  Two approaches are used in practice to help with this 
problem.  One approach is to analyze various sub-matrix 
combinations of the gain matrix in terms of singular value 
decomposition (SVD or the relative gain array.  Sub-matrices 
with high condition number or large RGA elements become 
candidates for forcing a collinear relationship, particularly 
when expected gain errors suggest a co-linearity.  Another 
approach is an online method that automatically disregards 
small singular values in the sub-matrix inverse, based on user 
defined tolerances (Qin and Badgwell, 2003).  In the authors’ 
opinion, neither approach is completely satisfactory.  
Analyzing sub-matrices can be a time consuming task and 
tuning with singular value tolerances can lead to unexpected 
effects.  

During the controller development phase, initial controller 
tuning is performed.  This relates to establishing criteria for 
utilizing available degrees of freedom and control variable 
priorities.  In addition, initial tuning values are established for 
the dynamic control.  Steady state responses corresponding to 
expected constraint scenarios are analyzed to determine if 
they behave as expected, especially with respect to the 
steady-state changes in the manipulated variables.  This step 
may force additional analysis and treatment of gains and gain 
ratios.  

5. COMMISSIONING 

One reason we want to execute the various project steps well 
is to minimize rework in the commissioning phase.  In the 
best case, commissioning of the controller involves simply 
making tuning adjustments and observation of the controller 
under different constraint situations and plant disturbances.  
In the worst case, control performance is unacceptable and 
the control engineer is forced to revisit earlier decisions such 
a base level regulatory strategy or plant model quality.  Both 
of these can lead to retesting and re identification of at least 
portions of the plant model, resulting in delays and possible 
cost overruns. 

During commissioning it is typical to revisit model decisions 
and assumptions, and switch out certain models, or modify 
gains, to obtain acceptable control. Typically, 50-70% of the 
commissioning effort deals with models..  Commissioning 
typically takes place over a 2-3 week period.  In reality, 
commissioning is an ongoing effort, although the subsequent 
effort is normally treated as controller support and 
maintenance.  During the commissioning phase there are only 
so many different constraint and operating scenarios that can 
be considered.  Certain operating scenarios and constraint 
sets can only be observed certain times of the year due to 
seasonal effects.  It is therefore important that the operating 
company have in-house expertise that can be used to answer 
questions (“whys is the controller doing that?”), troubleshoot, 
and resolve  problems that arise over time. 

Once a controller is commissioned, it is important to monitor 
controller performance to ensure benefits are maintained.  
Unfortunately, multiple factors can contribute to controller 
performance deterioration.  A change in the operating point 
or a plant modification may invalidate portions of the plant 
model.  Performance degradation of other control systems 
(PIDs and MPCs) can lead to poor performance.  For 
example, a PID loop associated with, or upstream of, an MPC 
may develop a cycle resulting from valve stiction.  While 
technology can help with the diagnosis, ultimately expertise 
must be brought to bear to resolve and correct the problem.  
Left uncorrected such problems lead to low service factors, or 
worse, an MPC being permanently switched off. 

6. TRENDS AND SUGGESTED RESEARCH 
DIRECTIONS 

The impact of faster and multi-core processors are being seen 
in MPC products.  Increased processing speed is allowing an 
increased number of future moves to be calculated over the 
control horizon and also allows for much faster controller 
execution.  In Barham (2006), an MPC approach is described 
in which all manipulated variables are valve positions.  It is 
applied to an entire FCCU, and executes on a six-second 
interval. Transformations are used to linearize the 
relationship between valves and controlled variables.  In 
Froisy (2006), a new state space controller is described that is 
based on an infinite horizon move plan,  Notable features 
include model assembly of smaller submodels into one large 
overall MIMO state space model, and an automation feature   
that simplifies the configuration and tuning of disturbance 
estimators within a dynamic Kalman Filter framework. We 
are also seeing increased offerings of MPC at the DCS level 
where it can execute at a 1 second interval. However, unit 
wide or multi-unit MPC implementations are still most often 
implemented in a separate, dedicated computer.  

