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Abstract: In this paper, a novel application of state estimation in environmental engineering
is presented. Filtering techniques including moving horizon estimator (MHE) and extended
Kalman filter (EKF) are used for early concentration estimation of toxic agents existing
in water supply. The purpose is to integrate the filtering techniques with an early warning
system enabling an early detection of the presence of toxicants in the water supply system and
quantifying their concentrations. The estimation is based on dynamic measurements generated
by a real-time cell electronic sensor (RT-CES) and cytotoxicity dynamic models.
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1. INTRODUCTION

Drinking water may be contaminated by a range of
chemical, microbial and physical hazards that could pose
risks to health if they are present at high levels. Examples
of chemical hazards include mercury, chromium, arsenic,
etc. The sources of these toxicants differ with respect to
the toxicant. Mercury for instance, occurs as a result of
both natural (volcanic, forest fires and oceanic releases)
and anthropogenic sources (mining, smelting and other
industrial activities) in our environment as mentioned by
Wang et al. (2004).

The effects of toxicants on the human cells are referred to
as cytotoxicity. In other words, cytotoxicity is the charac-
teristic of being toxic to living cells, including cell killing,
cell lysis and certain cellular pathological changes, such
as cellular morphological change and adhesion change as
reported in Xing et al. (2005). Therefore, citizens must be
alerted as early as possible when water is contaminated.
For this purpose, an early warning system is necessary
for detection of any sudden deterioration in the quality
of water supply. An efficient detection must include the
ability of an early determination of the presence of a toxi-
cant at low concentration. Thus, our main objective in this
paper is to use filtering techniques, such as moving horizon
estimation (MHE) and extended Kalman filter (EKF) to
determine on-line the concentration of such a toxicant
in water supply. To achieve this purpose, mathematical
modeling and real-time measurements are necessary. Two
mathematical models have been developed and validated
by Huang and Xing (2006) to predict cell toxicity re-
sponse to mercury (II) chloride and sodium dichromate
[chromium (VI)] toxicity. The measurements of toxicity
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response were recorded using Real-Time Cell Electronic
Sensor (RT-CES). These two models are able to predict
cell responses to different values of toxicant concentration
and allow assessment of the biological consequences of
toxic chemicals in environmental contamination. In this
paper, we reverse the modeling procedure. We are in-
terested in the estimation of toxicant concentration for
a given dynamic model through on-line monitoring data
sampled from RT-CES. The organization of this paper
is as follows. The monitoring procedure and the mathe-
matical models are revisited in Section 2 and Section 3
respectively. The procedure of concentration estimation
and the validation results are presented in Section 4
including concentration estimation using both MHE and
EKF. Concluding remarks are given in Section 5.

2. EQUIPMENT AND MONITORING PROCEDURE
REVISIT

1) Equipment : The RT-CES system (ACEA Biosciences,
CA, U.S.A.) is used for this study and has been described
in (Xing et al., 2005; Huang and Xing, 2006). Briefly,
as shown in Fig. 1, it consists of a 16x microelectronic
sensor devices having 16 plastic wells in microtiter plate
format, a device station and an electronic sensor analyzer.
Cells are grown onto the surfaces of microelectronic sen-
sors. In operation, the sensor devices with cultured cells
are mounted to a device station placed inside a CO2
incubator. Electrical cables connect the device station
to the sensor analyzer. Under the control of RT-CES
software, the sensor analyzer automatically selects wells
to be measured and continuously conducts measurements.
The electronic impedance can then be transferred to a
computer and recorded. A parameter termed cell index
(CI) is derived to represent cell status based on the
measured electrical impedance. The frequency dependent



electrode impedance (resistance) without or with cells
present in the wells is represented as Rb(f) and Rcell(f),
respectively. The CI is calculated by:

CI = max
i=1,...,n

[Rcell(fi)
Rb(fi)

− 1
]

(1)

where n is the number of the frequency points at which
the impedance is measured. Several features of the CI
can be derived: (1) Under the same physiological condi-
tions, if more cells attach onto the electrodes, the larger
impedance value leading to a larger CI value will be
detected. If no cells are present on the electrodes or if the
cells are not well-attached onto the electrodes, Rcell(f) is
the same as Rb(f), leading to CI = 0; (2) A large Rcell(f)
value leads to a larger CI. Thus, CI is a quantitative
measure of the number of cells attached to the sensors;
(3) For the same number of cells attached to the sensors,
changes in cell status, such as morphological change, lead
to change of CI.

