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Abstract: In this paper we propose a novel procedure for obtaining a low order non-linear
model of a large scale multi-phase, non-linear, reactive fluid flow systems. Our approach is
based on the combinations of the methods of Proper Orthogonal Decomposition (POD), and
non-linear System Identification (SID) techniques. The problem of non-linear model reduction is
formulated as parameter estimation problem. In the first step POD is used to separate the spatial
and temporal patterns and in the second step a model structure and it’s parameters of linear
and of non-linear polynomial type are identified to approximate the temporal patterns obtained
by the POD in the first step. The proposed model structure treats POD modal coefficients as
states rather than outputs of the identified model. The state space matrices which happens to be
the parameters of a black-box to be identified, comes linearly in parameter estimation process.
For the same reason, Ordinary Least Square (OLS ) method is used to estimate the model
parameters. The simplicity and reliability of the proposed method gives computationally very
efficient linear and non-linear low order models for extremely large scale processes. The method
is of generic nature. The efficiency of proposed approach is illustrated on a very large scale
benchmark problem depicting Industrial Glass Manufacturing Process (IGMP). The results
show good performance of the proposed method.

1. INTRODUCTION

Industrial processes involving fluid flows are usually mod-
eled by Navier-Stoke’s equations which are solved by
some kind of spatial discretization. Due to this modeling
approach they are referred to as Distributed Parameter
Systems (DPS). Spatial discretization of DPS is done by
means of Finite Volume or Finite Element methods and
Galerkin or Petro-Galerkin projection techniques and they
are simulated in a Computational Fluid Dynamic (CFD)
software environment. Although such discretizations ap-
proximate the dynamic process behavior reasonably well,
it leads to very large order process model. It takes huge
computational efforts (time, CPU requirement) to simu-
late such models and therefore such process models can
not be used for online plant optimization and control
purposes. Model Order Reduction (MOR) is therefore
an important step before proceeding to control design,
see e.g. Shvartsman and Kevrekidis [1998]. The method
of Proper Orthogonal Decomposition (POD) or Principle
Component Analysis (PCA) is widely used for deriving
lower dimensional models from the First Principle Model
(FPM). The POD method searches for dominant pat-
terns in the given process and defines an optimal, data-
dependent basis, that is subsequently used as a projection
space to infer reduced order models through Galerkin type
of projections, see Astrid [2004] and the references therein.
POD methods are empirical (data dependent) in nature
and therefore these methods are susceptible to changes in
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process inputs and process parameters. The reduced model
obtained by POD techniques with Galerkin projections are
usually very dense and one loses the original sparse model
structure. Such a dense model does not always give com-
putational advantage over original full scale CFD model.
This motivates one to look for other possible approaches
which can give computationally efficient, reliable models
which can be used for the online control and optimization
purpose. Other motivations for the method proposed in
this paper are that in many commercial CFD packages
sometimes it becomes impossible to get access to the
Partial Differential Equations (PDE) used to implement
full scale model and even with access to the PDEs the
reduced order modeling efforts can also be very expensive
and laborious. In such situations one needs to explore the
other possible ways to get a low order model by some
identification method. One of such methods is explained
in Wattamwar et al. [2008], which uses POD and system
identification tools like N4SID algorithms, as explained in
e.g. Overschee and Moor [1996], Favoreel et al. [2000]. But
the method proposed there results in linear models which
are not sufficient for approximating the non-linearities
of large scale applications like IGMP. Moreover in the
method proposed there, the states of the linear reduced
order model have no physical meaning. These problems
have motivated us to investigate another model reduction
strategy which can approximate process non-linearity. The
identification based approach proposed in this paper can
be very useful, because it allows to use the available
large-scale first principle based detailed non-linear process
model in the form of commercial package, not just for the
purpose of computationally extremely efficient dynamic



process analysis but also for the purpose of design of the
process controller and optimization. Therefore the method
proposed here helps in minimizing the dependence on the
expensive testing of the plant required for the controller
design.

