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Abstract: The new methodology presented provides a way to optimize the operation of a variety of batch 
processes (chemical, pharmaceutical, food processing, etc.) especially when at least one time-varying 
operating decision function needs to be selected. This methodology calculates the optimal operation 
without the use of an a priori model that describes in some accuracy the internal process characteristics. 
The approach generalizes the classical and widely used Design of Experiments (DoE), which is limited in 
its consideration of decision variables that are constant with time. The new approach, called the Design 
of Dynamic Experiments (DoDE), systematically designs experiments that explore a considerable 
number of dynamic signatures in the time variation of the unknown decision function(s). Constrained 
optimization of the interpolated response surface model, calculated from the performance of the 
experiments, leads to the selection of the optimal operating conditions. Two examples demonstrate the 
powerful utility of the method. The first examines a simple reversible reaction in a batch reactor, where 
the time-dependant reactor temperature is the decision function. The second example examines the 
optimization of a penicillin fermentation process, where the feeding profile of the substrate is the 
decision variable. In both cases, a finite number of experiments (4 or 16, respectively) lead to the very 
quick and efficient optimization of the process.   

Keywords: Batch Optimization, Design of Experiments, Batch Reactors, Fermentation, Penicillin 
Production, Batch Modeling. 
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1. INTRODUCTION 

Batch processes are often related to small production rates 
resulting in processes that are not understood enough to 
enable the development of an accurate mathematical model 
describing their inner workings. To accommodate such a lack 
of detailed understanding, our research group introduced the 
concept of Tendency Modelling (Fotopoulos, Georgakis, & 
Stenger, 1996, 1998) which has been applied to several 
processes with significant success. See for example 
(Cabassud et al., 2005; Martinez, 2005). On the other hand, 
François et al. (François, Srinivasan, & Bonvin, 2005) have 
also introduced a methodology in which the feedback control 
concept is used to evolve from an initial batch operation to 
operations that are incrementally better and, after several 
cycles, arrive at an optimum operation. In the case that a 
model is available, several model-based optimization 
techniques can be utilized (Biegler, 2007). We will refer to 
this model-based approach as the Classical Approach. 

2. THE CLASSICAL MODEL-BASED APPROACH 

The classical approach in optimizing a batch process assumes 
we have a first-principles model describing our fundamental 
understanding of the process.  Assuming that all important 
idiosyncrasies of the process are known to make the model 
quite comprehensive and accurate, one needs only to account 

for the model’s parameters whose values are not well known.  
Based on the number of unknown parameters, a set of 
experiments is designed using the classical Design of 
Experiments (DoE) approach (Box & Draper, 2007; 
Montgomery, 2005), or any other systematic or not so 
systematic approach. Once the experimental data are 
collected, the model parameters can be calculated using a 
parameter estimation method and related algorithms (van den 
Bos, 2007).  Such a model will often have the form of a set of 
nonlinear ordinary differential equations (ODEs), as in eq. 1. 
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Here, x and y represent the states and output variables of the 
system, respectively; p the parameters of the model fitted to 
the experiments; and u(t) the decision variable with which we 
wish to maximize (or minimize) the system’s performance 
index J. The performance index is assumed to be only a 
function of the final values of the state variable at the end of 
the batch at t=tB:  
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With such a model at hand, one can calculate the optimum 
value of the decision variable u(t) that will yield  the 
optimum value J* of the performance index J. There are 



 
 

     

 

several ways such a calculation can be performed, but here 
we will follow the method strongly advocated by Professor 
Biegler’s group (Biegler, 2007; Kameswaran & Biegler, 
2006, 2008).  In such an approach, the interval (0, tB) is 
divided into a number of finite elements and inside each 
element, the method of orthogonal collocations (Biegler, 
1984) is used to convert the set of ODEs into a set of 
algebraic equations. Then, an optimization algorithm, such as 
sequential quadratic programming, calculates the optimum.  

In summary, the Classical Model-based Optimization (CMO) 
approach involves the following steps: i) Postulation of 
model, ii) Experiments, iii) Parameter Estimation, and iv) 
Optimization.   