Device station Sensor analyzer

Seed cells
Add toxicant

16 well Microtiter Format

Circle-on-line electronic sensor

Fig. 1. The Real-Time Cell Electronic Sensor

In addition to cell numbers, the impedance also depends
on the extent to which cells attach to the electrodes.
For example, if cells spread, there will be a greater
cell/electrode contact area, resulting in larger impedance.
Thus, the cell biological status including cell viability, cell
number, cell morphology and cell adhesion will all affect
the measurements of electrode impedance that is reflected
by CI on the RT-CES system. Therefore, a dynamic
pattern of a given CI curve can indicate sophisticated
physiological and pathological responses of the living cells
to a given toxic compound (Xing et al., 2005).

2) Dynamic growth with toxicity : Two environmental
toxicants, mercury (II) chloride and sodium dichromate
[chromium (VI)], were used for cytotoxicity assessment on
the 16 sensor device. The cell line NIH 3T3 was tested.
The starting cell number was 10 000 cells per sensor wells.
The cell growth on the sensor device was monitored every
hour up to 24 h in real-time by the RT-CES system. When
the CI values reached a range between 1.0 and 1.2, the
cells were then exposed to either mercury (II) chloride, or
chromium (VI) at different concentrations. Fig. 2 shows
dynamic cytotoxic response to different doses of chromium
(VI). Fig. 3 shows dynamic cytotoxic response to mercury
(II) chloride. In both cases the cytotoxicity response is
dose dependent and increasing dose leads to decreasing
(CI).

3. MATHEMATICAL MODELING

As mentioned in the introduction, the cytotoxicity mech-
anism is complex and cell response to toxicity depends
on cell type, toxicant type, toxicant concentrations and
the time of exposure to the toxicant. In Huang and Xing
(2006), two types of models were developed and validated
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Fig. 2. Dynamic cytotoxic response of NIH 3T3 cells to different
doses of chromium (VI): 0; 0.62; 0.91; 1.97; 2.89; 4.25; 5.78
in the unit of μM. Increasing dose leads to decreasing (CI).
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Fig. 3. Dynamic cytotoxic response of NIH 3T3 cells to different
doses of mercury (II): 0; 10.43; 15.2; 22.35; 32.8; 48.3; 71
in the unit of μM. Increasing dose leads to decreasing (CI).

to predict cell toxicity response to mercury (II) chloride,
and sodium dichromate [chromium (VI)] stimulations.
In both models, it was suggested that the process of
cytotoxicity follows two-step mechanism: (1) uptake of
toxicant by cells and (2) killing of the cells. The uptake
mechanism describes the transport process of the toxicant
into a cell as illustrated in Fig. 4 (Huang and Xing, 2006).
This mechanism relates the extracellular concentration
ce (representing the concentration of a toxicant in the
environment) and the intracellular concentration ci (con-
centration inside the cell) and it is described by El-Kareh
and Secomb (2005) as follows :

ċi = k1(k2ce +
k3ce

k4 + ce
− ci) (2)

Extracellular toxicant

Intracellular toxicant

Fig. 4. Schematic of transport process of toxicant onto cell.

The first step in cytotoxicity (the uptake mechanism)
is supposed to be rather consistent; however the second
step (cell killing) differs with respect to the toxicant and
can be described through cell population dynamics as
Ṅ = f(C,N) where N is the cell population and C can
be the intracellular or the extracellular concentration of
the toxicant or a combination of them. It depends on
the type of the toxicant. In the following, we present the
mathematical models of cell killing under the effect of two
toxicants, mercury (II) chloride, and sodium dichromate
[chromium (VI)] as described in Huang and Xing (2006).



