Application of Near-infrared Spectroscopy in Batch Process Control
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Abstract: While batch processes are gaining ever increasing importance in the manufacturing industries,
control of the product quality remains to be a serious challenge. To improve overall process
understanding and control, new analytical techniques, such as Near-Infrared (NIR) Spectroscopy, are
starting to be employed in industry. Currently, these techniques are primarily used for process monitoring
purposes and have not yet been explicitly included in feedback control systems. This paper investigates
the ability of three different control systems to adequately control a simulated batch reactor using the
NIR spectra as feedback information such that the product meets quality specifications. The particular
problem considered in this paper is adequate representation of the NIR spectrum using a single variable
that is then controlled by employing Model Predictive Controller (MPC). It is shown that the resulting
controller performances are highly variable if the controlled variable is chosen by selecting a single peak
in the NIR spectrum to represent that variable. On the other hand, by using Principal Component
Analysis (PCA) to extract information from all of the wavenumbers and represent it using a single

composite variable, which is then controlled, it is shown that the process can be adequately regulated.
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1. INTRODUCTION

Batch processes are gaining ever increasing importance in the
manufacturing industries. They are particularly prevalent in
the polymer, pharmaceutical and specialty chemicals
industries where the focus is on the production of low-
volume, high-value added products. However, a major
problem that is faced by those involved in batch processing is
the application of reliable control systems. The characteristics
associated with batch processes that make them particularly
challenging to control include the presence of time-varying
and nonlinear dynamics, multitude of unmeasured
disturbances such as concentrations of various raw materials,
and the presence of irreversible behaviour (Bonvin 1998).

This paper deals with the application of control systems to a
chemical batch reactor for which the requirement to
manufacture high quality product often translates into the
control problem of tracking the reference temperature profile
(Cott and Macchietto 1989). This is because the reaction rates
involving raw materials, intermediates and products are
highly dependent on the temperature. As a result, the
composition of the product is also highly dependent on the
reactor temperature. The reference profile design consists of
characterising, in terms of the reactor temperature, the
following three main stages of batch reactor operation:
heating up the reactor; controlling the reactor temperature to
meet the process requirement and then cooling down the

reactor. However, temperature control of batch reactors can
be a difficult task due to the process nonlinearities and the
absence of the steady-state operation (Shinskey 1996). Aziz
et al. (2000) analyzed the performance of different types of
controllers in terms of their ability to track a reference profile
of reactor temperature.

Even if the adequate temperature control system is in place
and the reactor temperature does follow closely its reference
profile, there is no guarantee that the final product will meet
its specifications. For example, changes in the reaction rates
and/or inclusion of a new raw material (as an impurity) can
introduce new reaction pathways, which may cause the final
composition of the product to change significantly. As a
result, product quality can deteriorate even in the presence of
a satisfactory temperature control system. Hence, it would be
highly useful to construct a control system that would focus
on regulating not the reactor temperature but some other
variables that are much more directly related to product
quality. As a result, such control system should be able to
maintain high quality product in the presence of disturbances.

Near-infrared (NIR) spectroscopy represents a set of non-
destructive analytical techniques that have been extensively
used to extract chemical and physical information from a
product sample based on scattered light (Reich 2005). NIR
spectroscopy has been widely used in the pharmaceutical
industry to test raw materials, control product quality and



monitor processes (M. Blanco 1998; Donald A. Burns 2001;
Luypaert, Massart 2007). In the food industry there have been
several applications of NIR spectroscopy being used for
continuous process monitoring and control (Huang 2008).

Since the NIR spectra reflect the composition of the product,
they represent excellent feedback information that could be

used by control system to ensure the high quality of a product.

So far NIR spectroscopy has been widely used for monitoring
of manufacturing processes (Reich 2005; Jorgensen 2004;
Scarff 2006). However, there is currently no publication
proposing a method of explicitly using NIR spectra as
feedback information to control the temperature of a reactor
in order to ensure that the manufactured product conforms to
high quality standards.

