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Abstract: The predictability of a control-loop behavior beyond its control horizon is an unambiguous 
indication of loop malfunctioning. Based on the dynamic complexity of the error residual time series the 
permutation entropy is proposed to define a sensitive index for performance monitoring using data from 
close-loop operation. A generic framework to understand and quantify the distinctive increase in 
predictability of the controller error resulting from ill-tuning, sensor errors and actuator faults using a 
entropy-like index is presented. The dynamic complexity of a well-performing control loop should 
correspond to the maximum entropy. As loop performance degrades the entropy of its residual time series 
decreases and any loss of dynamic complexity in the control system gives rise to an increase of the 
predictability of the control error time series. Results obtained using the proposed performance index 
along with its confidence interval for industrial data sets are presented to discuss the influence of the 
sample size, control horizon, and variance estimation  in the assessment of close-loop performance. 
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1. INTRODUCTION 
Control loops implementing a hierarchy of functions for 
process regulation and optimization are the cornerstone of 
safety and economy in process plants (Thornhill et al., 1999). 
Many loops are just PID controllers whilst other may be more 
advanced ones, such as inferential loops, MPCs and real-time 
optimizers working on top of the regulation layer. It is well 
known that in most industrial environments the behavior of 
control loops deteriorate with time due to a number of 
reasons, e.g. plant-wide perturbations, fouling, utility 
constraints and raw material variability. Accordingly, process 
dynamic characteristics change over time and, if not properly 
maintained, most control loops will perform poorly after 
some time, which can lead to degraded process operation. In 
particular, ill-functioning of the regulation layer can easily 
cancel the benefits of advanced control systems and real-time 
optimization (Jelali, 2006; AlGhazzawi and Lennox, 2009). 
With the increasing complexity of control structures and the 
sheer number of controllers in modern process plants, the 
automation of performance monitoring tasks is mandatory.  

Systematic assessment of SISO control loops can be traced 
back to the seminal work of Harris (1989) who related the 
performance of a single-loop control system to the controller 
errors of a minimum variance controller. The latter, even 
though it is rather impractical to be implemented, serves as a 
performance benchmark to provide a lower bound for the 
variance of the controlled variable. On this basis, the well-

known Harris index is defined as the ratio of the variance 
achievable using minimum variance controller to the variance 
measured under the current control law (Desborough and 
Harris, 1992, 1993). As the value of this statistic is reduced 
then so too does the measured performance of the control 
system. The key advantage of the Harris approach to control 
loop monitoring is that only routine close-loop operating data 
are required to determine the performance of the control 
system. This fact has made the approach very attractive to 
industry and it is now applied as a matter of routine by many 
companies. However, a disadvantage of the Harris index is 
that it is based on a rather extreme (in terms of cost and 
energy involved) behaviour and no hints are provided for 
characterizing the behaviour a well-performing realistic 
controller based on the control task for which it was 
designed. Also, it is difficult to pinpoint an informative 
threshold for the Harris index to differentiate between normal 
and faulty operation of a control loop.  

Based on the insightful concept of control horizon, Thornhill 
et al. (1999) proposed the predictability of the error time 
series to characterize the performance of a SISO controller. 
The predictability of a control-loop behaviour beyond its 
control horizon is an unambiguous indication of loop 
malfunctioning in biological systems (Li, Ouyang and 
Richards, 2007). Along this research avenue, Ghraizi et al. 
(2007), proposed a practical index for performance 
monitoring of a control loop based on the analysis of the 
predictability of the error time series and emphasizes proper 



 
 

     

 

selection of the control horizon using engineering judgment 
and the amplitude and frequency of disturbances to which the 
loop is designed for. To develop ideas further, Martínez and 
de Prada (2007) resort to ordinal analysis methods of the 
error time series to define a performance index for 
performance monitoring based on the permutation entropy.  

In this work, the interplay between predictability of controller 
behaviour and its dynamic complexity for performance 
monitoring is highlighted by resorting to the residual error 
time series, which is obtained using a regression model. A 
generic framework to understand and quantify the distinctive 
increase in predictability of the controller error resulting from 
ill-tuning, sensor errors and actuator faults using an entropy-
like index is proposed. A well-performing controller should 
behave so that the sequence of residuals in the error series 
looks like one generated using i.i.d. samples from a random 
walk and the corresponding dynamic complexity is thus 
maximum. Accordingly, ordinal patterns in the error residuals 
will all be equally probable and the corresponding 
permutation entropy will be then the highest possible. 