3. THE NEW APPROACH: DESIGN OF DYNAMIC 
EXPERIMENTS  

3.1. The Main Idea 

To facilitate the discussion that follows, let us define a 
dimensionless time � equal to t/tB. The decision variable u(�) 
is considered to be a member of the Hilbert space L2(0,1) of 
square-integrable vector functions.  Let us denote with {�i(�); 
i = 1, 2, 3, …} a convenient set of basis-functions in that 
space. The unknown function u(�) can be written as follows. 
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The summation is truncated to a finite number of N terms and 
the unknowns are the expansion coefficients ai.   If we now 
expand the performance index J(x(�=1)) in terms of the ai 
constants, of the u(�) function can be written as: 
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This will be called the Response Surface Model (RSM).  For 
simplicity’s sake, we have assumed in eq. (4) that there is 
only one decision function u(�) and that each of the ai 
constants is a scalar rather than a vector.  The main model 
parameters are now the constants bi, bij, bijk etc., relating the 
performance index J and the different choices of the decision 
variable u(�).  In the rare case that the knowledge-based 
process model is known a priori, the constants b can be 
explicitly calculated. Once the b constants are known, an 
optimization can be performed to calculate the optimal values 
of the parameters ai (i=1, 2…n) that describe the estimate of 
the unknown optimal profile u*(�).  Of interest here is the 
circumstance in which no model for the batch process is 
available a priori.  In such a case, the novel approach 
introduced by the present paper consists of the following five 
steps:  

a. Select a functional basis �i(�) to parameterize the 
input function u(�). 

b. Design a set of time-varied experiments characterized 
by a properly selected set of constants ai.  

c. Perform the experiments. 
d. Estimate the values of the b parameters in the RSM 

(eq. 4), using the values of J that correspond to each 
of the performed experiments. 

e. Calculate the values of ai that optimize J.  Perform 
the optimal experiment and compare the results with 
the response surface model predictions.  

The proposed approach is called Model-Free for two reasons. 
First, the RSM is a rather simple easy-to-develop 
interpolative model that contains no fundamental information 
about the process. Second, the process can be still 
substantially optimized my simply choosing the best of the 
initial dynamic experiments.  

3.2. The Algorithmic Steps 

We provide here some additional details of the four steps 
described before.  

1. Define a dimensionless variable w(�), referred as coded 
variable, that varies between -1 and +1 and which 
characterizes the time dependent process variable, or 
dynamic factor.  For example, if the dynamic factor is 
the reactor temperature and it is allowed to vary between 
Tmax and Tmin, then the coded variable w(�) is defined by:  

max min max min( ) [2 ( ) ( )] / ( )w T T T T T� �� � � �  (5) 

In the case that we have more than one decision 
variable u(�), we define  the coded variable by 

         � �1
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2. Select an appropriate functional basis {�i(�)| i=1, 2,…} 
defined in the interval [0, 1]. These functions must be a 
linearly independent set that is complete and thus can 
serve as a functional basis. This functional basis could be 
either an orthogonal or a non-orthogonal one. The 
selection of this basis should be influenced by the 
expected character of the problem’s solution in order to 
reduce the number of needed expansion terms and thus 
the number of experiments.   

3. The unknown value of the dynamic factors u(�) that 
maximizes a certain performance index of the process 
J(u) is denoted by, u*(�): 
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The unknown vector function u*(�) is expanded in terms 
of a linear combination of the basis functions �i(�), given 
in eq. (3).  

4. Substitute the optimization with respect to u(�) with an 
optimization with respect to the constants ai.  For each 
component function uq(�) of u(t), the corresponding 
constants aq

i are called the sub-factors that characterize 
the unknown dynamic factor uq(�). The infinitely 
dimensional search for the optimal function u*(�) is then 
substituted by a finite dimensional search of the pN
constants a, where p is the dimensionality of u(�). 



 
 

     

 

5. Design experiments motivated by the classical Design of 
Experiments (DoE) methodology for the selection of the 
appropriate values of the sub-factors aq

i. Each set of 
values of the sub-factors correspond to a specific time-
dependent function uj(�) or wj(�).  However, one needs to 
take into account certain constraints that uj(�) or wj(�) 
will have to satisfy.  

6. Develop an appropriate interpolating response surface 
model relating J to the values of the aq

i in the form of eq. 
(4). The unknown parameters of the model are the 
coefficients bj, bij, bijk etc. and a linear regression 
algorithm can be used for their estimation. An analysis of 
variance (ANOVA) is performed to reveal which of the 
terms are the most significant based on the accuracy of 
the experimental measurements.   

7. Calculate the optimal values of the aq*
i coefficients that 

optimize J. This is a constrained optimization task since 
each of the coefficients ai is constrained by an upper and 
lower value (usually -1�ai�+1). The optimal values of 
the aj determine the optimal function u(�). 