3.1 Mathematical modeling of [chromium (VI)] toxicity

The cell exposed to dichromate [chromium (VI)] is killed
by apoptosis mechanism which is a highly regulated pro-
cess and is described as programmed cell death. The
apoptosis mechanism mainly depends on the intracellular
concentration of the toxicant. This is described by the
dynamics of cell pullulation given by Eliaz et al. (2004)
as Ṅ = N(ks − kci). As proposed by Huang and Xing
(2006), this mechanism yields the following system of dif-
ferential equations for describing dichromate [chromium
(VI)] effects on cells population dynamics:

ċi = k1(k2ce +
k3ce

k4 + ce
− ci) (3)

Ṅ = N(ks − kci)

The parameters of this model (3) are estimated from the
experiment data and presented in Table 1.

Table 1. Estimated parameters for model (3)

k1 k2 k3 k4 ks k
0.0146 2.9399 0.0080 29.2418 0.0425 0.1041

3.2 Mathematical modeling of mercury (II) chloride toxicity

In Huang and Xing (2006), mercury cytotoxicity has both
necrosis mechanism and apoptosis mechanism. The necro-
sis describes an accidental cell death caused, for example,
by chemical or physical assault to the cell which may
make cells die by direct disruption of cell membrane. Thus
necrosis mechanism mainly depends on extracellular con-
centration of the toxicant. The cell population dynamics,
together with the uptake mechanism expressed by eqn.
(2), under mercury (II) chloride toxicity effect is described
as follows:

ċi = k1(k2ce +
k3ce

k4 + ce
− ci) (4)

Ṅ = N(k5 + k6ci + k7ce)
The parameters of model (4) are presented in Table 2.

Table 2. Estimated parameters for model (4)
k1 k2 k3 k4 k5 k6 k7

7.735 1.108 3.21 12.8 0.0312 0.2084 -0.2364

4. RAPID TOXICANT CONCENTRATION
ESTIMATION

The on-line estimation of the key parameter (the concen-
tration of toxicant ce) is critical due to two reasons. First,
as being well known the concentration itself is usually
not easily measurable due to technical or economical
limitations especially for biomedical processes. The key
toxicants are usually measured by high performance liquid
chromatography (HPLC) and liquid chromatography-
mass spectrometry (LC-MS) which are expensive equip-
ments. Second, an early determination (detection) of the
concentration of such a toxicant is important for an early
warning system (which we aim to develop) in order to
detect any sudden deterioration in the quality of water

supply. Deterioration in water quality mainly means in-
crease of the concentrations (or even the presence) of
toxicants . For the early warning system, it is necessary
to do on-line estimation of ce.

For on-line estimation, several methods for state esti-
mation are available such as EKF and MHE. EKF is a
popular state estimation technique and considered as the
standard choice for estimating state for nonlinear systems
due to lower computation load and more stable property.
However, additional physical insights about the process
may help in state estimation to prevent negative concen-
tration for instance. This kind of insights can not be con-
sidered in EKF. On the other hand, this physical insights
can be added as inequality constraints and integrated
with an optimal state estimation scheme formulated as
a quadratic problem such as MHE (Rao et al., October
2001).

We use mainly MHE for on-line estimation of the key
parameter ce and we also use EKF as an alternative
(usually a quicker method) of the estimation. This may be
considered as a comparison to demonstrate by biological
application examples the benefits of using MHE on one
hand. On the other hand, the EKF is also imbedded in
the MHE and is naturally used for a comparison. The
superiority of MHE has also been pointed out by several
authors through a number of applications such as in Rao
and Rawlings (2002) and Haseltine and Rawlings (2005)
for instance.

Before starting the procedure of on-line state estimation
of the key parameter (the extracellular concentration ce)
for our biological application, an identifiability test is
necessary. We present in the next section an identifiability
test for mercury (II) chloride toxicity model (4) for an
illustration. An identifiability test for chromium (VI)
toxicity model (3) can be performed similarly.

