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Abstract: This work aims a stochastic approach for the calculation of robust anti-solvent addition policies for controlling the 
mean crystal size (MCS) in fed-batch crystallization operations. The proposed strategy is based-on a non-structured population 
balance where uncertainties associated with the start-up condition and random fluctuations along the fed-batch operation can 
be taken into account in a very natural fashion. We include and quantify the effect of the uncertainties by embedding a 
deterministic crystal growth model into a Fokker-Planck equation (FPE) resulting in a stochastic model for the MCS dynamics. 
This approach uses the Generalized Logistic equation (GLE) that has an adequate mathematical structure that suits the dynamic 
characteristic of the crystal growth. Thus, the numerical solution of the FPE provides the most likely MCS evolution for a 
given anti-solvent flow-rate. The effect of the anti-solvent is incorporated into the parameters of the FPE. The parameters of 
the FPE are computed as linear piece-wise interpolating functions of the anti-solvent flow-rate. The strategy uses a PID-like 
regulator in closed-loop fashion with the FPE to compute the anti-solvent addition flow-rates for different set-point targets in 
the MCS. In order to validate the stochastic model and assess the merits of the proposed strategy, the crystallization of sodium 
chloride in water using ethanol as anti-solvent is performed in a bench-scale fed-batch crystallizer. The implementation of the 
calculated anti-solvent policies resulted in a good control of the MCS despite modelling mismatch and uncertainties present 
during the crystallization operation.  
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1. INTRODUCTION 

The design of chemical plants endeavors to build equipment 
that preferably content hazards and make possible the 
transformation and separation of materials. It also attempts to 
harness the impact of apparently disordered and erratic 
phenomena (e.g. turbulent flow, pressure and temperature 
fluctuations, measurement noise, etc.). Fluctuations are a very 
common element in a large number of chemical, biological 
and physical phenomena. Practically, all systems are 
subjected to complicated external or internal influences that 
are not fully known and that are often termed noise or 
fluctuations. However, if a sufficiently long record of noisy 
measurement is analyzed, it may admit a statistical 
description. This means that it is possible to estimate the 
probability or likelihood that the process variable will attain 
in some specified range of values (Feigenbaum, 1980; 
Risken, 1984). 

The study of stochastic system as the Brownian motion 
resulted in the Fokker-Planck equation (FPE). The FPE is just 
an equation of motion for the distribution function of 
fluctuating macroscopic variables. The FPE deals with those 
fluctuations of systems which stem from many tiny 
disturbances, each of which changes the variables of the 
system in an unpredictable but small way. The FPE provides 
a powerful tool with which the effects of fluctuations close to 
transition points can be adequately treated and that the 
approaches based on FPE are superior to other approaches 

based on Langevin equations (LE). The FPE plays an 
important role in chemical and biological processes that 
involve noise. 

For many practical applications it is required to have 
simplified models that group the complexity behind a natural 
phenomenon and its interactions with its surroundings. For a 
dynamic system, it means of a set of deterministic differential 
equations with semi-empirical parameters. When studying 
chemical processes, these models are the core element for the 
design of all model-based control and optimization strategies. 
However, extra care is needed to take into account the no 
modeled dynamics and unknown exogenous disturbances 
acting on the process. The FPE is an interesting approach to 
introduce the robustness feature to the design of prediction, 
control and optimization tools. 

This work describes a novel stochastic approach for the 
robust prediction of the mean crystal size (MCS) in a bench-
scale fed-batch crystallization unit where anti-solvent is 
added to speed-up the crystal formation process. The crystal 
growth is modeled by a classic logistic equation of common 
use in theoretical ecology (May and McLean, 2007; Grosso et 
al., 2007). In a different fashion, the use of FPE for a 
monomer particle growth can be found in the literature 
(Matsoukas and Yulan, 2006). Unknown dynamics, internal 
and external fluctuations and sensitivity to initial conditions 
can be taken into account by embedding the logistic equation 
in the FPE. 



