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Abstract: In this paper, a moving horizon state and parameter estimation (MHE) scheme for
the Varicol process is presented. The Varicol process is an extension of the Simulated Moving Bed
(SMB) process that realizes non-integer column distributions over the separation zones by an
asynchronous switching of the inlet and outlet ports (the ports are shifted individually). These
additional degrees of freedom can be used to yield an improvement in economical performance
compared to SMB operation. The proposed estimation scheme is based on a rigorous SMB
model that incorporates rigorous chromatographic columns and port switching. The absence of
model simplifications allows the extension of the estimation scheme to the more complex Varicol
process. The goal of the estimation scheme is to reconstruct the full state of the system, i.e.
the concentration profiles along all columns, and to identify critical model parameters in the
presence of noisy measurements. The estimation is based on measurements of the concentrations
of the components at the two outlet ports (which are asynchronously switched from one column
to the next) and at one fixed location between two columns. The state estimation scheme utilizes
a deterministic model within the prediction horizon. State noise is only considered in the state
and in the parameters up to the beginning of the horizon. By applying a multiple-shooting
method and a real-time iteration scheme for solving the resulting optimization problem, the
computation times are reduced and the scheme can be applied online. A numerical simulation
for an enantiomer separation system with nonlinear adsorption isotherm is presented.

Keywords: Varicol, Simulated Moving Bed chromatography, moving horizon estimation, state
estimation, model identification, real-time application, real-time iteration

1. INTRODUCTION

The Simulated Moving Bed (SMB) process is an efficient
chromatographic separation technology that is increas-
ingly applied in the food, fine chemicals, and pharmaceu-
tical industries. Industrial applications have been reported
especially for the separation of temperature sensitive com-
ponents and for the separation of species with similar ther-
modynamic properties. A SMB process is realized by con-
necting several chromatographic columns in a closed loop
as illustrated by Figure 1. The Varicol process switches the
ports indvidually and thereby realizes non-integer column
distributions over the zones ?), see Figure 2.

SMB processes and their variants are characterized by
mixed discrete and continuous dynamics, spatially dis-
tributed state variables with steep slopes, and slow and
strongly nonlinear responses of the concentrations profiles
to changes of the operating parameters, therefore, they
are difficult to control and to observe. In the literature,
relatively few contributions that deal with state estimation

of SMB processes can be found. The published work is
based upon the approximation of the concentration profiles
by a set of truncated exponential functions Alamir and
Corriou (2003), or by using the equivalent True Moving
Bed (TMB) model Mangold et al. (1994), Kloppenburg
and Gilles (1999), or deals with the engineering of tailored
estimation schemes Küpper and Engell (2006), Kleinert
and Lunze (2005). Recently, a rigorous moving horizon
estimation approach for SMB processes was proposed by
Küpper et al. (2009). In this formulation of the MHE, a
deterministic behaviour of the process on the estimation
horizon and Gaussian independent identically distributed
measurement noise are assumed. The initial state at the
beginning of the horizon and its covariance are computed
by an Extended Kalman Filter (EKF). The state noise
covariance and the initial error covariance of this EKF are
the only tuning parameters of this scheme. A fast online
solution of the underlying constrained least-squares opti-
mization problem is obtained by using the direct multiple
shooting method Bock (1981, 1987). A full rigorous process



Fig. 1. Principle of the Simulated Moving Bed process

model is applied and therefore no assumption that the
plant is close to the periodic steady state is needed. Along
with the states, key adsorption parameters are estimated
online. Simulations demonstrate that the states and crit-
ical model parameters can be reconstructed successfully.
The scheme also works during transition periods including
the start-up phase. The computation times are such that
the estimator can be applied online. Since a rigorous full
scale SMB model is used, the MHE approach can be
extended to more complex variants of the SMB process. In
this contribution, the moving horizon state and parameter
estimation scheme is applied to the Varicol operation.

2. THE VARICOL SMB PROCESS

Chromatographic separation is based on the different ad-
sorption affinities of the molecules in the liquid to an adsor-
bent which is packed in a chromatographic solid bed. The
SMB process realizes a counter-current movement between
the liquid and the adsorbent by switching the ports in the
direction of the liquid flow periodically, as illustrated by
Figure 1. In the Varicol process, the individual ports i
(Eluent, Extract, Feed, Raffinate) are switched individu-
ally at the subperiod times δti, as illustrated by Figure
2. The individual port switching reduces the impurities by
early switching of the Raffinate port and delayed switching
of the Extract port. Since the Varicol process offers a larger
number of degrees of freedom, it can be operated with
better process economics than the SMB process, see Toumi
et al. (2002), Toumi et al. (2003).

