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Abstract: This work presents the simultaneous synthesis, design and control of an activated sludge
process using a Multivariable Model-based Predictive Controller (MPC). The process synthesis and
design are carried out simultaneously with the MPC tuning to obtain the most economical plant which
satisfies the controllability indices that measure the control performance (Hoo and 11 norms of different
sensitivity functions of the system). The mathematical formulation results into a mixed-integer
optimization problem with non-linear constraints that is solved using a real coded genetic algorithm. The
solutions reflects the effect of applying different bounds over the controllability norms. The results are
encouraging for the development of integrated design approaches with advanced control schemes which
usually results in complex optimization problems difficult to solve with conventional techniques.
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1. INTRODUCTION

The fact that the incorporation of controllability issues at the
early stage of process design improves the dynamical
behaviour of the plants have motivated the development of
different methodologies to deal with the simultaneous process
and control system design as Kookos and Perkins (2001),
Revollar et al. (2004), Sakizlis et al (2004), Francisco et al.
(2005) and more recently Tlacuahuac-Flores and Biegler
(2007) and Tlacuahuac-Flores and Biegler (2008).

The simultaneous process and control system design leads to a
non linear optimization problem where economic objectives,
operability specifications and control performance are
considered. =~ The most comprehensive  applications
contemplate, also, the process synthesis or the control structure
selection  resulting into a  mixed-integer-non-linear
optimization problem (MINLP). The controllability analysis
might require the evaluation of dynamic performance indices,
which translates the problem into a mixed-integer-dynamical
optimization (MIDO).

Even thought, the contribution in the field of integrated design
is considerable, most of the approaches use conventional PID
controllers. Only few works (Sakizlis et al., 2003; Sakizlis et
al., 2004; Francisco and Vega, 2006) have been addressed to
the application, in the integrated design, of advanced control
techniques as Model-Based Predictive Controllers (MPC). The
reason is that the advanced control schemes involve solving an
optimization problem on-line, leading to a drastic increase in
the complexity of the design framework (Sakizlis, et al, 2003;
Sakizlis, et al, 2004).

Model based predictive control (MPC or MBPC) makes use of
a process model to calculate the optimal control law. The MPC
have been mainly accepted due to its natural way of
incorporating operating constraints in multivariable process

and the successful results in industrial applications
(Maciejowsky, 2002; Qin and Badgwell, 2003). The
shortcomings of conventional control schemes can be

overcome by pursuing an advanced model-based predictive
control (MPC) scheme (Sakizlis et al, 2003).

There are several strategies to deal with automatic tuning of
MPC based on optimization of dynamical performance index
(Ali et al., 1993; Francisco et al, 2005; Li and Du, 2002) but its
evaluation requires time-consuming dynamical simulations
which is an important drawback of these methodologies. Vega
et al (2007) proposed the use of frequency domain methods as
controllability indexes to speed up the MPC automatic tuning
procedure by solving a mixed sensitivity problem with
constraints. It avoids dynamical simulations but the use of
linearized models, caused some problems of stability and
robustness in the presence of nonlinearities and load
disturbances on the process.

The aim of this work is to perform the integrated synthesis and
design of a process using model-based predictive controllers
(MPC) that will be tuned automatically using the strategy
proposed by Vega et al (2007). The activated sludge process
of the Manresa’s plant was selected to apply the integrated
design methodology as has been done in previous work using
a conventional PI control technique (Revollar, et al., 2004,
Revollar, et al., 2005). Francisco and Vega (2006) applied
advanced control techniques for the integrated design of the



mentioned plant, but the structure selection was not taken into
account in the problem formulation.

The main difficulty for solving the problem is the existence of
continuous process and MPC variables, integers for the
prediction and control horizon and binary variables for the
structural decisions, which leads to a complex mixed integer
non linear optimization problem. Therefore, it is necessary the
use of advanced algorithms that handle both, continuous and
discrete decisions, to lead the optimization to economically
optimal processes operating in an efficient dynamic mode
around the nominal working point.

