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Abstract: A SDG-based simulation procedure is presented in this study to qualitatively predict all 
possible effects of one or more fault propagating in a given process system. All possible state evolution 
behaviors are characterized with an automaton model. By selecting a set of on-line sensors, the 
corresponding diagnoser can be constructed and the diagnosability of every fault origin can be 
determined accordingly.  Furthermore, it is also possible to construct a formal diagnostic language on the 
basis of this diagnoser.  Every string (word) in the language is then encoded into an IF-THEN rule and, 
consequently, a comprehensive fuzzy inference system can be synthesized for on-line diagnosis.  The 
feasibility of this approach is demonstrated with a simple example in this paper.  
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1. INTRODUCTION 

The fault diagnosis methods have been widely recognized as 
indispensable tools for enhancing process safety. Generally 
speaking, they could be classified into three distinct groups, 
i.e., the model based approaches, the knowledge based 
approaches, and the data-analysis based approaches 
(Venkatasubramanian et al., 2003a, b). However, in order to 
carry out these strategies on-line, it is usually necessary to 
first analyze the historical data and/or operational 
experiences obtained during every serious accident.  This 
requirement cannot always be satisfied in practice.  

To circumvent the above drawbacks, a qualitative cause-and-
effect model, i.e., the signed directed graph (SDG), is used in 
the present study to characterize fault propagation 
mechanisms.  The advantage of this modelling approach is 
mainly due to the fact that the causal relations in process 
systems can always be established according to generic 
engineering principles without any quantitative knowledge. 
On the other hand, it should be noted that such causal models 
are basically static in nature. Many SDG-based fault 
identification techniques were therefore implemented on the 
basis of the steady-state symptoms only, e.g., Maurya et al. 
(2006). Since the effects of fault(s) and/or failure(s) usually 
propagate throughout the entire system dynamically in 
sequence, a series of intermediate events may occur before 
the inception of catastrophic consequences. Thus, the 
performance of a qualitative diagnosis scheme should be 
evaluated not only in terms of its correctness but also its 
timeliness.   

To enhance diagnostic efficiency, it is obviously necessary to 
consider the precedence order (in time) of various fault 

propagation effects derived from the qualitative models. 
Extensive studies have already been carried out to develop 
effective diagnosis strategies by incorporating both the 
eventual symptoms and also their occurrence order into a 
fuzzy inference system (FIS). This approach has been 
applied successfully to a number of loop-free processes  
(Chang et al., 2002) and also to systems with feedback 
and/or feed forward control loops (Chang and Chang, 2003; 
Chen and Chang, 2006; 2007).  

Despite the fact that diagnostic performance can be 
significantly improved with the aforementioned technique, 
the representation, analysis and synthesis of inference 
systems are still very cumbersome. In particular, many 
different versions of the symptom occurrence orders can 
often be deduced from a single fault origin on the basis of 
SDG model. Manual enumeration of all such scenarios for 
all origins may become intractable even for a moderately 
complex system. Furthermore, the diagnosability issues 
concerning the resulting FIS have never been systematically 
addressed in the past. Thus, there is a definite need to 
develop a unified theoretical framework to extract the 
intrinsic features of dynamic fault propagation mechanisms.  
Our concern here is primarily with the sequence of system 
states visited after the occurrence of fault origin(s) and also 
the associated events causing the state transitions. A 
systematic procedure is proposed in this paper to construct 
automata and language models for the purpose of 
representing these sequences accurately and succinctly. As a 
result, additional insights can be revealed and, also, more 
compact inference rules can be produced accordingly.  A 
simple example is provided at the end of this paper to 
demonstrate the feasibility and effectiveness of the proposed 
procedures for FIS synthesis and for fault diagnosis. 