This paper is organized as follows. The overall method-
ology involving necessary tools from system theory like
POD, a black-box type of system identification for linear
and non-linear polynomial system is explained in section 2.
The application/motivation is IGMP and is explained in
the section 3. Some results of the proposed method on the
motivation problem are presented in the section 4 which
is followed by future work and references.

2. THEORY BACKGROUND AND METHODOLOGY

One of the most promising and successful techniques
for an efficient reduction of large-scale nonlinear systems
in fluid dynamics is the method of Proper Orthogonal
Decompositions (POD) also known as the Karhunen-Loève
method Holmes et al. [1996]. The method is based on
the observation that flow characteristics reveal coherent
structures or patterns in many processes in fluid dynamics.
This has led to the idea that the solutions of model
equations may be approximated by considering a small
number of dominant coherent structures (called modes
or basis) that are inferred in an empirical manner from
measurements or simulated data. Given an ensemble of K
measurements Tk(·), k = 1, . . . ,K with each measurement
defined on some spatial domain Ω, the POD method
amounts to assuming that each observation Tk belongs
to a Hilbert space H of functions defined on Ω. With
the inner product defined on H, it then makes sense to
call a collection {ϕj}∞j=1 an orthonormal basis of H if any
element, say T ∈ H, admits a representation

T(z) =
∞∑

j=1

ajϕj(z), z ∈ Ω (1)

Here, the aj ’s are referred to as the modal coefficients(MC )
and the ϕj ’s are the modes or basis of the expansion. The
truncated expansion

Tn(z) =
n∑

j=1

ajϕj(z), z ∈ Ω (2)

causes an approximation error ‖T − Tn‖ in the norm of
the Hilbert space. We will call {ϕj}∞j=1 a POD basis of H
whenever it is an orthonormal basis of H for which the
total approximation error in some norm over the complete
ensemble is

K∑
k=1

‖Tk −Tk
n‖ (3)

is minimal for all truncation levels n. This is an empirical
basis in the sense that every POD basis depends on the
data ensemble. Using variational calculus, the solution to
this optimization problem amounts to finding the nor-
malized eigenfunctions ϕj ∈ H of a positive semi-definite
operator R : H → H that is defined as

〈ψ1, Rψ2〉 :=
1
K

K∑
k=1

〈ψ1,Tk〉 · 〈ψ2,Tk〉 (4)

with ψ1, ψ2 ∈ H. R is well defined in this manner and
corresponds to a positive semi-definite matrix whenever H
is finite dimensional. In that case, a POD basis is obtained
from the normalized eigenvectors of R, see e.g. Astrid
[2004].

The POD modal coefficients ’aj ’ are then obtained by the
projection of the ensemble on the span of dominant POD
modal coefficients as given by:

aj(k) = 〈ϕj(z),Tn(k, z)〉 (5)

Subsequently, a Galerkin projection is used to obtain the
reduced order model as follows. Suppose that the system
is governed by a PDE of the form

∂Tn

∂t
= A(Tn) + B(u) + F(Tn, u, d) (6)

and let Hn denote an n dimensional subspace of H
and let Pn : H → Hn and In : Hn → H denote
the canonical projection and canonical injection maps or
operators respectively. The injection map reconstruct the
full scale model from reduced space. The reduced model is
then given by

Pn
∂Tn

∂t
= PnA(Tn) + PnB(u) + PnF(Tn, u, d) (7)

where observation Tn(·, k) = Tn(k) ∈ Hn = PnH ∀k, A
is the spatial operator for convection and diffusion, and is
of linear nature B defines input matrix and F is nonlinear
source term. In the specific case of a POD basis, the
finite dimensional subspace Pn = span{ϕj}, j = 1, . . . , n
where the ϕj ’s denote POD basis functions. In that case
eq. (6) becomes an ordinary differential equation in the
coefficients aj(k) in the expansion of Tn as eq. (8) and
eq. (9)
∂〈Pn,Tn〉