 In the remainder we provide suggestions for areas of 
improvement, including ideas for how this might be 
accomplished. General themes are of facilitating 
improvements at the various steps in an MPC 
implementation, maximizing the use of data and a priori 
knowledge, and minimizing the impact of changing or 
modifying key design decisions. 

6.1  DCS Strategy

As we have discussed, decisions related to structure selection 
of the combined MPC-DCS system are multifaceted.  
Fortunately, there is experience with many of the major 
refinery and chemical units that can guide these decisions, 
although specific experience may not always be sufficient for 
a particular plant (due to idiosyncrasies of the particular 
plant).  This is of course problematic for processes or 
industries where MPC has not been previously applied.  As a 
result, the path to an acceptable MPC controller may involve 
iteration.  It is therefore advantageous if rework can be 
minimized in light of design changes. It is also clear that 
methods that rely on systematic design rather than trial and 
error only would be valuable. 

     



 
 

 

In recent years, techniques and products have been developed 
which apply multivariable identification methods to develop 
models that are in turn used to tune PID loops.  Such 
approaches can be used to improve the performance of PID 
loops associated with an MPC system with reduced 
engineering effort (Zhu, 2003; Harmse et al., 2009).  Note 
that once a multivariable model is available (relating the 
effect of PID controller outputs on PID controlled variables), 
one could use standard techniques such as relative gain array 
(RGA) or block relative gain (BRG) (as a function of 
frequency) to focus on the most promising PID loop pairings 
and simulate various suggested pairing possibilities. 
Experience has shown that testing and developing a 
multivariable model for the typical loops found at the DCS 
level can often be completed within a day for the typical 
loops that are found at the DCS level (Darby and Harmse, 
2009). 

Changing the PID loop pairings or tuning parameters (if 
behavior is significantly different) requires a change to the 
affected models in an MPC system.  Historically, such 
changes have required plant retesting.  However, with 
completed knowledge of the models at the PID level 
(including the PID controllers themselves), it is theoretically 
possible to convert the MPC models to reflect a different PID 
configuration or tuning), potentially avoiding an expensive 
retest.  Such an approach is described in Rejek et al. (2004).  
One major claim for this approach is that one could perform 
the plant test in one DCS configuration, but implement the 
MPC in another configuration as in Barham et al. (2006). To 
our knowledge, various options for solving this problem have 
not been investigated. Open questions concern accuracy and 
robustness issues as to how best to perform this model 
conversion. 

6.2 Plant Testing

It is well known that that independent binary input test 
signals are generally inadequate (inefficient at best) for the 
identification of ill-conditioned systems.  The reason is that 
the weak process directions (e.g., separation changes in a 
distillation column) are poorly identified in the presence of 
noise. The solution is to use correlated inputs, which can be 
generated in open or closed loop (Anderson and Kummel, 
1992; Koung and MacGregor, 1994; Li and Lee, 1996).  For 
example, in a distillation column, large changes in both reflux 
and reboil flow rates are required to adjust separation in any 
significant way.  As discussed previously, ill-conditioning is 
often found in the MPC steady-state gain matrix.  Properly 
designed input sequences can be expected to improve 
estimation of ill-conditioned sub-matrices. Recent results 
show that independent binary signals can also be inferior for 
well-conditioned systems, depending on the active 
constraints. In  Darby and Nikolaou (2008a, b), using a 
criterion which maximizes the likelihood of satisfying 
integral controllability, optimal inputs (both amplitudes and 
covariance of the inputs) are shown to depend on both the 
system’s conditioning and the specific active constraints.  
While correlated inputs can be achieved with independent 
perturbations of controller CV setpoints or limits, such an 