4.1 Identifiability

A mathematical model is identifiable if there exist no two
parameter sets which have the same input-output behav-
ior. In other words, a model is not identifiable if there
exists no unique parameter set to explain the input-output
behavior. Identifiability is a pre-analysis for parameter
estimation problem to determine the uniqueness of the
parameter solution obtained from the estimation process.
A number of methods are available for testing identifia-
bility of parametric models. For testing the identifiability
of the mercury (II) toxicity model (4), the Taylor series
approach is utilized (see Walter and Pronzato (1996)). A
brief description of the approach is given below. Consider
the following model :

ẋ(t) = f(x(t), u(t), t, p), x(0) = x0(p) (5)

y(t, p) = h(x(t), p)
where p is the model parameters set.

If ak(p) = limt−→0+
dk

dtk y(t, p) then a sufficient condition
for model (5) to be uniquely identifiable is :

ak(p̂) = ak(p∗), k = 0, 1, ..., kmax, =⇒ p̂ = p∗

where kmax is a positive integer, small enough for the
computations to remain tractable.



Since mercury (II) toxicity model (4) has only one pa-
rameter (the concentration ce), checking for identifiability
reduces to checking for conditions under which the param-
eter can be observed from the Taylor series coefficients.
The first two coefficients of the series for the mercury (II)
toxicity model can be determined as:

a0(p) = N(0)

a1(p) = Ṅ(0) = N(0)(k5 + k6ci(0) + k7ce) (6)
Solving the equation (6) for ce yields,

ce =
k6ci(0)N(0) + k5N(0) − Ṅ(0)

−k7N(0)
Therefore ce is identifiable if:

−k7N(0) �= 0 and (7)

k6ci(0)N(0) + k5N(0) − Ṅ(0) �= 0 (8)
Measurements evolution shown in Fig. 2 and values of the
estimated parameters in table 2 satisfy both conditions,
equations 7 and 8.

4.2 Extended Kalman Filter (EKF) formulation

Before presenting EKF formulation, considering the prob-
lem of estimating the state of system modeled by the
nonlinear state space equation :

xk+1 = f(xk, uk, k) + Gwk k = 0, 1, 2... (9)

yk = g(xk, k) + vk

where, xk ∈ R
n is the state vector, yk ∈ R

p the measured
output, wk ∈ R

n state disturbance and vk ∈ R
p the

measurement noise. The EKF linearizes the nonlinear
system and then applies the Kalman filter to obtain the
state estimation. The method can be summarized in a
recursion structure similar to linear Kalman filter for a
nonlinear system described above by equations (9) (see
Haseltine and Rawlings (2005)):

Prediction step
x̂k|k−1 = f(x̂k−1|k−1, uk−1, wk−1)

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 + Gk−1Qk−1G

T
k−1

Update step
x̂k|k = x̂k|k−1 + Kk(yk − g(x̂k|k−1))

Kk = Pk|k−1C
T
k [CkPk|k−1C

T
k + Rk]−1

Pk|k = Pk|k−1 − KkCkPk|k−1

in which, the following linearizations are made

Ak =
∂f(xk, uk, k)

∂xT
k

, Gk =
∂f(xk, uk, k)

∂wT
k

, Ck =
∂g(xk)
∂xT

k

4.3 Moving Horizon State Estimation (MHE) formulation

The MHE strategy belongs to a class of optimization
methods for on-line determination of state. The optimiza-
tion problem is formulated as a least-squares problem
where the decision variables are chosen to minimize the