 
 

     

 

2. Mean Crystal Size Estimation for an Anti-Solvent 
Aided Crystallization Process 

Crystallization is a physical process for solid-liquid 
separation where the solid (solute) is dissolved in the solvent 
(liquid). The driving force in crystal formation is the super-
saturation. The super-saturation condition establishes the 
thermodynamic equilibrium for the solid-liquid separation 
and it can be affected by cooling and evaporation. The super-
saturation can be also induced by addition of precipitant or 
anti-solvent to the solution. The anti-solvent reduces the 
solubility of the solute in the original solvent resulting in 
super-saturation. The anti-solvent aided crystallization is an 
advantageous technique of separation where the solute is 
highly soluble or heat sensitive. 

2.1 Mathematical Model 

The development of rigorous mathematical models 
describing the dynamic of crystal growth in crystallization 
processes are based-on population balances. The idea of 
population balances has been widely used in theoretical 
ecology and extended to the modeling of particulate systems 
in chemical engineering. The population balances can be 
either structured or unstructured models.  
At the core of the structured population dynamics, the 
number of crystals in a fed-batch crystallizer is increased by 
nucleation and decreased by dissolution or breakage. 
Structured population balances models provide detailed 
information regarding the crystal size distribution in the 
crystallization unit. However, they demand a great deal of 
knowledge on the complex thermodynamic associated with 
the solute and solvent properties to be adequately 
incorporated in the population balances. Some important 
contributions in this subject have been reported in the 
literature (Worlitschek and Mazzotti, 2004; Nagy et al. 2007; 
Nowee et al., 2007). 

Here, we introduce a simple unstructured population model, 
where the crystals are classified by their size, L. The growth 
of each individual crystal is supposed to be independent by 
the other crystals and is governed by the same deterministic 
model. In order to take into account the growth fluctuations 
and the unknown dynamics not captured by the deterministic 
term, a random component can be introduced (Gelb, 1988). 
The stochastic model can thus be written as a Langevin 
equation of the following type: 

)t();L(fL ηϑ +=�     (1) 

In Equation 1, );L(f ϑ  is the expected rate of growth of L  

(the deterministic model introduced below), L  is the size of 
the single crystal, t  is the time, ϑ     is the vector parameter 
defined in the model, and )t(η is a random term assumed as 

Gaussian additive white noise: 
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Where D  is the additive noise intensity. Equation 1 implies 
that the crystal size L  behaves as a random variable, 
characterized by a certain probability density function (PDF) 

)t,L(w  depending on the state variables of the system, i.e. 

the size L  and time t . Incidentally, it should be noted that 
one can regard the probability density )t,L(w as the relative 

ratio of crystals having a given dimension L , in the limit of 
infinite observations. Thus, from a practical point of view, it 
coincides with the Particle Size Distribution experimentally 
observed. 

The new random variable thus can be described in terms of 
its probability density distribution, )t,L(w , at any instant of 

time t  and should follow the linear Fokker-Planck Equation, 
FPE: 

w)u(D]w))u(;L(f[w LLLt ∂=∂+∂ ϑ  

 (3) 

along with the boundary conditions: 

0)t,0(w)u(D)t,0(w)0(f L =∂−   (4a) 

0)t,(wL =∞∂   (4b) 

The reflecting boundary condition in Equation 4a ensures that 
the elements of the population will never assume negative 
values, whereas Equation 4b ensures the decay condition on 

)t,L(w as L goes to infinity, for any time. 

The diffusion coefficient D determines the random motion of 
the variable L that takes into account the fluctuation in the 
particle growth process (Randolph and Larson, 1988; Olesen 
et al, 2005). 

Regarding the deterministic part of the model, our purpose is 
to choose a model as simple as possible, with a parsimonious 
number of adjustable parameters. To this end, the 
Generalized Logistic equation (Tsoularis and Wallace, 2002), 
is possibly the best-known simple sigmoidal asymptotic 
function used to describe the time dependence of growth 
processes in an unstructured fashion: 
 

γβαϑ ])KL(1[Lr);L(f −=   (5) 

In Equation 4, L is the size of the single crystal, the crystal 
growth rate r  and the equilibrium mean crystal size K  are 
considered constant for each experimental condition and they 
are supposed to be only dependent on the anti-solvent flow 
rate. Moreover, α , β   and γ  are positive real numbers that 

regulate the shape of the growing curve. Hereafter we will 
consider the simple case with 1=== γβα . With these 

assumptions, the present growth model can be regarded as the 
simplest model taking into account mild nonlinearities. In 
spite of this simplicity, this model provides the main 
qualitative features of a typical growth process: the growth 
follows a linear law at low crystal size values and saturates at 
a higher equilibrium value. 