∂t
= A〈Pn,Tn〉+ B〈Pn, u〉+ PnF(Tn, u, d) (8)

or equivalently,
dan

dt
= Anan + Bnu+ PnF(P−1

n an, u, d) (9)

Eq. (9) is reduced order model (ROM) and the POD modal
coefficients ’aj ’ are the states of the ROM. Therefore
the POD MC can also be viewed as dominant temporal
patterns/dynamics along which system evolves. The opti-
mization problem to obtain POD basis as mentioned above
in eq. (4) equivalently can also be solved for the ensem-
ble Tn as a ‘Singular Value Decomposition’ SVD which
then gives POD basis function (spatial patterns) in the
form of left singular vectors and POD modal coefficients
(temporal patterns as singular values multiplied by the
right singular vectors. From the property of SVD these
patterns are arranged as per their importance, i.e. the
first POD basis corresponds to the direction of maximum
energy. Usually a tolerance criterion based on amount of
energy captured in the reduced model is used to decide
the order or the reduced model, i.e. the span of POD basis
as defined above in Hn. The criterion is usually called
projection energy and is given as below:

Ptol =
∑r

k=1 λk∑n
k=1 λk

(10)

where λk is the ‘kth’ eigenvalue of the correlation operator
as defined in eq. (4), ‘r’ is order of ROM and ‘n’ is order of
finite dimensional full scale model. The first two terms of



eq. (9) on RHS are linear and the third non-linear term do
not appear for the systems defined by linear PDEs. For the
system governed by linear PDEs the differential equation
eq. (9) can be transformed in equivalent discrete time form
as:

an(k + 1) = Adan(k) +Bdu(k) (11)

At this point one can observe that given the ensemble Tn

one can obtain POD basis and corresponding MC, and
from this knowledge of MC and system inputs ‘u’ the sys-
tem parameters ‘Ad’ and ‘Bd’ can be easily estimated by
ordinary least square (OLS) estimation techniques. If one
now think of the possible approach to identify the system
parameters when the governing equations are non-linear
like the one in eq. (9), one needs then some approximation
for non-linear terms. There are many possible ways to
approximate the non-linearities like black-box, neural net,
fuzzy logic, grey box, e.g. see Romijn et al. [2008] and
many other input-output based fit of Weiner-Hammerstein
type. It is also well known that Taylor series expansion
of a nonlinear function can be a good approximation of
a non-linear function. The use of Taylor Series is not
considered in usual input-output identification methods
due to the lack of state information. But as explained
earlier in the case of model reduction, the states of ROM
are accessible and therefore one can make use of Taylor
series to approximate the non-linear terms. If one is in-
terested in approximating the original full scale non-linear
model then one need to include the Jacobian terms of the
Taylor series in ROM. But if the approximation by linear
system is not sufficient enough then one must consider the
Hessian and other higher terms from the Taylor series.
Note that the inclusion of the Hessian terms results into
polynomial form of the identified ROM. Replacing the
non-linear part by a polynomial system for multi-variable
system is cumbersome due to the involvement of the tensor
algebra (Hessian computation). For this reason we will
briefly explain what does a Taylor series expansion for a
scalar valued function means and then we will explain it
for the vector valued function, and its implementation for
the computation purpose. Another interesting feature of he
polynomial systems is that they are promising candidates
and have structure better suited for analytical analysis and
for extension of the notions from linear system theory, e.g.
see Ebenbauer et al. [2005]. For a scalar valued function,

ẋ = f (x) , where f : R → R & f(x∗) = 0 (12)

Taylor series expansion in x as a nominal variable and x̃
as a deviation variable, x̃ = x− x∗

˙̃x = f (x∗) + f
′
(x∗) x̃+ (1/2!) f

′′
(x∗) x̃2 + ... (13)

where, f
′
(x) = J (x) : R → R, system jacobian operator

f
′′
(x) = H(x) : R → R, system Hessian operator.