approach may translate into ineffective input perturbations 
due to the influence of the target selection layer. A closed-
loop experimental design approach for MPC would be 
desirable, although treated rigorously, would require 
knowledge of the feedback law. This would be problematic 
for MPC as each constraint set represents a different control 
law. A possible approach is to replace the binary test signals 
that are currently used in closed-loop MPC with a traditional 
or control-relevant experimental design.  An experimental 
design could be performed consistent within a feasible region 
established for the target selection layer and implemented 
through the controller to ensure constraint satisfaction. This 
might be done in a manner similar to that used in Sagias 
(2004) for PRBS signals, where the dynamic objective 
function is modified to the allow trade-off of control and test 
objectives.  The other aspect of experimental design concerns 
frequency content. This aspect would need to be investigated 
as well. We note that with current MPC practice, the 
frequency content is specified indirectly based on the type of 
binary signal chosen and the specified average pulse width.  
Extending this concept further, if basis functions with desired 
frequency content were pre-specified, this might allow the 
experimental design to be expressed in terms of input 
amplitudes and covariances. 

6.3 Identification

As mentioned earlier, there are multiple consistency 
relationships (e.g. gains and gain ratios) that should be 
enforced in the constructed MPC model.  Instead of imposing 
these conditions by altering the identified model as a post-
processing step, it would be better to incorporate these as 
constraints in the identification.  Within the context of least 
squares, imposition of linear constraints results in parameter 
estimators with smaller variance (Seber and Lee, 2003). 

Other consistency relationships could be incorporated. 
Material balance consistency has been discussed, but 
consistency can be extended to component balances.  For 
example, for binary distillation columns, relationships can be 
derived which link the steady-state gains associated with top 
and bottom purities for a given regulatory control structure 
(Häggbloom and Waller, 1988). 

Another area that should be exploited is a priori information 
available in the form of physical models.    Such an approach 
was discussed for a steady-state inferential predictor.  The 
basic idea is to combine available model information and data 
in a grey-box identification problem. The key motivation is 
one of getting better models with less data and effort, not 
necessarily one of capturing the nonlinear behavior.  A 
linearized model from a fitted nonlinear model may well be 
adequate.  However, it the nonlinearity were significant, the 
nonlinear model could be used to update models in the MPC. 
We should mention that in our view (for the foreseeable 
future) a full nonlinear model is not needed or feasible for the 
majority of control problems common found in industry 
(polymer applications and batch applications being notable 
exceptions). Tools to empirically determine the Hammerstein 
and Wiener static compensators would be useful (such as 
described in Zhu (2000) for the case of cubic splines). One 

     



 
 

 

could also consider combing the dynamic identification step 
with piece-wise linear transformations in a single 
identification problem.  We might expect that nonlinear 
models could be developed for certain submodels of an MPC, 
if the improvements or costs saving to develop the model are 
significant. The online implementation might be posed as a 
constrained estimation problems using techniques such as 
found in Rawlings and Bakshi (2006), where the estimator 
would provide feedback (and possibly future predictions) to 
MPC.  An example of a common situation where nonlinear 
affects are often encountered is variable liquid hold-up (e.g., 
reflux accumulator), which causes a variable dynamic 
response in downstream composition signals. 

6.3  Improved Disturbance Estimators

A key advantage in utilizing a general state space formulation 
is improved (unmeasured) disturbance modeling.  For 
example, it is well known that the output bias approach, 
traditionally used for the MPC model update step, can lead to 
sluggish response to an input disturbance (Shinskey, 1994).  
A properly designed estimator overcomes this limitation 
(Muske and Badgwell, 2002; Pannocchia and Rawlings, 
2003). An additional advantage of state space disturbance 
model is that of incorporating additional output 
measurements.  A typical example is shown in Figure 9.  The 
variable u represents the MPC manipulated variable and y is 
the MPC controller variable; yI is an intermediate variable.  
Examples include: 

Case  1: u is plant feed rate, yI a downstream flow 
measurement and y is a downstream controlled 
variable. 

Case 2: u is column reflux flow rate, yI a tray 
temperature, and y a product analyzer. 

Case  3: u is a PID setpoint,  yI is the PID error and, 
y is an MPC controlled variable.. 

Case 1 represents the example considered earlier (cf section 
6). Case 2 provides structure similar to a traditional cascade 
control (Froisy, 2006).  Case 3 models the behavior of the 
base level PID, e.g., a time series model of the PID error, 
which has the advantage that unnecessary moves are not 
generated by MPC when the base layer is capable of rejecting 
the unmeasured disturbance (Haarsma and Mutha, 2006).  
Improved disturbance modeling could also be applied to the 
situation where MPC is directly manipulating a valve (and 
local flow, temperature, and/or pressure measurements are 
available). 