Several deterministic mathematical programming optimization
techniques have been used for solving the simultaneous design
and control problem (Sweiger and Floudas, 1997; Kookos and
Perkins, 2001, Sakizlis et al, 2003; Sakizlis et al, 2004) but
complex formulations and a considerable computational effort
are required for its implementation. On the other hand,
stochastic optimization methods as genetic algorithms have
been a good alternative for solving such difficult problems
with a minimum effort for its implementation. A genetic
algorithm has been proposed for the solution of this non linear
mixed integer optimization problem.

The paper is organized containing, first, the description of the
MPC and the controllability metrics used for the automatic
tuning in the integrated design procedure, the formulation of
the optimization problem and the description of the process
and in section 3. The analysis of the results is presented in
section 4. Finally, conclusions and different projections of this
work are included.

2. MPC FORMULATION AND CONTROLLABILITY
METRICS

The basic MPC formulation consists of the on-line calculation
of the future control actions by solving the following
optimization problem subject to constraints on inputs,
predicted outputs and changes in manipulated variables.
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where k denotes the current sampling point, p(k+i|k) is the
k+i, of
measurements up to time k, »(k+i|k) is the reference

predicted output vector at time depending

trajectory, Al are the changes in the manipulated variables,
Hp is the upper prediction horizon, Hw is the lower prediction
horizon, Hc is the control horizon, Wu and Wy are positive
definite matrices representing the weights of the change of
control variables and the weights of the set-point tracking
errors respectively. In this work the matrices Wy and Wu are
diagonal but not time dependent, so the error vector
Y(k+i|k)—r(k+i|k) is penalized at every point in the
prediction horizon and the changes in the control signal
Aii(k+i|k) are penalized at every point in the control

horizon.

The problem (1) is a Quadratic Programming (QP) problem
that gives a sequence of control moves Au(k +i| k) . The first
component of this sequence is applied to the system in time
k+1, and the optimization problem (1) is repeated at the next
sampling time (receding horizon strategy).

The MPC prediction model used in this paper is a linear
discrete state space model of the plant obtained by linearizing

the first-principles nonlinear model of the process

Maciejowsky (2002):

{x(k+1) = Ax(k)+ Bu(k)+ B,d(k) @
y(k) = Cx(k)

where x(k) is the state vector, u(k) is the input vector and d(k)
the disturbance vector. Matrices 4, B, Bd and C are of
adequate dimensions. For this model the prediction is:

$(k+ilk)=Ci(k+ik)=C| Ax(k)+Y 4" Bu(k+i- j|k) 3)

One reason for choosing state space models is that a significant
part of the recent research literature on MPC shows
contributions based on this type of models. Connections
between the standard linear quadratic regulator (LQR) theory
and unconstrained MPC when the horizons approach infinity
could be another reason for that.

When the MPC controller is linear and unconstrained, it can be
represented with a transfer function KMPC. The corresponding
transfer function is:

-
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where Ki are the transfer functions between the control signal
and the different inputs (r,y,d) which depend on the control
system tuning parameters (Wu, Hp, Hw and Hc). Particularly,
in our MPC formulation K, =—K, (Maciejowsky, 2002),

then, control law can be stated as:

u=K(r-y)+Kd Q)]

Consequently, taking into account control law and the transfer
function of the open loop system, the closed loop response can
be obtained from

y="K ., 1 ; (©6)
1+GK,  1+GK,

where d are the filtered disturbances

d=(GK,+G,)d (7

In order to state the automatic tuning problem, is necessary to
define: The Sensitivity function S(s) between the load
disturbances (d) and the outputs (y) and the Control Sensitivity
transfer function M(s) between the load disturbances (d) and
the control signals (z) when the reference is zero .
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For solving the MPC optimization problem, MPC Toolbox of
MATLAB has been used, with some specific modifications
(Maciejowsky, 2002) implementing an extended state space
representation.