For a vector valued function f : Rn → Rn,

the first derivative is defined as a map: f
′

: Rn →
L(Rn,Rn), and when the first derivative is evaluated at
x∗ ∈ Rn then f

′
(x∗) ∈ L(Rn,Rn), i.e. f

′
(x∗) is a linear

operator, and when it acts on the ‘n’ dimensional vector ‘x’
then its image is ∈ Rn, i.e. f ′(x∗)(x) ∈ Rn. This lets us to
understand first derivative as a map, f ′ : Rn ∗ Rn → Rn.
As f ′(x∗) is constant term (fixed operator), we better write
it as [f ′(x∗)](x) ∈ Rn.

We usually refer the above operator as system Jacobian
matrix as, [f ′(x∗)] := J (x∗).

The operator defined in the last expression can be written
in terms of partial derivatives as,

[f ′(x∗)] (x) =


∂f1
∂x1

(x∗) . . .
∂f1
∂xn

(x∗)

.
∂fn

∂x1
(x∗). . .

∂fn

∂xn
(x∗)



x1

.

.

.
xn

 (14)

equivalently,

[f
′
(x∗)](x) =


n∑

k=1

∂f1(x∗)
∂xk

xk

.
n∑

k=1

∂fn(x∗)
∂xk

xk

 (15)

The same procedure is repeated for computing the second
derivative of the function,

f ′′ : Rn ∗ Rn ∗ Rn → Rn, i.e.
f ′′ : Rn → L(Rn,L(Rn,Rn)), i.e.
f ′′(x∗) ∈ L(Rn,L(Rn,Rn)), i.e.
f ′′(x∗)(x) ∈ L(Rn,Rn), i.e.
f ′′(x∗)(x)(x) ∈ Rn, i.e. [f ′′(x∗)](x, x) ∈ Rn

[f ′′(x∗)] := H(x∗), system Hessian operator.

It is clear from the above discussions that the Hessian
operator is a tensor with argument from two domains
while its codomain remains the same that of the Jacobian
operator. The linearity of Hessian operator allows us to
compute it like the Jacobian operator as in (15), but now
with one more argument as:

[f
′′

(x∗)](x, x) =



n∑
k=1

n∑
j=1

∂2f1(x∗)
∂xk∂xj

xkxj

.
n∑

k=1

n∑
j=1

∂2fn(x∗)
∂xk∂xj

xkxj

 (16)

the above expression can be written as:

[f
′′

(x∗)](x, x) = A1(x⊗ x) (17)
where, (x⊗ x) is the Kroneckar product.

The complete simplification procedure mentioned above
is aimed to express, f ′′ : Rn → L(Rn,L(Rn,Rn)) as,
f ′′ : Rn → L(Rn2

,Rn). This is possible due to the notion
of the linearity of the tensor operator.

From the discussion above, a nonlinear equation of the
form ẋ = f(x, u) can be expanded in Taylor series as
in (13) which can be approximated by a polynomial of
the form,

ẋ =Ax(t) +Bu(t) +A1(x(t)⊗ x(t))
+B1(u(t)⊗ u(t)) +Q(x(t)⊗ u(t)) (18)

Where, A1, B1, Q are equivalent Hessian operators and
x ∈ Rn, u ∈ Rl, A ∈ Rn∗n, B ∈ Rn∗l, A1 ∈ R(n∗n)∗n,
B1 ∈ R(l∗l)∗n, Q ∈ R(l∗n)∗n and ⊗ is the Kronecker
products.

These methodological developments are based on CFD
software as plant model, so for the moment we are not
considering the output equations here.