In the estimation scheme, the counter-current flow of the
solid and of the liquid phases is modelled in the same
way as it is achieved in the real plant by asynchronously
switching the inlet and outlet ports in the direction of
the liquid flow after subperiod n with subperiod length
(δtn − δtn−1)τ has passed. The state variables represent
the concentrations in the physical columns and do not
exhibit jumps. Only the input flow rates and the inflow
concentrations change discontinuously. The dynamic sim-
ulation of the Varicol process is achieved by integrating
the differential equation over the subperiods n

Fig. 2. Asynchronous switching in the Varicol process
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Fig. 3. Concentration profiles of the Varicol process during
one period with δτRa = 0.3, δτFe = 0.6, δτEx = 0.9,
δτDe = 1.0, δτRe = 1.0

ẋ = f(x, Qn,p) (1)

t ∈ [(m − 1)τ + δtn−1τ, (m − 1)τ + δtnτ ]

x(t0) = xm,0 (2)

followed by the switching of the flows Qn,j,δtj
:

Qn+1,j,δtj
= MQQn,j,δtj

j = De,Ex,Fe,Ra,Re, (3)

with differential states x(t) ∈ R
nx and parameters p ∈

R
np . The vector Qn,j,δtj

defines the inlet/outlet flow of
port j (desorbent, extract, feed, raffinate) and the recycle
stream at the individual switching time δtj in period m
(m denotes the full period count). The components of
Qn,j represent the flows of the ports j to the columns.
MQ is a permutation matrix that shifts the flow ports
after the asynchronous switching time δtj of port j has
passed (with individual period counter n). The recycle flow
that defines the total flow rate in the zone in front of the
desorbent port is switched with the last port. The zone
flow rates result from the port flows and the recycle flow.
The concentration profiles during one switching period are
illustrated by Figure 3. The asynchronous switching of
the feed port and of the extract port can be clearly seen
in the profiles. In this paper, three positions where the
concentrations of the two substances of the mixture are
measured are assumed. The measurements are installed
behind the extract port, behind the raffinate port, and
behind one column in the process where physically the
closing of the loop is realized (six measurements total).
The extract and raffinate concentration measurements



move together with the ports. More measurements are not
available in production plants.

2.1 Rigorous Dynamic Modelling

From mass balances of the components around the inlet
and the outlet ports, the internal flow rates and the inlet
concentrations can be calculated according to:

Desorbent node: QIV + QDe = QI (4)

ci,out,IVQIV = ci,in,IQI i = A,B (5)

Extract node: QI − QEx = QII (6)

Feed node: QII + QFe = QIII i = A,B (7)

ci,out,IIQII + Ci,FeQFe = ci,in,IIIQIII (8)

Raffinate node: QRa + QIV = QIII, (9)

where QI−IV are the flow rates in the corresponding zones,
QDe, QEx, QFe, and QRa denote the external flow rates and
ci,in and ci,out denote the concentrations of the component
i in the streams leaving and entering the respective zone.
The initial distribution of the columns over the four
separation zones is 2/2/2/2 and the individual switching
times are δτRa = 0.3, δτFe = 0.6, δτEx = 0.9, δτDe = 1.0,
δτRe = 1.0 from which the non-integer column distribution
2.1/2.3/2.3/1.3 results.

The chromatographic columns are modelled by the Gen-
eral Rate Model. It is assumed that there are no radial
gradients in the column and that the particles of the
solid phase are uniform, spherical, porous (with a constant
particle porosity εp), and that the mass transfer between
the particle and the surrounding layer of the bulk is in local
equilibrium. The concentration of component i is denoted
by ci in the liquid phase and by qi in the solid phase. Dax

is the axial dispersion coefficient, u the interstitial velocity,
εb the void fraction of the bulk phase, kl,i the film mass
transfer resistance, and Dp the diffusion coefficient within
the particle pores. The concentration within the pores is
denoted by cp,i. The following partial differential equations
of a column can be derived from a mass balance around an
infinitely small cross section area of the column assuming
a constant radial distribution of the interstitial velocity u
and the concentration ci.