sum of the squared errors between the available mea-
surements and model prediction. When a new measure-
ment becomes available, this optimization is repeated by
adding the new measurement to the past measurements
each sampling time. This leads to growing computational
burden of solving the least-squares optimization, known
as full information estimation problem. MHE reduces this
computational cost by considering a finite horizon of only
the last Nh measurements in the optimization problem
and information provided by past data beyond the horizon
is captured by arrival cost. This optimization is repeated
each sampling time by including a new measurement and
discarding the first measurement while keeping a fixed
horizon length (Nh). In other words, the MHE algorithm
is a least square optimization problem solved over a win-
dow of fixed horizon length (Nh). This window moves one
step ahead each time after solving an optimization prob-
lem with a quadratic cost function (Ψk) of the following
form (for more details see Rao et al. (2003)):

min
{ŵk−Nh−1|k,...,ŵk−1|k}

Ψk : Ψk = ŵT
k−Nh−1|kQ−1

−Nh|kŵk−Nh−1|k

+

k−1∑
j=k−Nh

ŵT
j|kQ−1ŵj|k +

k∑
j=k−Nh

v̂T
j|kR−1v̂j|k

subject to the state equality constrains:

x̂k−Nh|k = x̄k−Nh|k + ŵk−Nh−1|k
with x̄k−Nh|k = f(x̂∗

k−Nh−1|k−1, uk−Nh−1, k)

x̂j+1|k = f(x̂j|k, uj) + ŵj|k, j = k − Nh, ..., k − 1

yj = g(x̂j|k, k) + v̂j|k, j = k − Nh, ..., k

with the possibility to incorporate inequality constraints
on the state, state disturbance and process noise:

wmin < Awj < wmax, xmin < Axj < xmax,

vmin < Avj < vmax, j = k − Nh − 1, ..., k − 1

where Q is the covariance of the state disturbance and R
is the covariance of process noise.

The term ŵT
k−Nh−1|kQ−1

−Nh|kŵk−Nh−1|k approximates the
arrival cost which summarizes the effects of the past
information before t = k − Nh. The weighting term
Q−Nh|k initially represents the covariance of the prior
state estimate x̄k−Nh

and is computed according to EKF
covariance update formula (Rao et al., 2003):

Q−Nh|k+1 = AkQ−Nh|kAT
k + GkQkGT

k −
AkQ−Nh|kCT

k [CkQ−Nh|kCT
k + Rk]−1CkQ−Nh|kAT (10)

where Ak, Ck and Gk result from linearizing the model
(9) around the estimated trajectory.

In the full information problem there is no arrival cost
because the whole information (all available measure-
ments) is used each sampling time in the optimization
while in MHE, only a subset of the information is used
and the rest is approximated by the arrival cost. Thus,
MHE is an approximation of the full information problem
and therefore stability issue arises. The key to preserving



stability is how to approximately summarize the old data,
equivalently, how to find the best approximation of the
arrival cost, an explicit expression which rarely exists in
nonlinear or constrained system. One strategy is to use the
EKF covariance update formula as presented in equation
(10) (Rao et al., 2003).

Next we present a state estimation based approach for
rapid determination of concentrations of mercury (II) and
chromium (VI) from the measurement of cell population
responses provided by the RT-CES.

4.4 Concentrations estimation of chromium (VI)

The key parameter we aim to estimate is the extracellular
concentration (ce) of chromium (VI). This parameter is
added to the toxicity equation (3) of chromium (VI) as
an augmented state as follow :

ċi = k1(k2ce +
k3ce

k4 + ce
− ci) (11)

Ṅ = N(ks − kci)

ċe = 0 ; y = N

where, ci is the intracellular concentration, N is the cell
population and y is the observation. We estimate toxicant
concentrations from three toxicity responses correspond-
ing to toxicant doses ce =(0.62; 1.97; 4.25)μM. Note these
data have not been used for modeling purpose and thus
serve as cross validation data for state estimation. The
results presented in Fig. (5-7) show that MHE in general
has a better estimation than EKF. In addition, MHE is
able to prevent an estimation of negative concentration
at all time but EKF can not. It is also observed from
these figures that the extracellular concentration can be
correctly estimated between 10 to 15 hrs, instead of 24 hrs
as traditional the method needs. Thus a rapid estimation
is achieved.
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Fig. 5. Concentration estimation of chromium (VI) corresponding
to real ce = 0.62μM. Bottom plot : Estimation of ce converges
to the real value (0.62μM) using both estimators. Top plot
shows the estimation of ci which is not measured. The middle
plot shows the estimation of cell population that is measured.