Equivalent discrete form of Eq. (18) can be written as:
x(k + 1) =Adx(k) +Bdu(k) +A1d(x(k)⊗ x(k))

+B1d(u(k)⊗ u(t)) +Qd(x(k)⊗ u(k)) (19)
As we are considering the discrete identification problem
here, for the convenience in remaining part of the paper
we have dropped the superscript ‘d’ from eq. (19).

Please note that the polynomial equation (19) is non-linear
in states and inputs but it is linear in all the system
parameters (equivalent Jacobian and Hessian terms). This
is a big advantage. Because if the states and inputs
are known then by fixing the above polynomial model
structure we can estimate the system parameters by Least
Square parameter Estimation (LSE) techniques.

Coming back to the problem of the reduced model identi-
fication, the states in the (18) can be seen as POD modal
coefficients (MC) and then linear and non-linear part in (9)
can be written as (18).

Another interesting feature of the proposed framework is
that for a large scale parameter varying systems, given the
knowledge of the variation of the time varying parameter,
similar approach as proposed above can be used. But the
uncertain parameter should then be treated like process
inputs and therefore the corresponding process snapshots
due to the parameter excitation need to be included while
computing the POD basis functions and MCs. As per the
knowledge of the author, this approach of model reduc-
tion for very large scale process under process parameter
uncertainty is never studied in past.

Once the MC and POD basis are obtained from the full
scale CFD model as mentioned earlier, then by using
the tensors decomposition as in eq.(16) for eq.(18), the
problem of polynomial model parameter estimation is an
ordinary least square estimation( OLS ) problem and if we
define,
ξk := col (x(k), u(k), (x(k)⊗ x(k)), (x(k)⊗ u(k)), (u(k)⊗ u(k)))

(20)
then from (19), xk+1 ' Θ ξk Where, Θ = [ABA1B1Q]
and define the parameter estimation error at each time
instance as

ek+1 = xk+1 −Θ ξk (21)
similarly the estimation error that is minimized by LSE
method over the complete simulation horizon ‘N’ is

E := [x1 . . . xN ]−Θ[ξ0 . . . ξN−1] (22)

equivalently, E := X −ΘΞ
where, N is the number of samples and ,
X ∈ Rn∗(N−1), Ξ ∈ R(n+l+n∗n+l∗l+n∗l)∗(N−1) and Θ ∈
Rn∗(n+l+n∗n+l∗l+n∗l)

The least square solution will be
Θ = X ΞT (Ξ ΞT )−1 (23)

Please make a note here that the system parameter vector
Θ is rank deficient due to the involved Kronecker product.
Nevertheless, there are some simple ways to estimate the
parameters for rank deficient problem as well. We simply
used Matlab routines for our case.

The complete CFD spatio-temporal information can be
reconstructed by projecting back the solution of reduced
model (19) on the span of dominant POD basis Pn. The
reconstructed CFD state space will be:

T̃n(k) = In an(k) = P−1
n an(k), or equivalently (24)

T̃n(k) =
r∑

j=1

φ−1
j aj(k) (25)

As this study is based on software simulations, the outputs
can be chosen as per the user choice. In our study we
have decided them close to the real life situation. The
constructed output equations can be approximated as:

ỹ(k) = C T̃n(k) (26)
Note that the original Navier-Stokes equation (non-linear
PDEs) modeled in CFD software are continuous in time
and in the approach presented above we have proposed
to approximate them by using discrete time linear or
polynomial type non-linear equations.
The error involved here will be the sum of projection
error and the statistical fit in the identification step to
the few selected POD modal coefficients corresponding to
the maximum energy content as per eq. (10).