Regarding to the controllability indices, some norm based
metrics were considered. The first controllability index
considered in this work is:

(10)

where N is a mixed sensitivity index that takes into account
both disturbance rejection and control effort objectives. The
function N is defined as:
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Wesf(s) is chosen to penalize control efforts adequately, and
Wp(s) is chosen based on the spectra of disturbances to ensure
proper disturbance rejection. Wp(s) and Wesf (s) are suitable
weights for optimization. The selection of Wp(s) is explained
below, and the weight Wesf{s) is selected to complete the Heo
mixed sensitivity problem and allows for the significance of
control efforts. Note that control efforts rather than magnitudes
of control are included in the objective function by considering
the derivative of the transfer function M(s).

In order to ensure disturbance rejection we need (considering
normalized disturbances):

|S(jw)|~|d(w)|<l

in the disturbances frequency range where S(jw) is the
frequency response of the sensitivity function, and d(w) is the
disturbance spectra. By choosing a weight Wp(s) satisfying

(12)

20-log|Wp (jw)| " <20-log|d (w)|" (13)

disturbance rejection can be assured imposing the following
constraint in the optimization tuning procedure:

[p-s]. <1 (14)

A typical choice for the weight Wp(s) is a rational function
with one zero and one pole. B is the weight gain for high
frequencies, a is the gain for low frequencies and wj, represents
the required bandwidth for the closed loop system. The
parameter a is very small to impose integral action to the
system but avoiding numerical problems.

-
Wp(S):S+WCl
b

(15)

The maximum value of the manipulated variables (for the
worst case of disturbances) can be constrained to be less than
Unax, Dy means of the // norm and the following condition:

(16)
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3. PROCESS DESCRIPTION AND PROBLEM
FORMULATION

The activated sludge process was selected to study the
simultaneous ~ synthesis and control system design
methodology. A simple model (Moreno et al., 1992) was
selected, to avoid the excessive complexity of models like the
ASM1 developed by the IAWPRC.

Moreno et al. (1992) model is based on the wastewater
treatment process of the Manresa plant (Spain). It is founded in
the classical Monod and Maynard-Smith model. It is assumed
that the reactions take place in only one perfectly-mixed tank.
However, in this work two possible structural alternatives
consisting in one or two aeration tanks are considered.

The activated sludge process corresponds to the secondary
wastewater treatment stage. In the aeration tanks or
bioreactors, the activity of a mixture of microorganisms is used
to reduce the substrate concentration in the water. The
dissolved oxygen required is provided by a set of aeration
turbines. Water coming out of each reactor goes to the settler,
where the clean water is separated from the activated sludge
that is recycled to both bioreactors. The control of this process
aims to keep the substrate at the output (s; or s,) below a legal
value despite the large variations on the incoming substrate
concentration (si) using the recycling flows qr; and gr, as
manipulated variables (Moreno et al, 2002). The frequency and
magnitude of the disturbances at the si input make the control
of the plant a difficult task. The set of disturbances used for
evaluate the control performance while tuning the MPC has
been determined by COST 624 program Copp (2002).

3.1. Mathematical Optimization Problem
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Fig. 1. Activated sludge process superstructure
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The simultaneous synthesis, design and control of the activated
sludge process pretend to obtain the most economical plant
that satisfies the desired control performance. A cost function
is defined to measure the economical issues while a predictive
controller is tuned to achieve the desired closed loop behaviour
according to the controllability norms described in section 2.

The two possible structural alternatives proposed for the plant
are represented in a superstructure shown in figure 1. The
model equations take the appropriated values for each
structural alternative according to the binary y;.



The mathematical formulation results into a mixed-integer-
non-linear optimization problem where the objective is to
minimize a cost function considering as decision variables: the
structure (y;), dimensions and controller parameters. Some
constraints based in process model are set to find dimensions
and initial working point, together with constraints over the
norms used to measure the controllability of the plant with the
actual controller parameters.