The methodology described above substitutes the unknown 
function u(�) by its coefficients ai. By selecting the 
appropriate values of the ai, one designs dynamic 
experiments with several choices of the input function u(�). 
Each of the experiments results in a value of the performance 
index J. The set of such values enables the calculation of the 
response surface model (RSM) of equation (4), which is used 
to optimize the process with respect to the decision 
variable(s) u(�).  The proposed methodology generalizes the 
classical design of experiments (DoE) (Montgomery, 2005) 
methodology with respect to dynamically varying processes. 
For this reason, the term Design of Dynamic Experiments 
(DoDE) was coined to describe it (Georgakis, 2008).   

4. DESIGN OF THE DYNAMIC EXPERIMENTS 

Here we present some example designs of the DoDE 
experiments.  We select the (shifted) Legendre polynomial as 
the basis in the Hilbert space L2(0,1).  The first three 
Legendre polynomials are  
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We will use these orthogonal polynomials to define the 
dynamic experiments in all the examples discussed here.  

4.1. Simple Example of the DoDE Design Approach  

The simplest set of DoDE experiments is obtained by 
selecting the smallest value of N in eq. (3), equal to two. This 
implies that the dynamic profile of u(�), or the coded variable 
w(�), is a linear combination of the first two Legendre 
polynomials P0(�) and P1(�). This limits our consideration 
among constant or linear time dependencies. In deciding the 
values of the a1 and a2 sub-factors we can follow the classical 
DoE approach. If we do level-2 experiments for each sub-
factor, we will design the following 22=4 experiments: 
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Translating, for example, the second experiment to the 
corresponding dynamic coded variable w(�) we have 

0 1( ) ( ) ( ) 2w P P� � � �� � � . We realize that this profile does 
not meet its constraints 1 ( ) 1w �� � � � . This is easily 
remedied by imposing the following constraints on the a1 and 
a2 constants: 1 21 1a a� � � � � and 1 21 1a a� � � � �  reducing 
the values of a1 and a2, without changing their relative 
magnitude so the that the constraints on w(�) are  met.  This 
leads to the following design of experiments 
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   (10) 

In this case, the four time-variations in w(�) are shown in 
Figure 1.  

 
Figure 1: The 22=4 DoDE experiments  

4.2. Other DoDE Examples 

For N=3, we are considering the first three Legendre 
polynomials, and if we consider only low and high values, we 
need to perform 23= 8 experiments. Here we are considering 
quadratic dependence on time along with the constant and 
linear sub-factors considered before. If we add cubic 
dependence by letting N=4 we need 24= 16 experiments and 
the use of the next Legendre polynomial: 

3 2
3 ( ) 20 30 12 1P � � � �� � � � � . For N=5 we involve the first 

five shifted Legendre polynomials. This includes the four 
polynomials mentioned above along with the fifth one: 

4 3 2
4 ( ) 70 -140 90 - 20 1P � � � � �� � � . Here we need 25= 32 

experiments. In the case we design level-3 full factorial 
experiments we need 32= 9 experiments for N=2, and 33= 27 
experiments for N=3.  

We should note that the way the dynamic experiments are 
designed involves two steps that are similar to the ones 
presented in section 4.1 for the simplest of the DoDE designs. 
In the first step, the sub-factors related to the values of the 
coefficients ai are treated as independent from each other and 
are assigned initial values of (-1 , +1) in the level 2 designs 
and values (-1, 0, +1) in the lever 3 designs.  In the second  
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Table 1: Details of the Batch Reactor Optimization using the DoDE Methodology  
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Defining Parameters of the 
Calculated 

RSM-Optimum Profile w(�) 

Level 2 FULL Factorial Designs 

1 2 DA1:21= 2 62.32% a1 = -1 62.23% a1 = -1 
2 2 DA2 : 22= 4 73.46% (a1, a2) = (-0.5, 0.5) 76.57% (a1, a2) = (0, 1) 
3 2 DA3: 23= 8 74.61% (a1, a2, a3) = (-0.3, 0.3, -0.3) 77.77% (a1, a2, a3) = (0, 1, 0) 
4 2 DA4: 24=16 74.82% (a1, a2, a3, a4) = (-0.3, 0.3, -0.3, 0.3) 78.10% (a1, a2, a3, a4) = (0, 1, 0,- 0.04) 
5 2 DA5: 25=32 74.43% (a1, a2, a3, a4, a5) = (-0.3, 0.3, -0.3, 0.3, .3) 78.43% (a1, a2, a3, a4, a5) = (0, 0.9, 0,- 0.08, -0.2) 