Finally the evolution in time of the probability density is 
described in terms of a linear, partial differential equation 
depending on the parameters r  (linear Malthusian growth 



 
 

     

 

rate), K (crystal size asymptotic value) and D  (diffusivity), 
that are assumed to depend on the feeding conditions. This 
functionality is achieved by linear interpolation of the 
parameters as a function of the different anti-solvent flow 
rates. This parameterization with the anti-solvent flow rate 
allows the merger of multiple models for different operating 
regimes to a single model in the all operating envelop. 

It is worth to stress out that the synergy between unstructured 
population balances and the Fokker-Planck equation results 
in structured-like population balances. 

3. Experimental Validation 

 
For parameter estimation and model validation purposes, 
three different anti-solvent flow-rates were implemented. All 
experiments were carried in a bench scale crystallizer which 
was kept at a fix temperature. Only purified water, regent 
grade sodium chloride (99.5%) and absolute ethanol (99.9%) 
were used. The experimental set-up and procedure are 
described as follows. 
 
3.1 Experimental Set-up 
 
The experimental rig is made up of one litre glass, cylindrical 
crystallizer submerged in a temperature controlled bath. The 
temperature in the bath is measured using an RTD probe 
which is wired up to a slave temperature control system 
capable of heating and cooling. In similar fashion, the anti-
solvent addition is carried out by a slave peristaltic pump. 
The master control is performed by a Distributed Control 
System (Honeywell® DCS) which is wired up to the slave 
temperature and flow-rate controllers respectively. The 
desired set-points are calculated at the master controller. All 
relevant process variables are archived in the DCS system.  In 
addition there is a particle size analyzer (Mastersizer® 2000) 
for the determination of the mean and crystal size distribution 
along the experiment. The mean crystal sizes and their 
distribution are also verified by visual inspection using a 
digital camera mounted in a microscope. The captured 
images are then processed by means of sizing computer 
software (Amscope®). 
 
3.2 Experimental Procedure 
 
At the start-up condition, the crystallizer is loaded with an 
aqueous solution of NaCl  made up of g34 of NaCl in g100  

of water. The temperature is kept at C25� . Then ethanol was 
added to the aqueous NaCl solution using a calibrated 
peristaltic pump. Along the operation, mL5 samples were 

taken in an infrequent fashion. The samples are then 
measured off-line using the particle size analyzer. Also, part 
of the sample was filtered over filter paper and then dried in 
an oven at C50�  for farther visual inspection.  

 

 

3.3 Parameter Estimation 

The three parameters for the Fokker-Planck equation were 
estimated based-on experimental data obtained by monitoring 
the mean size distribution for different flow rates of anti-
solvent. For every operating condition, that is, anti-solvent 
flow rate, a set of parameters }D,K,r{=ϑ is estimated using a 

nonlinear least-square algorithm. The values for the estimated 
parameters are given in the Table 1. 

 

u  (mL/min) r (1/h) K  (μm) D (μm2 /h) 
0.82 1.83 131.51 568.12 
1.64 1.15 132.03 287.48 
3.23 62.58 105.45 291.27 

 
Table 1: Estimated parameters for the different operating 
conditions for the constant values 1=α , 1=β and 1=γ . 