One clear problem in using NIR spectra as feedback
information is the large number of variables that are needed
to replicate information contained within the NIR spectrum.
Arguably the number of variables should be equal to the
number of spectral channels (wavenumbers) in order to
completely characterise a given NIR spectrum. However, if
this guideline is followed then the resulting control problem
will potentially have several hundred controlled variables
which could not be simultaneously controlled using typically
only a handful or even just one or two manipulated variables.

In this paper, the problem of incorporating NIR spectrum as
feedback information is addressed by using two different
approaches. Both approaches utilise Model Predictive
Control (MPC) framework but with a different definition of a
controlled variable. The first approach is based on an idea of
selecting wavenumber corresponding to one of the spectral
peaks as a controlled variable. However, there are currently
no clear guidelines regarding the selection of the peak to be
considered as a controlled variable. The second approach is
to use multivariate statistical analysis tools, namely Principal
Component Analysis (PCA), in order to extract the
information from NIR spectrum and represent it in a format
of a single composite variable. This composite variable can
then be regulated by means of a control system. Assessment
of the controllers’ performances is conducted using a
simulated chemical batch reactor. The NIR spectrum is
simulated by assuming that it is a linear combination of pure
spectra related to individual compounds.

2. PRELIMINARIES

In this section the general concepts of Model Predictive
Control (MPC) and Principal Component Analysis (PCA) are
briefly introduced in order to facilitate the understanding of
the control methodologies employed in the paper.

2.1 Model Predictive Control (MPC)

MPC (Maciejowski 2002) refers to a class of control
algorithms that utilise an explicit process model to predict the
future response of a plant. At each sampling instant, the MPC
algorithm attempts to optimise future process behaviour by
computing a sequence of adjustments that should be made to
the manipulated variables. The first input in the optimal

sequence is then implemented, and the entire calculation is
repeated at the next sampling instant.

The key ingredient of the MPC controller is a prediction
model used to forecast future process behaviour. In this paper
the ARX structure (auto regressive with exogenous inputs) is
chosen as the prediction model, and it is given as follows:
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where y(k) and u(k) are the controlled and manipulated

variable, respectively, at a sampling instant k. The model
error is represented by e(k) . The order of the ARX model is

determined by the values of n, and 7, .

This cost function for the selection of the appropriate control
action is given in (2).
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Where J is the cost function to be minimized, p and m
are the prediction and control horizons, respectively. y, and
y are the reference (set-point) values and estimated future
output values, respectively, « and B are the weighting
parameters for the controlled and manipulated variables,
respectively. Finally, Ax is the change in manipulated

variable (incremental control move) that is to be computed by
the MPC algorithm.

The target of the cost function in (2) is to force the future
output to track the reference trajectory over the specified
prediction window p , while taking into account the balance

between error energy and incremental control energy.

2.2 Principal Component Analysis (PCA)

The primary objective of Principal Component Analysis
(PCA) is to capture the majority of variation present in data
using a minimal number of composite variables, named
principal components (PCs) (Johansson 2001; Berrar 2003).
This dimensionality reduction is performed by exploiting the
inter-dependence between measured process variables, such
as individual wavenumbers in the NIR spectra.

For the analysis of spectroscopic data, such as that obtained
from the NIR instruments, the power of PCA lies in its ability
to condense the correlated information from hundreds of
wavenumbers into a small number of mutually orthogonal
principal components (PCs). Formally, PCA performs the
following matrix decomposition:

X=TP' +E 3)

where X represents measured process data organised in #
rows and m columns. PCA decomposes this data matrix into



the product of two matrices T and P, as shown in (3). T and
P matrices contain as columns the so-called PCA scores and
PCA loadings, respectively. E matrix represents the
information contained within the matrix X that is not
represented in the first nc principal components. Normally,
each column of the data matrix X corresponds to a particular
process variable, while the particular row is related to a
specific sampling instant in time. In the context of NIR
spectra, the columns of X represent specific spectral channels
or wavenumbers while the rows contain data related to the

whole NIR spectrum measured at a particular instance in time.

Due to the fact that the columns of the loadings matrix P are
orthogonal, the expression for the calculation of scores is
given as:

T = XP 4

It is the expression in equation (4) that will be utilised in this
paper in order to condense information from hundreds of
wavenumbers present in X into a single composite variable,
namely the score associated with the first principal
component.