The cost function is:

f=pl-(vl+v2)2+p2-A2+p3-Fk12+p3~Fk22+p4-q22 an
where v;, v, are the reactor volumes and A is the cross-
sectional area of the settler, Fk; and Fk, are the aeration factors
for each reactor and ¢, is the overall recycle flow. The first
three terms are associated to the construction cost that is
proportional to the volume of the reactors and the area of the
settler. The terms proportional to Fk;, Fk, represent the
aeration turbines costs, and the term proportional to g,
represents pumping costs (purge and recycling).

Logical conditions must be imposed to guarantee the
mathematical coherence of the model for any possible
structure: if the second reactor does not exist: y,=0 = v,=0,
X=X, $1=8,, c;=c, Fk,=0, qr,=0, if the second reactor exist,
then, y;=1 and all the variables take values within their ranges.

The constraints imposed over mass balances in aeration tanks
and the settler, are used to define the plant dimensions and the
initial stationary working point.
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If the second reactor does not exist (y;=0), the values of the
variables given by the logical conditions mentioned above,
annul the equations (20) and (21), a W, =gq,, ‘¢, term is used

to cancel equation (22).

The operation constraints for the activated sludge process are:

Residence times:

25<0 <3 (26)
912
+(1-y)-
25< M <6 (27)
9
where W, annul de constraint for y;=0.
Mass loads in the aeration tanks:
0.001< L5 1A% 4y (28)
ViX
0001 < dzsitarss ~(=n)Ws ) (29)
VaXp
where W; annul de constraint for y;=0.
Sludge age in the settler:
PR +v,x, + AL x, <10 (30)
q,x.24
Limits in hydraulic capacity:
I2 <15
4 (31

Limits in the relationship between the input, recycled and
purge flow rates:

00322 <03 (32)
9,

0.0s<L <09 (33)
4,

The controllability constraints are the limits over the norms
described in section 2 where the transfer functions are referred
to s, as the output, si y ¢gi as the disturbances, and recycling
flows gr;, qr; as control variables. The parameter u,,, is an
upper bound for the magnitude of control variables. These
constraints: |N|_ <1,  |#p-S| <1, |M| <wup, ensure a

satisfactory control performance with the tuned MPC.

The main difficulties when solving this problem is the
existence of continuous, integer and binary variables and the
evaluation of controllability norms that implies the
linearization of the process model for each possible solution.
GA are particularly suitable, due to its robustness and the
straightforward method to compute the objective function and
constraints avoiding gradient evaluation.

4. RESULTS

For solving the problem using genetic algorithms (Gen and
Cheng, 2000), a fixed length real coded chromosome is
defined, containing the continuous normalized process
variables, the controller parameters (Wu, Hp, Hc) and a binary
variable to set the structure of the plant: [x;, x,, Sy, xd xb xr
qriqra qp Fk; Fkyvy; v, A Wu Hp He y;].

The location of the variables in the chromosome is important
for the objective function and constraints evaluation procedure.



The genetic algorithm starts by generating randomly a
population of possible solutions, that contains the same
quantity of individuals for the two structural alternatives (y;=0
and y;=I). Each solution is manipulated to fulfil the logical
conditions mentioned in section 3.1, according to the actual
value of y;. The new candidate solutions are manipulated also,
according to the logical conditions. The population in the
succeeding generation consists of 50% of the best individuals
from the previous generation and 50% of the individuals
generated by crossover.

The problem is solved using a population size of 200
individuals and 300 maximum iterations. Roulette selection
and arithmetic crossover were used. The mutation rate
decreases with generations from 0.1 to 0.02 and the crossover
probability used is 85%. A penalization strategy is applied to
deal with constraints. The genetic algorithm was run 10 times
for each case study, giving optimal feasible solutions for each
run with an average computing time of 9657 seconds.