∂ci

∂t
+

(1 − εb)3kl,i

εbrp
(ci − cp,i|r=rp

) = Dax
∂2ci

∂x2
− u

∂ci

∂x
(10)

(1 − εp)
∂qi

∂t
+ εp

∂cp,i

∂t
− εpDp

[
1

r2

∂

∂r

(
r2 ∂cp,i

∂r

)]
= 0,

(11)

with appropriate initial and boundary conditions. It is
assumed that the concentration qi is in thermodynamic
equilibrium with the liquid concentrations in the particle
and their relationship can be described by an extended
Langmuir adsorption isotherm

qi = H1
i cp,i +

H2
i cp,i

1 + kAcp,A + kBcp,B
i = A,B, (12)

with Hj
i and ki as isotherm constants. The resulting

system of coupled differential equations can be efficiently
solved by the numerical approach proposed in Gu (1995)
where a Galerkin finite element discretization of the bulk
phase is combined with orthogonal collocation for the
solid phase. This numerical method was first applied to

SMB processes in Dünnebier and Klatt (2000). The bulk
phase is divided into nfe finite elements and the solid
phase is discretized by nc internal collocation points. As
a result, the set of initial values, boundary values, and
partial differential equations (PDE) is transformed into a
set of initial values and a system of ordinary differential
equations (ODE)

ẋ = f(x,u,p), (13)

where the flows Q are summarized in the input vector
u(t) ∈ R

nu . The system output is defined as

y = h(x(u,p)), (14)

with y ∈ R
ny . For nfe = 5, nc = 1, number of components

nsp = 2, and number of columns ncol = 8 a system order
of the SMB process of

nx = ncol ∗ nsp ∗ (nc + 1) ∗ (2 ∗ nfe + 1) = 352 (15)

results. The ODE-system is stiff due to large differences in
the speeds of the interacting dynamics.

3. ESTIMATION IN THE VARICOL PROCESS

3.1 Moving Horizon Estimation

For the simultaneous estimation of the states and the para-
meters of SMB processes, we employ the Moving Horizon
Estimation scheme introduced by Diehl et al. (2006); Kühl
et al. (2008), which is modified in order to handle the shift
of the inputs and of the measurements of the SMB process.
The Moving Horizon Estimator estimates the states and
the parameters based on the past measurements at specific
time points that are located in the horizon TN = tK −
tL. tK represents the current time and tL is the time at
the beginning of the horizon. A least-squares minimiza-
tion is performed that minimizes the deviations of the
real measurements ηk from the simulated measurements
h(x(tk;u,p)) at times tk. The expression ||.||

2

V
−

1
2

denotes

||x||
2

V
−

1
2

= xT V −1x, where the matrix V is the positive

semidefinite noise covariance matrix of the variables x.
V − 1

2 can be interpreted as weighting matrix of x. The
measurement information prior to the moving horizon is
considered in the estimation problem by an arrival cost
term that is computed from the expected value of the state
and the parameters and the estimation error covariance
before the horizon. The optimization problem of the MHE
results as:

min
x(tL),p

{∥∥∥∥ x(tL) − xL

p − pL

∥∥∥∥2

P
−

1
2

L

+
K∑

k=L

‖ηk − h(x(tk;u,p))‖
2

V
−

1
2

k

}
(16)

s.t. ẋ(t) = f(x(t),u(t),p) (17)

xmin ≤ x(t) ≤ xmax (18)

pmin ≤ p ≤ pmax (19)

t ∈ [tL, tK ] . (20)

The second term represents the prediction errors within
the horizon and the first term represents the arrival cost
(the penalization of a change of the estimates of the initial
values of the states and of the parameters), where (xL,pL)
are the expected values and PL ∈ R