3. CONTROL METHODOLOGY

3.1 Temperature Cascade Control (TCC)

A standard control problem in chemical reactor operation is
that of controlling reactor temperature such that it follows a
certain pre-computed reference trajectory, which should in
turn ensure that the product quality will be satisfactory.
Ultimately, reactor temperature is controlled by manipulating
the flow of coolant or steam into the reactor’s jacket.
However, due to the presence of numerous disturbances, such
as the feed temperature and the temperature of the incoming
coolant, this control problem is addressed by employing two
controllers in master-slave configuration, as shown in Fig.1.
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Fig. 1. Control of Reactor Temperature Using TCC System

The primary control loop, also known as the Master control
loop, controls reactor temperature by adjusting the inlet
jacket temperature set-point. The secondary control loop,
known as the slave control loop, regulates jacket temperature
by manipulating the flow of either coolant or steam into the
jacket. Hence, the manipulating variable of the master control
loop is the set-point for the slave control loop. This method
of cascading controllers is very popular in the process
industries and is particularly useful when there are
disturbances associated with the slave controller’s
manipulated variable (Seborg 2004).

In this paper, a PI controller is used in the primary (slave)
control loop while the PID controller is employed in the
master (primary) control loop.

Note that the TCC system controls product quality implicitly,
through the regulation of reactor temperature. The main
problem with such implicit control arises with the occurrence
of specific disturbances and process dynamics’ changes,
which adversely affect the underlying relationship between
the reactor temperature and the product quality. As a result,
optimal temperature profile will change. However, unless the
optimal profile is calculated in real-time, TCC system will
typically not have access to it. Instead, TCC will use existing
reference trajectory, which is sub-optimal and may result in
unsatisfactory product quality as demonstrated in the results
section of this paper.

3.2 Wavenumber-Based MPC Control (Wn-MPC)

Spectroscopic instrumentation is being increasingly used to
provide measurements, such as NIR spectra, that are in some
way closely related to the product quality. By incorporating
these measurements as feedback information into the control
system the product quality control is addressed more
explicitly when compared to the TCC scheme. One possible
control system structure that incorporates NIR spectra as
feedback information is shown in Fig. 2.
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Fig. 2. Basic Structure of Wn-MPC Control

This new control structure incorporates the TCC system from
Fig. 1 and augments it with the additional outer control loop,
namely MPC control loop. The manipulated variable of the
MPC controller is the reactor temperature set-point while
controlled variables are the intensities of NIR spectra at a
particular set of wavenumbers. Hence, within this control
system structure, the TCC system can be viewed as a slave
controller while MPC can be viewed as a master controller.
This control system structure will be referred to as Wn-MPC.

The reference profile for the wavenumber is obtained by
collecting NIR spectra from a ‘nominal’ batch, during whose
progression no major disturbances were present and the
standard TCC control scheme was used.

Since each wavenumber in the NIR spectra represents a
candidate variable to be used as feedback information, there
may be hundreds of potential controlled variables. Therefore,
serious practical problem that arises when attempting to
implement Wn-MPC is to decide on the set of wavenumbers
that will be used as controlled variables. Currently, there are
no clear guidelines as to which wavenumber should be
selected for control purposes. In this paper a range of



wavenumbers was selected and their suitability was evaluated
by incorporating them into Wn-MPC as controlled variables.

3.3 PCA Score-Based MPC Control (Sc-MPC)

In order to incorporate information from all of the
wavenumbers into a feedback signal, a modified control
system structure is used, as shown in Fig. 3.
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Fig. 3. Basic Structure of the Sc-MPC Control

This control scheme differs from Wn-MPC in that it includes
a block containing the PCA model that pre-processes
feedback information, namely NIR spectra. The result of
PCA processing is a small set of variables, called scores, that
contain information related to all of the measured
wavenumbers. This is in contrast to Wn-MPC where the
feedback information relates to only a few wavenumbers.

In this paper it is assumed that a PCA model is constructed
using NIR spectra collected from a nominal batch. This
nominal batch is run in the absence of any major disturbances
using TCC control scheme. Hence, the resulting NIR spectra
are assumed to represent reference profile that is to be
replicated by Sc-MPC. In order to extract the main features
from the highly multivariate NIR spectral data into a single
variable, PCA model is applied. The resulting score trajectory
is used as a reference profile that Sc-MPC is required to
follow.