    

2. AUTOMATA CONSTRUCTON  

2.1  Qualitative Simulation Procedure 

Although other qualitative models may be equally acceptable, 
the SDG is adopted in the present study to simulate (or 
predict) the effects of faults and failures. This is due to the 
fact that the needed implementation procedure is 
conceptually straightforward. Notice first that the fault 
origins can usually be associated with the primal nodes, i.e., 
the nodes without inputs. A set of five values, i.e., {-10, -1, 0, 
+1, +10}, may be assigned to every node in the digraph to 
represent deviation from the normal value of corresponding 
variable. The value 0 represents the normal steady state. The 
negative values are used to denote the lower-than-normal 
states and the positive values signify the opposite.  The 
magnitudes of non-zero deviations, i.e., 1 or 10, can be 
interpreted qualitatively as “small” and “large” respectively. 
The causal relation between two variables can be 
characterized with a directed arc and the corresponding gain. 
Each gain may also assume one of the five qualitative values 
mentioned above. The output value of every arc in digraph 
can be computed with the gain and its input value according 
to the following equation: 
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where g , inv  and outv  denote respectively the gain, input 
and output values. It is obvious that the deviation values of 
all variables affected by one or more fault origin can always 
be computed with this formula, but the time at which each 
deviation occurs is indeterminable. Without the reference of 
time in the SDG-based simulation results, it can nonetheless 
be safely assumed that the change in an input variable 
should always occur earlier than those in its outputs.  In 
essence, this is the most basic assumption adopted in this 
study. Notice that, if the precedence order of various fault 
propagation effects is to be considered in fault diagnosis, a 
large number of different versions of qualitative simulation 
results may be generated accordingly. All such scenarios can 
be captured with the automaton model described in the 
sequel.  

2.2  System Automata 

A formal definition of a deterministic automaton �  can be 
found in Cassandras and Lafortune (1999). Specifically, it is 
a six-tuple 

( )0, , , , , mf x= Γ� � ��                     (2) 

where, �  is the set of system states; �  is the finite set of 
events associated with the transitions in automaton; 

:f × →� � �  is the transition function; : 2Γ → ��  is 
the active event function; 0x  is the initial system state; 

m ⊆� �  is the set of marked states. In the present 

application, each system state x∈�  is either a collection of 
node values at a particular instance after an initiating failure 

occurs or the initial state itself.  Every event e ∈�
represents a previously nonexistent fault effect.  Notice that 
the precedence order of these events must be consistent with 
the basic assumption mentioned above.  The active event 
function ( )xΓ  is used to specify the events which could 
change the system state x , while the transition function 

( ),f x e  is used for stipulating the resulting state caused by 

( )e x∈ Γ . Finally, it should be noted that the initial state 0x
in this study is always associated with the normal condition 
and the set m�  contains the final steady states reached in all 
possible fault propagation scenarios. 

To facilitate illustration of the automaton construction steps, 
let us consider the most fundamental digraph configuration, 
i.e., tree. More specifically, let us use the fictitious SDG 
model in Figure 1 as an example and also assume that a 
positive deviation in the upstream variable d , i.e., ( 1)d + , 
is the only possible fault origin in this case. Notice that, 
although the precedence order of any two effects along the 
same branch path in this digraph can be uniquely identified 
with the proposed qualitative simulation procedure, the order 
of two distinct events located on separate branches should be 
considered as indeterminable. The corresponding automaton 
can thus be described with the state transition diagram 
presented in Figure 2. Every system state here is 
characterized with a collection of the qualitative values of all 
variables in the digraph and all of them are listed in Table 1.  
Three equally possible event sequences between the initial 
and final system states can be identified from this automaton 
model, i.e.,  

1. ( 1) ( 1) ( 1) (-1) ( 1)d x y z u+ + + + ,
2. ( 1) ( 1) ( 1) ( 1) (-1),d x y u z+ + + +
3. ( 1) ( 1) ( 1) ( 1) (-1).d x u y z+ + + +

Fig. 1. A tree-shaped SDG model.  
    

Fig. 2. The state transition diagram of automaton derived 
from Figure 1. 

The automaton resulting from a “large” disturbance can be 
obtained by following a similar procedure. An auxiliary 
assumption is introduced in this work to facilitate an accurate 
description of the fault propagation mechanism, i.e., the 
smaller deviation of a process variable must occur before 



    

reaching a larger one of the same variable. Thus, the 
automaton in Figure 2 can be revised to incorporate this 
requirement (see Figure 3).  