 
3.4 Model Validation 
 
In order to assess the prediction capabilities of the 
mathematical model based on the Fokker-Planck equation, 
the model predictions are compared with the reported 
experimental data within a valid range for the different 
operating conditions. It implies that the parameterization of 
the crystal growth rate, the free crystal size and the diffusivity 
coefficient with the anti-solvent are only reliable within the 
experimental range. The numerical solution of the 
mathematical model based on the Fokker-Planck equation 
requires an initial condition for the crystal size distribution. 
However, the initial condition requires information on crystal 
sizing. Observing the experimental data (Figure 1), the first 
available data value is at h1.0t0 =  (new origin), where the 

mean crystal size is around m92L0 μ= for anti-solvent flow 

rate. In order to take into account the uncertainty associated 
with this condition, a standard deviation m300 μσ =  typical 

for this measurement is then assumed. Once the initial and 
boundary conditions are posed, the partial differential 
equation is then solved using a collocation method. The 
number of collocation knots 300n = and they are chosen as 
the roots of the Chebyshev polynomial of degree “ n ” where 
the solution domain is ],0[L �∈ with m210 μ=� a sufficient 

high value. Note that a different set of data values were used 
for parameter estimation. Thus, the numerical solution of the 
Fokker-Planck equation (2-3) by the collocation methods 
provides the predictions for the mean crystal size by 
computing the first moment of the distribution (see Figure 1). 
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Figure 1: Model validation of the mean crystal size for 
different anti-solvent flow rates. Experimental results at low 
(*), medium (+) and high (�) anti-solvent flow rates. The 
three-parameter model based-on the Fokker-Planck equation 
predicts the dynamic behaviour of the mean crystal size 
growth for all anti-solvent flow rates (solid lines). 

4. Calculation of the Robust Anti-Solvent Flow Rate 
Profile 

4.1 Problem Formulation 

Let us consider without loss of generality that the mean 
crystal size growth dynamics in an anti-solvent aided process 
is given by the following forced deterministic equation: 

)u,(F LL μμ =�     (6) 

Where the forcing input (anti-solvent flow rate) is 
constrained, that is, ]u,u[u +−∈ . We say that the solutions 

of (6) in the time interval ]t,0[t 0∈  for any input u and any 

given uncertain initial condition 0)0( ≠Lμ  generates 

trajectories which at 00 >t  lie around a nominal value 0L , 

that is, 

0t,L)t( 0000L >∀±= Δμ   (7) 

 It means that regardless what the input is, the effect of the 
uncertainty in the initial condition is propagated to another 
point )t( 0Lμ in the trajectory (7), where a nominal mean 

crystal size 
0L  is associated with an uncertainty 0Δ . It is 

advantageous since it is then possible to choose a new initial 

time origin at the point 0t , which coincides with 

experimental data value that helps to quantify the values for 

0L and
0Δ . Thus, the new initial condition at 0t is still 

uncertain but it can be characterized and incorporated to our 
mathematical description of the problem. 

The robust anti-solvent flow rate profile for the mean crystal 
size distribution is calculated using a hybrid strategy that 

requires engineering insight and process knowledge.  The 
strategy involves a piece-wise function (8), a regulator-like 
(PI) algorithm (9), and a saturation function (10). 
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From the actual starting-up condition at 0=t to a chosen 
origin 00 >t , the anti-solvent flow rate is maintained constant 

at its maximum value +u . It has been experimentally 

observed that the anti-solvent addition at the initial stage of 
the crystallization process promotes nucleation and speeds up 
the mean crystal size growth rate. Then, from time 

0tt > onwards the anti-solvent addition must be controlled in 

order to reach a desirable mean crystal size rL . It is achieved 

by using a dynamic velocity-like regulator algorithm which is 

tuned selecting arbitrary values for the constants 1κ  and 2κ . 

Since the anti-solvent flow rate is constrained, it is necessary 
to include a saturation function to limit the control action 
within its physical range. It is important to highlight that 
velocity-like regulator with initial condition 

+= u)t( 0υ introduces a bump-less transition from the 

saturation state. Also, the volume of spent anti-solvent at any 
time can be calculated using (11). The constant value “60” is 
the conversion factor for the anti-solvent flow rate from 
mL/min to mL/h. 

])([60
00 ξξ dutuV t

t�+= +   (11) 

It is important to remark that the strategy can be used either 
as a size-regulator, if the mean crystal size Lμ is a real-time 

available measurement or as tool to calculate an off-line 
robust trajectory for the anti-solvent addition. Due to its 
simplicity, this strategy can be easily implemented. 