Two scenarios with different demands on control performance
were proposed. For the case 1 the norm |[M], <1000 and for the
case 2 the norm ||M] <1500 . The weights Wp for both cases

Wp(s) = 8s5+19.2

are. =
s+0.0001

Table 1. Numerical results for integrated synthesis and
design with MPC for the case 1

Cost (MU) 0.13 Wu 0.0122
V, (m°) 8640 Hp 9

A (m?) 2728.9 Hc 3

S| (mg/l) 115.66 V). 0.97
Qr; (I/hr) 371.47 |a], 987.47
Fk1 0.035 [7p-S|. 0.92
Residence times 2.5

Mass loads 0.08

Hydraulic capacity 0.55

Sludge age 2.08

The results for the two scenarios are presented in tables 1 and
2. In both cases, the transfer functions and weights are referred
to disturbances in si and qi. It is observed that the solution
gives small economical plants that satisfy all the process and
control constraints. It is important to notice the flexibility of
the method for different limits imposed over the constraints
leading to plants of different dimensions. In the case 1, where
an stringent bound is imposed over 11 norm is obtained a plant
with 8640m> reactor while, for the case 2, with a relaxed
bound in 11 norm is possible to obtain an smaller plant with a
reactor of 5858.1 m® which is reflected in cost.

The optimization case 1 produces a plant with better
disturbance rejection because the weight Wp; is more
restrictive for sensitivity function S. On the other hand, with a
smaller bound for |M| , the magnitude of control is less relaxed

than in case 2 giving a smaller range of action to the
manipulated variable to reject disturbances. The values of
Wesf for qr; and qr, control sensitivity functions are fixed to:

_0.0117s+0.14 _0.01835+0.22

Wesfin ()= 5+0.0004 Wesfira (5)= 5+0.0004

Table 2. Numerical results for integrated synthesis and
design with MPC for the case 2

Cost (MU) 0.064 Wu 0.0069
vV, (m’) 5858.1 Hp 8

A (m?) 2178.4 He 3

S| (mg/1) 118.06 M. 0.979
Qry (I/hr) 273.9 |M], 1454.9
Fk1 0.021 [7p-5|., 0.786
Residence times 4.11

Mass loads 0.0856

Hydraulic capacity 0.65

Sludge age 5.03
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Fig.2. Sensitivity function S, Wp” and disturbances inverse
spectrum for case 1
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Magritde (8)

Fig.3. Sensitivity function S, Wp™ and disturbances inverse
spectrum for case 1

In figures 2 and 3 sensitivity functions S are presented for both
cases. In the case 1 the inverse spectrum of disturbances is
over Wp’l, and in case 2 this weight is a bit more relaxed
representing worse disturbance rejection. In figures 4 and 5 the
dynamical responses of the optimal plants for both cases are



presented, to illustrate the better disturbance rejection for case
1 as have been previously mentioned.
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Fig. 4. Substrate response for case 1
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Fig. 5. Substrate response for case 2

5. CONCLUSIONS

In this work, the synthesis and integrated design of an
activated sludge process with an advanced controller (MPC)
was addressed. The problem was translated into a mixed-
integer-non-linear optimization problem, with the evaluation
of controllability norms to ensure the most economical design
with a suitable control performance.

The MINLP was solved using a real-coded genetic algorithm
which leads to good quality feasible solutions with desired
disturbance rejection, which is the main control objective. The
solutions obtained are sensible to the bounds imposed over
controllability indices.

The controllability norms were set as constraints in the
formulation of the optimization problem, but it could be
formulated as a multiobjective optimization problem
considering costs and controllability.

These results are encouraging for the development of
simultaneous design and control approaches with advanced
control schemes which usually results in complex optimization
problems difficult to be solved. In this framework, the use of
advanced control techniques represent a significant advance
due to the advantages of these control strategies respect to
conventional PID.
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