Table 1. System states in Figure 2.
State d x y z u 
0 0 0 0 0 0 

1 +1 0 0 0 0 

2 +1 +1 0 0 0 

3 +1 +1 +1 0 0 

4 +1 +1 +1 -1 0 

5 +1 +1 0 0 +1 

6 +1 +1 +1 0 +1 

7 +1 +1 +1 -1 +1 

Fig. 3. The automaton resulted from ( 10)d +  in Figure 1 

2.3  Diagnoser and Diagnisability 

In realistic applications, the fault origins (i.e., failures or 
upsets) and some of the process variables cannot be 
monitored on-line.  Thus, the event set of an automaton 
model can be further divided into the observable and 
unobservable event subsets, i.e., o uo= �� � � . To check 
diagnosability of each fault origin and also facilitate 
diagnostic inference with the available sensors, the system 
automaton �  should be converted to a diagnoser diag� , 
which is in essence a transformed automaton with the 
observable subset o� as its event set. Although a systematic 
construction procedure has already been developed by 
Sampath et al. (1996) for the discrete event systems in 
general, the diagnosers for the present applications are built 
with an intuitive but more convenient alternative approach. 
Specifically, if a state is reached immediately after an 
unobservable event, then this state is merged with its 
predecessor(s) in the original automaton model.  For 
example, let us assume that ( 1)d +  is the fault origin and 

( 1)y +  is not observable in Figure 2.  The corresponding 
diagnoser can be easily obtained by applying the 
aforementioned principle (see Figure 4).  The numerical 
node labels here are the same as those in Figure 2, while the 
subscript of each label is used to reflect whether or not the 
fault origin has occurred at the corresponding state.  

Fig. 4. The diagnoser obtained by assuming ( 1)y +  in 
Figure 2 is unobservable. 

It should be noted that this construction method is applicable 
even when multiple scenarios are possible. For example, let 
us consider the SDG model in Figure 5 and assume that there 
are two measured variables, i.e., y and z , and four potential 

fault origins, i.e.,  (1) ( 1)xd + ,  (2) ( 1)yd + , (3) ( 1)zd +
and (4) ( 1)ud + .  

Fig. 5. A SDG model with negative feedback loop 

The automaton model of this system and the corresponding 
diagnoser can be found in Figures 6(A) and 6(B) respectively.   
Obviously, the issue of diagnosability becomes important in 
this situation. Although the formal necessary and sufficient 
conditions of system diagnosability has also been derived 
and proven rigorously by Sampath et al. (1995), the 
identifiability of each fault origin in our studies can be 
determined simply by inspecting the diagnoser. In particular, 
the diagnosability of a fault origin can be established if it is 
the unique cause of at least one diagnoser state. Otherwise, 
the corresponding on-line symptoms should be 
indistinguishable from those of one or more scenarios caused 
by other origins. It can be determined on the basis of this 
criterion that fault origins (3) and (4) are both diagnosable, 
while the observable event sequences in scenarios (1) and (2) 
are identical and thus cannot be differentiated from one 
another. 

The feasibility of this simple checking procedure is 
attributed mainly to the fact that the automata used in the 
present applications form a special subclass of those for 
modelling the discrete event systems. More specifically, 
since the continuous chemical processes are considered in 
this work, the corresponding automata can be characterized 
with the following unique features: 

1. The initial automaton state is always associated 
with the normal system condition. 

2. Every initial state transition is triggered by 



    

failure event(s). 
3. Recurrence of system state is not possible, i.e., 

the automaton is free of any feedback loop. 
Notice that this feature is due to our assumption 
that a final steady state is reachable in every 
possible scenario. 

(A) 

(B) 

Fig 6. The automaton (A) and diagnoser (B) constructed 
according to the SDG in Figure 5 

3. LANUGAE GENERATION 

A language �  is regarded in this work as a collection of 
finite-length event sequences.  These sequences are referred 
to as strings or words.  The set of all possible events 
(alphabets) is the set �  defined in equation (2).  An 
additional set *�  is also utilized here to include all possible 
strings (including the empty string ε ) constructed over� .  
Thus, it is obvious that *⊆ �� . 