4. CASE STUDY

4.1 Chemical Reactor Simulation

This paper documents the application of three different
control systems to a simulated chemical batch reactor taken
from Cott (Cott and Macchietto 1989). The reactions taking
place are given as follows:

k] kZ
A+B—>C; A+C—D %)

where A, B are the raw material, C is the desired product and
D is the waste product, while kl and k2 are the rates of the
two reactions.

The control objective is to track the reactor temperature 7',

reference trajectory by adjusting the jacket temperature T s

4.2 Disturbance Description

Three different control systems, described in section 3, were
evaluated by injecting large disturbance and observing the
control system response. Disturbance was chosen to be a

reduction in a value of a reaction rate constant k, by 8%.

4.3 Prediction Model Identification

Training data for the Recursive Least Squares (RLS)
algorithm was obtained using the TCC system structure,
shown in Fig. 1. To excite the process dynamics, reference
temperature trajectory was perturbed for three batches by
adding a PRBS signal of amplitude 0.1 degrees C and
switching time of 60 seconds.

In this particular case study ARX based prediction models
were developed with 7, =2 and n, =80 . The data-

driven identification method of RLS was used to develop
dynamic models for both Wn-MPC and Sc-MPC controllers.

The output signal considered during the prediction model
identification is the deviation of a controlled variable from its
nominal trajectory. This controlled variable may be spectral
intensity at the particular wavenumber (in the case of Wn-
MPC control) or the value of the PCA score (in the case of

Sc-MPC control).

4.4 Wavenumber Selection

In the case of Wn-MPC, candidate controlled variables were
taken to be those wavenumbers that corresponded to a local
peak of the measured NIR spectrum. In this particular case
study the wavenumbers corresponding to the local peaks in
the NIR spectra and, therefore, representing the candidate
controlled variables were 2, 77, 98, 127, 161 and 232, as

illustrated in Fig. 4.
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Fig. 4. Selection of spectral peaks as controlled variables

For each of these wavenumbers prediction model was
identified and the corresponding MPC controller was
constructed and evaluated. The corresponding controllers are
designated with a chosen wavenumber written within
brackets following a label Wn-MPC. For example, Wn-



MPC(127) designates Wn-MPC controller that utilises
wavenumber 127 as the controlled variable.

4.5 PCA Model Development

A PCA model was developed using NIR spectra collected
from a single nominal batch. The first PCA score captured
93.8% of the variation present in the NIR spectra and was
used as a reference trajectory in the subsequent
implementation of Sc-MPC controller. The loadings vector
associated with the first PCA score was then used in real-time
to compute score value from the measured NIR spectra
according to equation (4).

4.6 Results and Discussion

For each controller (TCC, Wn-MPC and Sc-MPC) the
process was perturbed using the identical large disturbance
described in section 4.2. The resulting NIR spectra that
corresponded to particular controllers along with the
reference spectrum are plotted in Figures 5 and 6.

Fig. 5 shows the NIR spectra obtained when the controllers
used to regulate the batch reactor were TCC, Sc-MPC and
Wn-MPC(77). Sc-MPC can be seen to outperform both TCC
and Wn-MPC(77). In fact, the NIR spectrum obtained when
using Sc-MPC controller was found to be very similar to the
reference spectrum, as shown in Fig. 5. On the other hand,
both TCC and Wn-MPC(77) clearly failed to reject the
disturbance as evidenced by considerable deviation of their
respective NIR spectra from the reference spectrum.
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Fig. 5. NIR spectra of end product obtained when using TCC,
Wn-MPC(77) and Sc-MPC

The reason for the discrepancy in performance between the
TCC and Sc-MPC lies in the fact that the TCC control system
does not consider NIR spectra as its feedback information
and, furthermore, its reference temperature profile is not
adjusted to account for the presence of the large disturbance,
which has modified the underlying relationship between
temperature and product quality. On the other hand, Sc-MPC
explicitly considers regulation of the NIR spectra by using
the composite of spectral measurements as its feedback
information. Wn-MPC(77) also delivered sub-optimal
performance because the spectral data contained in
wavenumber 77 appeared not to be sufficient to characterise

the majority of information contained in the entire NIR
spectrum. Wn-MPC(77) is an example of Wn-MPC
controller with its controlled variable obtained by randomly
selecting one of the prominent peaks in the NIR spectrum,
which is not an unlikely scenario in real applications.