4.2 Simulation and Experimental Validation of Anti-Solvent 
Addition Policy 

We next use numerical simulations and experimental 
validation to assess the closed loop performance of the anti-
solvent addition strategy proposed for this specific 
crystallization process. The simulation parameters are given 
in Table 2. Since the experimental data is constrained to a 
certain operating window, the calculated profile is also 
limited to this operating range. The anti-solvent addition 
strategy was tested within the validity range of the 
experimental data and targeting a medium mean crystal size. 
The initial condition is then represented as a Gaussian –like 
distribution with mean value m92L0 μ= and standard 

deviation m300 μσ =  based-on the experimental information. 



 
 

     

 

Parameter Value 
−u (mL/min) 0.82 

+u  (mL/min) 3.23 

1κ  (mL/h ·μm) 0.0052 

2κ  (mL/h2· μm) -0.0015 

0L (μm) 92.0 

0σ (μm) 30.0 

�  (μm) 210.0 

0t (h) 0.1 

tΔ (h) 0.1 

 
Table 2: Simulation parameters for the assessment of the 
anti-solvent addition strategy. 
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Figure 2: Propagation of the probability density. 

Figure 2 depicts the time evolution of the time evolution of 
the probability density function as function of time 
for m125Lr μ= . For sake of brevity only one value is 

reported here. For a set point of m125Lr μ=  (medium size), 

the crystal growth rate is alike the previous case, however the 
anti-solvent flow rate is cut down to an even lower flow rate. 
It makes clear that the transition between high and low 
concentration of anti-solvent in the solution promotes the 
crystal growth instead of the new crystal formation. 
Therefore, it results in larger crystal size. The volume of anti-
solvent added to the crystallizer for a desired mean crystal 
sizes are calculated using (11) and it is 669.48 mL for 
medium crystal size. The calculation is based on 5.0 hours of 
operation. Note that the upper and lower prediction bounds 
for the mean size distribution (Figure 3) are wider at the start-
up condition and its narrows when reaching the desired set-
point value. The steady-state crystal size distribution suggests 
that at controlled conditions it is possible to have a very 
narrow mean size distribution for a given anti-solvent 
addition policy (Figure 4). 
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Figure 3: Predicted mean crystal size and its lower and upper 
bound. 

The distribution indicates how disperse the experimental data 
is.  The observed dispersion is incorporated in the diffusivity 
coefficient of the Fokker-Planck equation. It is envisaged that 
depending on the amount and quality of the experimental 
data, the diffusivity coefficient can be clearly related with the 
crystal size distribution and predicted by this modeling 
approach.  Figure 5 shows the time evolution of the mean 
crystal size when the anti-solvent addition policy is 
implemented experimentally for a desired value of time 
evolution of the m125Lr μ= .  The quantitative growth of 

crystal size can be seen in the Figures 6a to 6c. Note the size 
scale at the corner of every picture. 
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Figure 4: Anti-solvent addition policy for a desired mean 
crystal size of m125Lr μ= . 
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Figure 5: Mean crystal size evolution when the anti-solvent 
addition policy is implemented. 

 



 
 

     

 

5. CONCLUSIONS 

The hybrid strategy of using the Fokker-Planck Equation 
(FPE) and the PI-like regulator for the calculation of the anti-
solvent addition policy has proved to be simple and still a 
powerful way to control the mean crystal size in a 
crystallization operation. It is envisaged that the FPE is a 
rather useful fashion to study systems with uncertain initial 
condition in dynamic systems. The initial uncertainty can be 
quantified and naturally included in the structure of the 
solution. Future work will be devoted to exploit the FPE 
approach for the determination of the mean crystal size and 
its distribution in cooling and anti-solvent aided 
crystallization. 

 

 
 
Figure 6.a  NaCl  crystals at h16.0t =  

 

 
 
Figure 6.b NaCl  crystals at h1t =  

 

 
 
Figure 6.c NaCl  crystals at h2t =  
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