Since fault diagnosis can only be performed according to the 
on-line symptoms, the automaton diag�  (not� ) is used to 
generate a diagnostic language for the purpose of 
enumerating all observable event sequences caused by a 
given fault origin.  Specifically, 

( ) ( ){ }0* |  ,  is defined by     (3)diag diags f x s= ∈� �� �

The transition function ( )0 ,f x s  here can be evaluated 
recursively according to the following rules: 

                   
( )
( ) ( )( )

,

, , ,

f x x

f x se f f x s e

ε =

=
                    (4) 

where, *s ∈�  and e∈� . In addition, the marked
language of automaton diag�  can be defined as 

( ) ( ) ( ){ }0|  ,diag diag ms f x s= ∈ ∈��� �� �      (5) 

Notice that an automaton-based language can be synthesized 
by first identifying the longest strings and then obtaining all 
their prefixes. Since the marked states in the present 

application are always terminal, ( )diag� �  can be produced 

by taking the prefix closure of ( )diag�� � (Cassandras and 

Lafortune, 1999), i.e. 

( ) ( )diag diag= �� �� �                        (6) 

where, ( )diag�� � denotes the set of all prefixes of the 

strings in ( )diag�� � . From equation (6), it can be shown 

that every diagnoser considered in this study must be 

nonblocking, i.e., any string ( )diags A∈�  can be always 

extended by another string t  such that ( )diagst A∈ �� . 

Let us use the diagnoser in Figure 4 as an example to 
illustrate the proposed approach.  The two languages marked 
and generated respectively by diag� in this case should be 

( ) { }

( )

( 1) ( 1) ( 1),  ( 1) ( 1) ( 1)    (7)

, ( 1),  ( 1) ( 1),  ( 1) ( 1),  
     (8)

( 1) ( 1) ( 1),  ( 1) ( 1) ( 1)

diag

diag

x z u x u z

x x z x u
x z u x u z
ε

= + − + + + −

+ + − + +� �
= � �+ − + + + −� �

��

�

�

�

If the possibilities of multiple fault origins are incorporated 
in a diagnoser, then it is necessary to further generate a 
sublanguage specific to every fault origin, i.e. 

( ) ( )iF
diag diag

i

=�� �� �                         (9) 

where, iF
diag�  is an automaton obtained by removing all the 

abnormal states in diagA  which are not caused by the i th 

fault origin iF . The marked sublanguages of the fault origins 
in Figure 6(B) can be easily produced with this method, i.e., 

( )( ) ( )( ) { }
( )( ) [ ]{ }
( )( ) { }

11

1

1

( 1) ( 1) (0)    (10)

( 1) ( 1) (0), (0)                (11)

( 1) ( 1) (0)                           (12)

yx

z

u

dd
diag diag

d
diag

d
diag

y z y

z y y z

y z y

++

+

+

= = + +

= + −

= − −

� �

�

�

� �

�

�

� �

�

�



    

4. FUZZY INFERENCE SYSTEM 

Every string in ( )diag� �  is encoded with an IF-THEN rule 

in this work.  These rules can be incorporated in a fuzzy 
inference system to evaluate the existence potential of the 
corresponding fault origin. In particular, if at least one event 

sequence in the marked sublanguage ( )iF
diag�� �  can be 

confirmed, then it is highly possible that they are caused by 
the corresponding fault origin iF . To assert such a belief, the 

fuzzy conclusion “ ics  is OCR” is adopted in the inference 
rule, where OCR is the linguistic value of the occurrence 
index ics  reflecting the highest confidence level in 

confirming the existence of iF . More specifically, this rule 
can be written as 

( )IF   THEN OCRiF
o diag is cs∈ =�� �

where os  denotes the observed event string.  