(nx+np)×(nx+np) is the
joint covariance matrix of x(tL) and pL. Note that only
the initial values of the states and the parameters are free
parameters of the optimization problem because no state



noise is assumed within the horizon. The absence of state
noise on the horizon is compensated by the simultaneous
estimation of key model parameters which is an appro-
priate assumption since uncertainties are mostly due to
model errors and not to disturbances. Furthermore, the
inclusion of state noise at each point within the horizon
would lead to a large number of degrees of freedom of the
estimation and result in a considerably larger optimisation
problem with additional nx × (K − L) variables that,
taking the system dimension into account, would be hard
to solve online reliably. From the solution x(tL) and p
of the optimization problem, the deterministic model is
simulated forward to obtain the current estimated state
xK . The MHE takes upper and lower bounds on the
states and on the parameters into account. The expected
value and the covariance of x(tL) and pL in the arrival
cost are determined by an Extended Kalman Filter. The
smoothed Extended Kalman Filter Robertson et al. (1996)
is employed where the recent state estimation xL+1|K and
linearizations of the dynamics GL+1|K and the output
matrix CL+1|K are utilized. In order to guarantee positive
definite matrices in the presence of numerical errors, the
smoothed Extended Kalman update is reformulated by
two QR-decompositions yielding the equivalent smoothed
Extended Kalman Filtering update in square-root formu-
lation Diehl (2002); Kühl et al. (2008).(

xL+1

pL+1

)
=

(
x(tL+1; tL,xL|K ,uL,pL|K)

pL|K

)

+ GL|KR−1QT

⎛⎝ P
− 1

2

L|L−1

(
xL|L − xL|K

pL|L − pL|K

)
V

− 1
2

L (ηL − h(xL|K))

⎞⎠
(21)

P
− 1

2

L+1|L = Q
T

(
0

W− 1
2

)
(22)

with the linearizations of the dynamics

GL|K =

(
Xx,L|K Xp,L|K

0 Inp

)
(23)

Xx,L|K =
dx(tL+1;xL|K ,pL|K)

dx

∣∣∣∣
L|K

(24)

Xp,L|K =
dx(tL+1;xL|K ,pL|K)

dp

∣∣∣∣
L|K

, (25)

the linearization of the output

HL|K =
(
Hx,L|K Hp,L|K

)
(26)

Hx,L|K =
dh(x(tL+1;xL|K ,pL|K))

dx

∣∣∣∣
L|K

(27)

Hp,L|K =
dh(x(tL+1;xL|K ,pL|K))

dp

∣∣∣∣
L|K

, (28)

the QR-decompositions(
P

− 1
2

L|L−1

V
− 1

2

L HL|K

)
= (Q|Q̆)

(
R
0

)
(29)(

R

−W− 1
2 GL|K

)
= (Q|Q̃)

(
R
0

)
, (30)

and the state noise covariance matrix of the states and of
the parameters

W =

(
Wx 0
0 Wp

)
. (31)

x(tL+2; tL+1,xL+1|K ,uL+1,pL+1|K) denotes the predic-
tion of the system based on the recent estimate at L+1|K

while xL+2|L+1 is the smoothed prediction.

The MHE has to cope with jumps in the extract and raffi-
nate measurements that are caused by the port switching.
In order to obtain a smooth calculation of the gradients
with respect to the simulated measurements which exhibit
jumps due to the periodic movement of the ports, virtual
measurements at constant positions at the outlet of each
chromatographic column are included in the mapping h.
In order to account for the actual existence of real mea-
surements at the considered point of time k, the corre-
sponding components on the diagonal of the measurement
weight V −1

k are set to 1
σ2

v
while nonexisting measure-

ments cause zero entries on the diagonal of V −1
k . A zero

weight can be interpreted as infinite measurement noise.
Thus, the correction terms of nonexisting measurements
in the smoothed Extended Kalman Filtering update and
in the moving horizon are zero. The switching of the mea-
surement weights at the respective extract and raffinate
switching times δtjτ in period m is realized according to
the movement of the extract and raffinate port:

V m,j = MV V m,j j = Ex,Ra (32)

V m = V m,Ex + V m,Ra (33)

Vm = diag(V m+1(1, . . . , (ncol − 1) ∗ 2), σ2
v , σ2

v). (34)

The permutation matrix MV for shifting the extract and
raffinate measurements around the plant for a new period
m+1 is similar to the permutation matrix MQ for shifting
the port flows. The last two entries of Vk are the variances
of the measurements at the internal measurement position
(recycle) which are not shifted.