4.5 Concentrations estimation of mercury (II) chloride

Similar to the procedure adopted for estimating the con-
centration of chromium VI presented in the previous
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Fig. 6. Concentration estimation of chromium (VI) corresponding
to real ce = 1.97μM. Bottom plot : Estimation of ce converges
to the real value (1.97μM) using both estimators. Top plot
shows the estimation of ci which is not measured. The middle
plot shows the estimation of cell population that is measured.
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Fig. 7. Concentration estimation of chromium (VI) corresponding
to real ce = 4.25μM. Bottom plot : Estimation of ce converges
to the real value (4.25μM) using both estimators. Top plot
shows the estimation of ci which is not measured. The middle
plot shows the estimation of cell population that is measured.

section, we aim here to estimate the concentration of
mercury (II) chloride from the available data. The concen-
tration ce is added to the toxicity equation (4) of mercury
(II) chloride as an augmented state similar to the aug-
mented model (eqn. 11) for chromium (VI). We estimate
the toxicant concentrations from three toxicity responses
corresponding to the toxicant concentration ce =(10.43;
22.35; 48.3)μM. The results presented in Fig. (8-10) show
that both estimators (EKF and MHE) provide a good
estimation of ce while preventing negative concentration
estimation when using MHE. This shows clearly the ben-
efits of using constraints by MHE.

Our experience shows that tuning EKF is simpler. Using
MHE requires a more careful tuning of a several pa-
rameters, namely, Q, R, Q−Nh

, horizon length (Nh), the
constraints wmin, wmax and also the initial conditions. In
addition, the tuning may vary from different experiments.
The evolution of the estimation converges by using hori-
zon length Nh = 1 for mercury (II) chloride case while at
least Nh = 2 is needed for chromium IV case.



In the selection of the covariance, the Q matrix reflects
the uncertainty of the state equations while the R matrix
reflects the uncertainty in the measurement of CI due to
other phenomena that also affect CI in addition to cell
numbers.
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Fig. 8. Concentration estimation of mercury (II) chloride corre-
sponding to real ce = 10.43μM. Bottom plot : Estimation of ce

converges to the real value (10.43μM) using both estimators.
Top plot shows the estimation of ci which is not measured.
The middle plot shows the estimation of N that is measured.
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Fig. 9. Concentration estimation of mercury (II) chloride corre-
sponding to real ce = 22.35μM. Bottom plot : Estimation of ce

converges to the real value (22.35μM) using both estimators.
Top plot shows the estimation of ci which is not measured.
The middle plot shows the estimation of N that is measured.

5. CONCLUSION

An early warning system for water supply is our main
goal of the work presented. This includes an early deter-
mination of the presence of specific toxicants in water by
on-line estimation of their concentrations. We use mainly
MHE as an on-line estimation tool in this paper. Deter-
mination of the concentration is only one of the features
of the aimed early warning system. This system will also
include prediction of future evolution of toxicity response
using only initial measurements and prediction of cells
response when the concentration of a toxicant varies. In-
tegrating all these prediction features is the ultimate goal.
Intuitively, this includes also the development of toxicity
mathematical models for other kinds of common water
toxicants such as sodium arsenite [As (III)] for instance.
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Fig. 10. Concentration estimation of mercury (II) chloride corre-
sponding to real ce = 48.3μM. Bottom plot: Estimation of ce

converges to the real value (48.3μM) using both estimators.
Top plot shows the estimation of ci which is not measured.
The middle plot shows the estimation of N that is measured.

In addition, as has been discussed, the cell index also
reflects other sophisticated physiological and pathologi-
cal responses in addition to cell numbers. A model that
considers other properties of the cell index will further
improve on-line state estimation.
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