On the other hand, it is certainly reasonable to disregard the 
possibility of a fault if none of the corresponding event 
strings in ( )iF

diag� �  can be observed. Thus, the diagnosis 

for this scenario should be “ ics  is NOC”, where NOC is the 
linguistic value representing the lowest level of confidence. 
In other words, 

( )IF   THEN NOCiF
o diag is cs∉ =� �

The diagnostic conclusion for each of the remaining strings 
should be UCT� , i.e., uncertain with confidence level � . In 
particular, this rule can be written as 

( ) ( )IF \   THEN UCTi iF F
o diag diag is cs∈ =�� �� � �

In this study, the confidence level �  in confirming the 
existence of the root cause(s) is assumed to be proportional 
to the string length.  The highest possible confidence level is 

of course assigned to the strings in ( )iF
diag�� � . 

Finally, it should be noted that the aforementioned IF-THEN 
rules can be implemented with the two-layer fuzzy inference 
framework developed by Chen and Chang (2006).  

5.  CASE STUDY 

Let us consider the level control system presented in Figure 
7 and the corresponding SDG model in Figure 8. All on-line 
signals, i.e., 5s - 8s , are assumed to be available for fault 
diagnosis in this example. For illustration convenience, only 
two possible scenarios are considered here, i.e., (1) a 
moderate (controllable) increase in the flow rate of stream 3 
while control valve CV-01 sticks and (2) an uncontrollable 
increase in the flow rate of stream 3.  

Fig. 7.  A level-control system. 

Fig. 8. The SDG model of level-control system. 

The diagnoser for these two fault origins can be found in 
Figure 9. Notice that this automaton is presented in two parts 
for clarity. States 0  and 0′  are used to represent the 
combined states of the normal condition and the system 
conditions reached immediately after the occurrence of fault 
origin in scenario 1 and scenario 2 respectively. These two 
states, i.e., 0  and 0′ , should be lumped into a single one in 
the actual diagnoser.  

Part 1

Part 2

Fig. 9.  The diagnoser used  for level-control system 



    

To verify the effectiveness of the proposed fault diagnosis 
approach, extensive numerical simulation studies have been 
carried out in this work. The on-line measurement data of all 
fault propagation scenarios were generated with SIMULINK. 
These data were then used in Sugeno's inference procedure 
with the fuzzy-logic module of MATLAB toolbox. As an 
example, let us first examine the occurrence index of the 
event ( )3 10m +  in scenario 2. It can be observed from 
Figure 10(A) that the diagnosis is clearly swift and quite 
accurate.  Specifically, the existence of fault origin is 
detected almost immediately and fully confirmed at about 
500 second after its introduction. On the other hand, the 
occurrence index of the incorrectly assumed fault origin in 
scenario 2, i.e., ( )3 10m + , is presented in Figure 10(B). 
Notice that the nonzero occurrence index in the period 
between 1000 and 2600 sec can be attributed to the fact that 
the observed event strings caused by the two fault origins 
can be matched partially during the initial stage.  More 
specifically, the set of matched strings is 

{ }5( 1) 6( 1) 7( 1), 5( 1) 7( 1) 6( 1)s s s s s s+ − + + + −
As the on-line symptoms developed further, none of the 
longer strings generated by the first part of automaton in 
Figure 9 can be used to characterize the measurement data 
obtained after 2600 sec and thus the occurrence possibility of 
the second fault origin was rejected with the proposed 
inference mechanisms (Chen and Chang, 2006).. 

Fig. 10.  Diagnosis results of two different scenarios in the 
level control system.  (A) Occurrence index of the second 
fault origin using simulation data obtained by introducing the 
same event; (B) Occurrence index of the second fault origin 
using simulation data obtained by introducing the basic 
events in the first scenario.  

6. CONCLUSIONS 

In this study, a SDG-based reasoning procedure is proposed 
to qualitatively predict all possible symptom patterns and 
also their progression sequences. These intrinsic features of 
symptom evolution patterns are captured with automata and 

language models. The resulting IF-THEN rules can be 
incorporated in a fuzzy inference system and this system can 
be installed on-line to identify not only the locations of fault 
origins but also their magnitude levels with relatively high 
resolution. 
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