3.2 Multiple-Shooting Real-Time Iteration Scheme for
MHE

The moving horizon optimization problem is solved by
the multiple shooting method for parameter estimation
Bock (1981, 1987). The basic idea of multiple shooting
is to subdivide the time horizon into subintervals and
to formulate autonomous initial value problems on each
individual subinterval which are coupled by continuity
conditions. The computational requirements are largely
reduced by applying the real-time iteration scheme for the
multiple shooting method introduced in Diehl et al. (2002,
2004); Diehl (2002) that updates the sensitivity matrices
that are necessary to solve the optimization problem before
the most recent measurement ηK is available. Another
important feature is that the next optimization problem
is initialized well at the current solution such that the
number of iterations can be reduced to one.

4. RESULTS

For the demonstration of the performance of the mov-
ing horizon estimator, the separation of the enantiomer
mixture EMD-53986 is considered which is described by a
nonlinear adsorption isotherm of extended Langmuir type
(12). Enantiomers are chemical molecules that are mirror
images of each other, much as one’s left and right hands.



The separation of the enantiomers of EMD-53986 was
studied experimentally in a joint project by Merck (Ger-
many) and Universität Dortmund in 2001. From this work,
an accurate simulation model is available. The parameters
of the SMB model were taken from Jupke et al. (2002).
More details on the process and the model parameters can
be found in Jupke (2004). In order to demonstrate the
performance of the MHE estimator, a simulation study is
presented in which step changes of the Henry coefficients
H2

A,H2
B of the nonlinear adsorption isotherm are assumed.

The performance of the moving horizon estimator is illus-
trated by the evolution of the parameters and of the overall
state reconstruction error which is defined as

J =

352∑
j=1

(x(j) − z(j))2, (35)

where z is the true state. The measurements are corrupted
by noise with a standard deviation of 0.025 g/l as observed
in Jupke et al. (2002). No cross-correlations between
the state noises and between the state noises and the
parameters were assumed. Since the concentration profiles
move around the simulated plant together with the ports,
the same noise variances were assumed for each state. The
tuning of the moving horizon estimator was performed by
varying the covariances of the state variables and of the
free parameters. The weighting matrix W incorporates a
standard deviation of 0.00433 g/l for the state noise and a
parameter standard deviation of 0.0316 for H2

A and 0.0265

for H2
B: W

1
2 = diag(0.00433, . . . , 0.00433, 0.0361, 0.0265).

The initial weight P0 is set to 0.005×W . The chosen state
and parameter noises represent a compromise between the
smooth estimation of the states and a quick adaptation
of the parameters. The state and parameter bounds are
chosen as −0.25 g/l ≤ x ≤ 5 g/l and 0 ≤ H2

i ≤ 50
to prevent grossly wrong values. The lower bound on
the states is chosen such that it remains inactive in the
presence of large measurement noise. The sampling time
of the estimator is 1/10 of the period length. The moving
horizon length is five sampling intervals (half a period).

In the simulation scenario, H2
A is increased by 10.6%

from 19.90 to 22.00 at t = 14.58 min while H2
B is

increased by 10.3% from 5.85 to 6.45 at t = 68.04 min.
It can be seen from figures 4 to 8, that the state is
reconstructed correctly in the presence of the parameter
variations and that the parameters are also estimated well.
The Henry coefficient H2

B is estimated faster than H2
A due

to the stronger excitation of the raffinate dynamics by the
parameter perturbation. The axial concentration profiles
are reconstructed correctly by the MHE (not show here
due to limited space). The MHE is more robust against
measurement noise and wrong initializations of the states
and parameters than an EKF, see Küpper et al. (2009).
The MHE estimator can be applied online, as can be seen
from Figure 8. The CPU times are below the sampling
rate at all sampling points. The CPU times of the MHE
are around 23 s on a standard PC 1 , the maximum and
minimum values being 28.0 s and 18.5 s. The CPU times
for the estimator varies periodically. It was observed that
the estimation problem requires a longer computation time
when a shift of one of the inlet/outlet ports occurs within
the moving horizon.

1 Intel Xenon CPU 2.8 GHz, 4.0 GB RAM
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(2008). A real-time algorithm for moving horizon state
and parameter estimation. Journal of Process Control.
(submitted).

Kleinert, T. and Lunze, J. (2005). Modelling and state
observation of Simulated Moving Bed processes based on
explicit functional wave form description. Mathematics
and Computers in Simulation, 68(3), 235–270.

Kloppenburg, E. and Gilles, E. (1999). Automatic control
of the simulated moving bed process for C8 aromatics
separation using asymptotically exact input/output lin-
earization. Journal of Process Control, 9, 41–50.
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