One of the serious drawbacks of this approach is that the
OLS estimation method for as described earlier can easily
lead to an unstable system, although the original system
could be a stable one. Notion of stability is discussed here
as divergence of simulation results. We think one of the
possible explanation could be the small data set, another
could be that the POD MC obtained from SVD are
right singular vectors and they are orthonormal vectors.
These Orthonormal basis functions (MC) are considered as
signals while they are being fitted by using a polynomial
model. The orthogonality of vectors is equivalent to the
property of uncorrelatedness of signals. Or, orthogonality
of MC in terms of the inner product is

< ai, aj >

{
= 1, i = j
= 0, i 6= j

(27)

To overcome this drawback of spurious instability one
might like to try some other parameter estimation method
or to impose the stability in the proposed polynomial
model by using some regularization trick. But usually
regularization leads to bad performance of the identified
model. Moreover regularization if not carried out smartly
can lead to completely different dynamics of the identified
model. Typically in subspace state space linear model
identification techniques, regularization is imposed in the
form of forcing the eigenvalues of the identified model to
lie in the unit circle, e.g. see Gestel et al. [2000].
In this paper we have not solved the stability issue as the
research in polynomial systems is still relatively new and
imposing the stability in identification procedure will need
considerable amount of further efforts.

3. MOTIVATION: GLASS MANUFACTURING

This section describes the motivating example of Industrial
Glass Manufacturing Process, IGMP. IGMP is usually
carried out in large furnaces which are very well designed
in order to have a desired laminar flow pattern of the glass.
A 2D view of a typical furnace is shown in figure 1. The
flow pattern of glass determines the residence time of the
glass in the melting furnace which in turn determines the
quality of the glass produced. The process is an example
of very large scale integrated systems. Most of the process
variables like temperature, velocity, pressure, viscosity are



Fig. 1. Glass Manufacturing Furnace

interacting with each other. Due to this interacting nature
the control of the furnace has to be done carefully. Usually
pull rate (production rate), heat input and pressure valve
positions are some of the control variables. Whereas vari-
ables of interest are temperature distribution and velocity
profiles in the furnace. The product quality is determined
by these two factors. The temperature maintained inside
the furnace varies between 1400− 1650 0C. The glass raw
material enters from the left side (inlet) in the form of
a batch blanket, it is melted by applying heat from the
top. After circulating through the glass furnace for many
hours glass passes through the throat and then leaves
via the outlet. Based on the process operation there are
roughly three regimes - glass melting, fining to remove high
concentration of dissolved gases from the molten glass and
refining to remove all remaining undissolved gases from
the glass. The IGMP shows large variation in the time
constants, from minutes to days. The transport of physical
quantities in IGMP can be approximated with reasonable
accuracy by modeling it by a set of nonlinear Navier-Stokes
equations, see Huisman [2005]. There are many different
types of glass furnaces and many different ways to manu-
facture glass depending on the type of glass required. Most
of the glass manufacturing process dynamics are series
combination of Continuous Stirrer Tank Reactor (CSTR)
and Plug Flow Reactor (PFR). Some more details about
mathematical modeling of glass can be found in Huisman
[2005], Patankar [1980], Post [1988].

Due to very high process temperature and due to the
viscous nature of glass, the glass furnace is a hostile
environment for sensor systems. Sensors are largely limited
to temperature measurements in the bottom refractory of
the melting furnace. As 3 dimensional glass furnace model
easily consist of 104 − 106 finite elements, simulating its
steady and/or dynamic behavior takes days for a normal
configured PC and therefore it becomes very difficult to
generate and process sufficient data that can be used to
develop a model reduction method. For this reason we are
using an approximate 2D glass furnace which mimics the
vertical cross section along the length of 3D glass furnace
and has only 2 grids cells in width direction.

Currently, apart from modeling the process non-linearity
in the reduced order model, we are also trying to model
the very slow geometric changes that take place in real 3D
furnace in the form of throat or dam wall corrosion, see fig-
ure 1. This corrosion results into back-flow of molten glass
from the refining zone to the fining zone. Such back-flow

behavior causes undesired changes in the temperature dis-
tribution in the furnace which ultimately leads to economic
losses. In this paper we are not addressing the corrosion
problem but interested readers can refer Wattamwar et al.
[2008] and a Linear Parameter Varying (LPV ) system
approximation in Wattamwar et al. [2009].