The performances obtained by controlling NIR trajectories at
different wavenumbers (77 127 161) using Wn-MPC
controllers change largely, as demonstrated in Fig. 6.
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Fig. 6. NIR spectra of end product obtained when using Wn-
MPC(127), Wn-MPC(161) and Wn-MPC(77)

The sum of square errors of the NIR spectra and its nominal
values by Wn-MPC at every wavenumber are calculated and
showed in Fig. 7. This figure shows a large variation in
performance achieved by Wn-MPC controllers that utilise
different wavenumbers (2, 77, 98, 127, 161, 232) as their
controlled variables.
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Fig. 7. The sum of square errors (ssq) by Wn-MPC at
different wavenumbers

Even if the Wn-MPC is used with an optimally selected
wavenumber, which is wavenumber 127 in this particular
case study, the resulting control performance was found to be
very similar to the performance of the Sc-MPC controller.
This is demonstrated in Fig. 8 where the NIR spectra shown

were obtained when the process was being controlled using
Sc-MPC and Wn-MPC(127).

Hence, the improvement in performance delivered by Wn-
MPC(127) is not considerable while the trial-and-error
procedure involved in selection of the wavenumber to be
controlled may be prohibitively time-consuming and
expensive. On the other hand, Sc-MPC delivered satisfactory
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Fig. 8. NIR spectra of end product obtained when using Wn-
MPC(127) and Sc-MPC

performance that was similar to that of the Wn-MPC(127)
controller. In addition, the controlled variable is
automatically selected requiring no trial and error in the case
of Sc-MPC. Hence, Sc-MPC controller was found to require
minimal user interaction when selecting appropriate
controlled variable while also delivering a highly satisfactory
performance.

Observed variability in performance can be explained by the
fact that all of the considered Wn-MPC controllers focus on
the feedback information contained within a single
wavenumber. Hence, there may be cases where a chosen
wavenumber conveys little information related to other
segments of the overall NIR spectrum, such as the
wavenumber 77. In these cases the resulting Wn-MPC will
not deliver satisfactory performance, as is the case with Wn-
MPC(77). Similarly, there may be cases where a single
wavenumber does reflect many of the features of the entire
NIR spectrum, such as the wavenumber 127. Resulting
controller, namely Wn-MPC(127), will then deliver a
satisfactory performance.

5. CONCLUSIONS

This paper investigated the ability of three different control
systems to adequately control a simulated batch reactor using
the NIR spectra as feedback information such that the product
meets quality specifications. The first of the three controllers
ignored the presence of NIR spectra and was solely
concerned with the regulation of reactor temperature such
that it follows pre-specified reference trajectory. This
controller was found to be inadequate when the large
disturbances altered the underlying relationship between
reactor temperature and product quality. The other two
controllers utilised aspects of the measured NIR spectrum in
their formulations. One of these two controllers used spectral
intensities at specific wavenumbers (spectral channels) that
corresponded to local peaks in NIR spectra as feedback
information and was referred to as Wn-MPC. The other
controller used multivariate statistical tool, namely Principal
Component Analysis (PCA) in order to extract the main
features present in all of the wavenumbers and condense this
information into a single composite variable that was
controlled. This controller was referred to as Sc-MPC.
Results of implementing these three controllers on a

simulated batch reactor reveal that the Sc-MPC achieved
satisfactory control while also requiring no user interaction
when deciding on the variable to be controlled. On the other
hand, performance achieved by Wn-MPC was found to be
highly dependent on the choice of the wavenumber that is to
be controlled. However, due to the lack of rigorous
guidelines when selecting appropriate wavenumber and the
resulting trial and error necessary to determine optimal
wavenumber, it is questionable whether Wn-MPC can be
used as a practical solution in industrial process control area.
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