2G1G yu Iy
2G1G yu Iy

 

Figure 9. Plant model with intermediate variable yI. 

While it is possible to replicate such approaches within 
traditional FIR- and FSR-based MPC, they involve ad-hoc 
solutions.  An interesting possibility is the use of improved 
disturbance estimators within traditional FIR- or FSR-based 

MPC (Badgwell, 2009). What is unclear is the extent to 
which these improved estimators are actually being used 
within existing state space controllers.  Anecdotal evidence 
suggests a gap between these capabilities and actual usage by 
MPC engineers. Part of the challenge in developing these 
more general estimators is that it requires linking 
disturbances to particular model channels. Tools and 
techniques to facilitate or simplify this step would be helpful. 

6.4 Robustness

 Model errors impact performance of MPC at both the target 
selection layer and the dynamic controller, although, as we 
have seen, the problem is more acute with the steady-state 
target selection layer.  While the target selection layer offers 
advantages in terms of constraint control, economic 
optimization, and dealing with non-square systems, it 
represents a source of challenges for an MPC 
implementation, ones that grow with the size of the 
controller. The goal is to prevent the optimizer from 
exploiting fictitious degrees of freedom, and from exploiting 
true degrees of freedom that may exist, but lead to large 
steady-state moves for only small economic improvement.  
Another challenge is minimizing the impact of effects that 
can lead to chatter in the steady-state targets (Shah et al., 
2001; Kozub, 2002). This includes high frequency noise 
associated with controlled variables, unmeasured 
disturbances and/or model error.  An approach that has been 
used industrially to minimize change from the optimizer layer 
to the dynamic layer is based on a minimum-movement 
criterion (to achieve all control objectives) in the dynamic 
layer and to invoke a QP optimization once all predicted 
controlled variables are within a pre-defined funnel (Lu, 
2003). 

Given the importance of the steady-state gain matrix in the 
optimizer, Kassman et al. (2000) proposed a robust LP 
formulation based on ellipsoidal uncertainty of the gain 
matrix. An advantage of their approach is that the resulting 
optimization problem is convex.  An open question is how 
well their approach addresses problems with ill-conditioning.  
Note that we have avoided mentioning worse case 
formulations due to their tendency to provide overly cautious 
control for the average case. 

The challenges outlined above could benefit from additional 
research.  Pertinent questions are whether it is possible to 
avoid inverting the gain matrix for the entire plant and 
whether techniques could be used to avoid exploiting 
uncertain (and undesirable) degrees of freedom. These issues 
might be considered with the general problem of how to 
coordinate multiple MPCs, which is currently receiving 
increased research attention. .We note that when the plant 
optimum is consistent with maximum throughput, a 
simplified coordinator can be used (Aske et al., 2008).  Such 
an approach explicitly limits the degree of freedom that are 
used in the plant wide control scheme. 

     



 
 

 

7. CONCLUSION 

The MPC algorithm is a mature technology and there is good 
understanding of the algorithm's properties and behavior.  
But as discussed, there are facets of the technology that could 
be improved.  As one would expect, the performance of MPC 
systems does not depend only on the "control law" (MPC 
tuning) but on successful completion of all of the following 
steps: articulation of control objectives, selection of 
measurements and manipulations, configuration of controller 
structure (i.e. interconnections among MVs and CVs), and, 
finally, design of the control law (Stephanopoulos, 1984).  
Even though the control law can be designed in a fairly 
systematic way, completion of the design steps above it is 
less systematic, and offers a margin of creativity.  Process 
understanding remains indispensable for these steps.  
Improving the ability to systematically complete these steps 
would certainly contribute towards designing better MPC 
systems.  Industry and academia can continue collaboration 
towards this end, with full understanding of the need for 
sanitized academic solutions to bear industrial relevance and 
that common practice may not necessarily be best practice. 
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