Level 3 FULL Factorial Designs 

1 3 DA6   31= 3 73.91% a1 = 0 73.92% a1 = -0.03 
2 3 DA7   32= 9 77.35% (a1, a2) = (0, 1) 77.57% (a1, a2) = (0.1, 0.9) 
3 3 DA8   33=27 77.35% (a1, a2, a3) = (0, 1, 0) 77.66% (a1, a2, a3) = (0.05, 0.9, 0.06) 

 

step, all of the ai values related to a single experiment are 
scaled up or, in most cases, down by a common factor, so that 
the coded dynamic variable w(�) attains values that are  
inside the [-1, +1] interval.  Making the maximum (or 
minimum) of each profile touch the maximum (or minimum) 
values of w(�) also ensures that the set of DoDE experiments 
covers all areas on the [-1, +1] x [0, 1] rectangle. 

5. BATCH REACTOR WITH REVERSIBLE REACTION 

Here we consider the optimization of the operation of a batch 
reactor in which a reversible reaction between reactant A and 
product B takes place with the following characteristics:  
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We select the activation energy of the reverse reaction to be 
larger than that for the forward reaction. This leads to the 
expectation that the optimum temperature profile is a 
decreasing one (Rippin, 1983).  One needs to note here, that 
for the development of the fundamental model above, we 
need to assume that the first order kinetic rate is correct. We 
then perform at least 4 experiments to estimate the values of 
k10, k20, E1, and E2.   

With such a model at hand, one can optimize the reactor 
temperature profile to maximize the conversion of reactant A.   
This is achieved by converting the ODEs into algebraic 
equations via Radau collocation on finite elements (Biegler, 
2007). The reactor temperature is constrained between 20 0C 
and 50 0C and the optimization is achieved by use of the 
IPOPT algorithm (Wächter & Biegler, 2006). 

The optimum profile calculated is constant at the upper 
temperature constraint for almost 0.4 hrs and then decreases 
to the minimum constraint at the end of the batch. We select 
here to fix the batch time to 2.5 hrs and the maximum 
conversion of the reactant A is calculated to be 77.68%. In 

Table 1, the results of the different DoDE experiments are 
presented. They involve up to 5 dynamic sub-factors and 
include level-2 (low-high) and level-3 (low-medium-high) 
experiments. In the fourth column the best conversion value 
of the initial runs is given. In the second to last column, the 
expected best batch performance, as calculated by the 
optimization of the response surface model (RSM), is given.  
In the last column the characteristics of this RSM-optimal 
profile is given in terms of the coded variable:  

1 0 2 1( ) ( ) ( ) ...w a P a P� � �� � �  The temperature profile can then 
be calculated by eq. 5. We observe that in the case denoted as 
DA2 in Table 1 only four experiments described in Figure 1 
yield an RSM-optimum with a conversion of 76.57% which 
is just 1.43% away from the true optimum of 77.68%. We 
also observe that a larger number of experiments, such as 
those of cases DA4, DA5, DA7 and DA8, predict a higher 
conversion, even closer to the true optimum. However, as the 
number of experiments performed increases, the changes in 
the predicted optimum conversion becomes smaller and 
smaller per additional experiment, implying that the true 
optimum has been reached. 

6. PENICILLIN FERMENTATION 

Here we simulate the penicillin fermentation model of  Bajpai 
and Reuss (Bajpai & Reuss, 1980) which has been the center 
of attention in several model-based optimizations (Riascos & 
Pinto, 2004). The model used to simulate the experiment 
consists of the equations in the Appendix. To focus on the 
main idea of calculating the optimum time-varying profile, 
we fix the batch time to tb=130 hrs and the growth phase of 
the biomass to tf=30 hrs. Here we want to demonstrate the 
application of the DoDE approach to this challenging 
optimization problem to demonstrate its power in optimizing 
complex processes.   For this reason, we are not designing 
experiments that vary the tf and tb values, since they are not 
time-varying decision variables or factors.  

We choose to design 16 experiments with 4=22 variations for 
the substrate flow in growth phase 0�t�tf (or 0����; �=tf/tb) 



 
 

     

 

and 4=22 additional variations for the production phase tf�t�tb 
(or ����1), the profiles are depicted in Figure 2. In the 
growth phase, the average value of the substrate flow is 30 
gr/hr, with an allowed change up and down of 20 gr/hr. In the 
production phase, the average flow considered is 7 gr/hr and 
it varies by 3 gr/hr, up or down.  Each of the four feeding 
profiles in the first phase is combined with each of the four 
feeding profiles of the second phase.   