4. RESULTS AND DISCUSSION

In this paper a 2D benchmark CFD model of the original
process is considered. The full scale CFD model has 3000
cells. It has many variables like temperature, velocity,
concentration, pressure, etc. in each grid cell. Although
most of the variables are interconnected, for the study
here we have considered only temperature as variable of
the interest. Therefore the order of the full scale model
is 3000. From the method explained in the section 2 we
have obtained a fourth order linear and non-linear polyno-
mial model. The choice of fourth order approximation is
decided based on the stability issue of polynomial model.
Approximation order larger than four leads to an unstable
ROM. For the linear model as well, there is not much
improvement in the parameter fit above fourth order. This
means that for the linear reduced model larger than fourth
order there is no way to improve its performance merely
by increasing its order, and there is need for non-linear
reduced order model. The four POD modal coefficients
corresponding to the order approximately capture 80%
of the total projection energy. Usually it is desired to
capture approximately 99% of the energy of the full model.
But due to the stability limitation we can not satisfy this
requirement.
The input considered for the identification purpose is pull-
rate(feed) in terms of tons/day, which varies 5% around
the nominal value in the form of +/- steps superimposed
by PRBS signal. This is done to excite the slow and fast
dynamics. The simulation horizon is 120 hrs and sampling
time is 16 mins, therefore we have 450 snapshots. Like most
of the POD related methods, this identification process is
very sensitive to the type of input excitation signal. For
such complex process it is also very important to know
what non-linearity the identification input signal excites. If
one excites soft non-linearities for such a complex process
then one can expect to get a better and stable polynomial
model which would fit more POD MC.
Figure 2 shows the identification result for both linear and
polynomial models as proposed in this paper. Figure 3
shows zoomed version of the faster dynamics from the
figure 2. Plot shows the result for four outputs which are
temperature at the bottom of the four main zones of the
glass, viz. Melting, Fining, Throat and Refining section.
The sensors are assumed to be placed at the bottom of the
tank. This is close to the real life situation. The readers
can refer to the figure 1 for sensor locations. S1 to S9 are
the sensors in the figure. Plot shows that the both the
models approximates the overall trend very well, but the
linear model fails to capture the PRBS signal dynamics
precisely compared to the polynomial model.
Figure 4 shows the performance of the two models for
the validation signal, which is a step input on the raw-
material feed rate. Plot shows that both models follows
the trend very well, but both models do not match the
time constant and the final gain exactly. This is due to
the two reasons. First, this is a distributed system and the



excitation signal used for the identification was designed
based on the average time constant of the whole glass tank
and it was not designed based on only the four location
shown in the figure. Reason for the mismatch of the final
gain is that these ROM could not capture 99% of the
projection energy of the full scale model. One can expect
smaller offset if the approximation order of the reduced
model is higher. Unfortunately, as explained earlier in 2,
approximation order can not be increased more than 4th

for the polynomial form of ROM. Nevertheless, for the size
and involved complexity in GMP, even the current results
seems to be very interesting.

Fig. 2. Model Identification

Fig. 3. Model Id: Zoom

Fig. 4. Model Validation

5. CONCLUSION AND FUTURE RESEARCH

In this paper we have proposed a new model reduction
method and its application on large scale industrial appli-

cation. The proposed method is promising and suited es-
pecially for the very large scale processes where complexity
reduction by using merely physical insight is not possible.
The proposed method is also well formulated in technical
aspects and with further improvements in imposing the
stability in the identification of polynomial system could
make this method of great potential.

We want to explore following topics in near future which
has never/rarely been explored in literature like:
1. To investigate the possibility of imposing the stability
in the identification process for the polynomial systems.
2. It is also possible to identify multiple linear/polynomial
ROM at different working points by the method explained
in this paper and construct a non-linear LPV ROM like
the one described in Wattamwar et al. [2009].
3. Observer and controller design for polynomial ROM.
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