 
Figure 2: The 22x22=14 DoDE Experiments for Penicillin 

Fermentation (Total Volume Unconstrained) 

Some of these designs result in an increase in the bioreactor 
volume by more than 4 lt. from the initial value of 7lt.  For 
example, one such profile is the one identified with the 
following sub-factor coefficients (a11, a12, a21, a22) = (0.5, 0.5, 
0.5, 0.5). To meet the final volume constraint of 11lt, we 
impose the following total volume constraint: 
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This profile is modified to the (0.44, 0.5, 0.44, 0.5) one 
(DB16). Three additional profiles need such modification. 
The resulting time dependencies on the overall feeding 
profiles are defined in Table 2. The resulting final bioreactor 
volume and total amount of penicillin produced (i.e. the 
performance index J) are also given in Table 2. 

The time evolution of the simulated process during 
experiments DB9 is given in Figure 3.  Using all the data of 
Table 2, a response surface model is estimated and 
constrained optimization, V(tb)<11, yields an optimum of the 
penicillin process with the production of J=102.30 grams of 
product. The calculated optimum feeding profile is 
characterized by the following values of the 2+2 sub-factor 
coefficients: (a11, a12, a21, a22) = (0.19, 0, 0.95, 1.0). 
Simulation of this operation yields 104.17 grams of product, 
a bit more than predicted.  

Here we used a level 2 experimental design which 
necessitates that the response surface model has only linear 
and interaction terms. No quadratic terms are allowed.  A 

more accurate response surface model can be constructed if 
one uses a level 3 DoDE design. In such a case, the response 
surface model includes quadratic terms. 

Table 2: Definition and Performance Index of the 16 
Volume-Constrained Penicillin Experiments  

Run 
Label Growth Phase Production 

Phase 
V(tf) 
[lt] 

J= 
V(t

f
)p(t

f
) 

[gr] 

   a11 a12 a21 a22       

DB1 -0.5 -0.5 -0.5 -0.5 9.3 +58.97

DB2 -0.5 +0.5 -0.5 -0.5 9.3 +59.06

DB3 +0.5 -0.5 -0.5 -0.5 10.5 +57.93

DB4 +0.5 +0.5 -0.5 -0.5 10.5 +57.93

DB5 -0.5 -0.5 -0.5 +0.5 9.3 +54.05

DB6 -0.5 +0.5 -0.5 +0.5 9.3 +54.15

DB7 +0.5 -0.5 -0.5 +0.5 10.5 +51.82

DB8 +0.5 +0.5 -0.5 +0.5 10.5 +51.83

DB9 -0.5 -0.5 +0.5 -0.5 9.9 +84.41

DB10 -0.5 +0.5 +0.5 -0.5 9.9 +84.46

DB11 +0.44 -0.5 +0.44 -0.5 11.0 +86.08

DB12 +0.44 +0.5 +0.44 -0.5 11.0 +86.08

DB13 -0.5 -0.5 +0.5 +0.5 9.9 +81.33

DB14 -0.5 +0.5 +0.5 +0.5 9.9 +81.40

DB15 +0.44 -0.5 +0.44 +0.5 11.0 +80.01

DB16 +0.44 +0.5 +0.44 +0.5 11.0 +80.01

 
Figure 3: The time evolution of the state and input variables 

of the 22x22=16 DoDE experiments for penicillin 
fermentation (total volume constrained) 

We observe that the RSM-optimal run yields a performance 
index that is 20.82% better than any of the initial 16 
experiments. This is very significant but this is not the major 
result of this investigation. The major result is that the 
process is significantly optimized with just the 16 initial 



 
 

     

 

systematically designed DoDE experiments.  This is a much 
smaller effort than what is needed to develop a fundamental 
model describing the process, necessary for the classical 
approach in process optimization. 

7. CONCLUSIONS 

We presented a new approach to optimize batch processes 
with respect to one or more time-varying decision variables. 
The method, called Design of Dynamic Experiments (DoDE), 
defines a set of experiments in which time-varying patterns of 
the decision variable is used.  A response surface model, built 
from the performance index values of each experiment, is 
used to optimize the process. Two examples, a batch reaction 
and penicillin fermentation, are used to demonstrate the 
powerful characteristics of the new methodology. Due to 
space limitations, we have not presented the related ANOVA 
analysis. The effect of measurement error (1%-5%) was 
investigated and it has been convincingly shown that its 
effect on the process optimization is not at all detrimental to 
the proposed approach.  
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10.APPENDIX 

In this Appendix we present the penicillin model used: 
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The model parameters used are the ones reported in (Riascos 
& Pinto, 2004)  