2. MONITORING METHODOLOGY 

2.1 Predictability analysis 

The performance-monitoring concept revolves around the 
idea of predictability of controller behaviour beyond a chosen 
horizon b. If a control loop exhibits “good” performance, it 
should be able to cancel any disturbance entering the loop up 
to present time t, or follow a set point change correctly, after 
some sensible time interval b (expressed in terms of sampling 
periods). Then, it can be argue that, as from time t+b 
onwards, the error time series cannot be distinguished from a 
random walk stochastic process so that it cannot be predicted 
at all using information up to time instant t (see Fig. 1 for 
details). Nevertheless, over the control horizon b, the 
controller behaviour is fully predictable since it corresponds 
to its own control policy built-in by design. By contrast, error 
time series of a control loop exhibiting “poor” performance, 
will show patterns of behaviour (oscillations, steady-state 
errors, etc.) which can be predicted after time instant t+b 
using present and past measurements. 

 

 

 

 

 

 

Fig. 1. Error patterns and their predictability 

The most sensitive approach to detect patterns of 
predictability in the time series is analyzing the time series of 

error residuals r(t) which are obtained using an inductive 
model to predict future errors. 

Let’s denote by e(t) the controller error defined as  

                                )()()( tytte �� �                                  (1) 

Where )(t�  stands for the desired set-point at any time t, and 
)(ˆ te stands for the prediction of such error based on past 

values of the controller error. The difference between the 
actual and predicted controller errors is the residue r(t) whose 
time series has a dynamic complexity closely related to the 
predictability patterns in the controller error time series 

                                )(ˆ)()( tetetr ��                                   (2) 

The error prediction )(ˆ te can be obtained in different ways, 
but the easiest alternative is using the regression model 
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Where time indices refer to sampling periods, m is the model 
order and ai is the unknown parameters, which are fitted 
using a dataset of size n by means of the least-square 
regression: 
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And 


 �        TnebmebmeY )()1()( �����                                    (6) 

It is worth noting that for a well-performing controller in a 
given time interval the sequence of error residuals is a 
chaotic, completely random, and non-stationary stochastic 
process exhibiting maximum dynamic complexity.  The 
reader is referred to the work of Peng et al. (2009) for an 
interesting discussion on the meaning of regularity and 
dynamic complexity in physiologic time series from highly 
controlled biological systems. To quantify the dynamic 
complexity of residuals there are several options. 

In a previous work, the authors, Ghraizi et al. (2007), used a 
performance index based on the ratio between the variance of 
the residuals and the variance of the errors: 
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Assuming that in a perfectly predictable loop the variance of 



 
 

     

 

the residual would be zero, while non-predictable random 
walk would give a variance similar to the loop error, this 
expression would provide an index ranging from zero to one 
that will measure the performance of the controller. In order 
to obtain a confidence interval of the index the following 
analysis can be performed: 
It is known that the following ratio 
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between the estimated and real variance for an stochastic 
process must follow a �2 distribution with n-1 degrees of 
freedom. Applying this line of reasoning to the residuals and 
the controller errors and dividing them, we can obtain:   
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Which will follow a F-distribution with n-1,n-1 degrees of 
freedom. Hence: 
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Will can be used to compute the 100(1-�) % interval of 
confidence for the PI  index defined in (7). 

In practice, when this index is computed, large confidence 
interval appears sometimes, mainly when loop performance 
degrades, which reduces the interest in the above method. An 
alternative not based on statistical assumptions, which are 
always difficult to verify, would be desirable. In this regard, 
an appealing and sound choice is resorting to an entropy-like 
index based on ordinal patterns of the residual time series. 

2.2 Residual order patterns 

The complexity of a residual time series can be quantified by 
means of its symbolic dynamics. A new permutation method 
was proposed by (Bandt and Pompe, 2002; Bandt, 2005) to 
map a continuous time series onto a symbolic sequence; the 
statistics descriptive of the dynamic complexity of the 
symbolic time series is called permutation entropy. Given a 
data set for the scalar residual time series nttr ,....,1),( � , the 
local order of the series can be characterized  by patterns in 
vectors )(t� ensembled as follows 

))])1((),...(),([)( �� ����� �trtrtrt                                 (11) 

where �� is the embedded dimension parameter and � is the 
lag parameter (here 1�� ).  Then entries in each )(t� are 
arranged in increasing order which allows assigning to it one 
out of the �possible order patterns. For � different numbers, 
there will be ��� possible order patterns �, which are also 
called permutations. In Fig. 2 the six order patterns for ��= 3 
are shown. Let f(�) denote the frequency of permutation��  in 
the data set whereas ))1(/()()( ���� ���� nf  is the 
relative frequency. For a perfectly working controller the 
relative frequencies should all be close to 1/���

 

 
 
 
 
 

Fig. 2. Ordinal patterns in )(t� for ��= 3 

2.3  Permutation entropy and performance monitoring 

The local permutation entropy of order � for the error 
residual time series is defined as 
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The largest possible value for the permutation entropy will 
correspond to the perfectly working controller where all 
����permutations are equally probable which coincides with a 
residual time series of maximum complexity where the 
permutation entropy is ln ����

Permutation entropy depends on the selection of �. When �� 
is too small a value (say less than 3), the scheme will not 
work, since there are only very few distinct states for 
characterizing the control system behavior. For too large 
values of � (greater than 6), the number ��� of permutations 
which can appear in the time series can result in computer 
memory problems, due to the large number of data points that 
need to be examined. In the present work, only values of 
���������or 5 will be used. 

For loop monitoring, the permutation entropy of the residual 
time series is obtained from a sample where the total number 
of patterns counted is n and the tally number for the ith 
pattern in the sample is denoted by fi  
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The corresponding variance for this sample estimation of the 
permutation entropy is (see Moddemeijer, 1989, for details)  
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Based on equations (13) and (14) and a sample of size n, the 
following performance index is proposed 
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Since ln����is a constant, the variance for the sample 
estimation of the performance index can be written as 
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The highest value of PI is one, which means the error 
residual time series is complete random and is its dynamics is 
very complex; the smallest possible value of PI is zero, which 



 
 

     

 

means the error residual time series is highly regular. 

Eq. (14) is very important for the following reasons: it is 
possible to make a very reliable characterization of the 
variance of a sample-based estimation of the performance 
index PI  in Eq. (15).  For a well-performing control loop, 
since the probability for ordinal patterns are all the 
same,��after elementary algebra steps in Eq. (14) an exact 
measure of the variance for the performance index is obtained 
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As can be readily calculated, this variance for a properly 
working loop is very small even for small sample sizes. For 
example, for n=1000 and �=3, the variance of PI  is $0.00149 
for a perfectly working controller. For a much smaller sample 
size such n=100 is still rather small ( $0.0149).    

To compute a 100(1-�) % confidence interval for the PI 
index estimated through Eq. (15), the Student’s  t-distribution 
is assumed so that the sample variance in Eq. (16) is used to 
define upper/lower limits in the usual way as follows 

" #
n
PIVart n 1,2/1 ��% �                                                      (18) 

where ��defines the chosen level of confidence.  

3. RESULTS 
 In order to show the applicability of the proposed method, 
several data sets from an industrial site have been considered. 
They correspond to routine plant data of a set of typical 
control loops for pressure, flow, etc. The first one is 
displayed in Fig.3 and contains 9000 samples of the 
controlled and manipulated variables as well as the set point 
of a pressure control loop. 

Fig.3 Data from a pressure control loop. Upper graph: Set 
point (in red) and gauge pressure. Middle graph: control 
valve signal. Bottom graph: error between set point and 
pressure readings.  

Despite the fact that pressure readings stand close to the set 
point, the loop experiments an oscillatory behavior, likely as 
result of a too tight tuning. This can be better observed in a 
close-up to the data, as the one shown in Fig.4. 

 
Fig.4. A detailed view of the first 1000 data of the time 
evolution of pressure and its set point for the example data set 
shown in Fig.3. 

Results obtained from the application of the proposed method 
to pressure loop are discussed next. Fig.5. displays the actual 
error and its predictions computed from the expression (3). 
As can be seen, predictatility is significantly high, as one 
could expect in a badly tuned control loop whereas residuals 
are small. The residual time series is displayed in the upper 
part of Fig. 6, exhibiting a certain regularity, whereas in the 
bottom part the values of the proposed performance index 
(15) computed at regular time intervals every 120 data are 
shown for the case ������and b���&'(�

 
Fig.5. A detailed view of the errors and its predictions (in 
red) for the first 1000 data using prediction formula (3).  
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Fig.6. Upper graph: Residuals of the predictions computed 
with expression (2) for the example of Fig.3. Lower graph: 
Performance index computed from (16). 

As can be seen, in this example, sample estimation the 
performance index have an average value of 0.35, which is an 
indication of poor performance of the pressure loop. For the 
sake of comparison, the PI computed from (7) is displayed in 
Fig.7. Even though consistent results are obtained, but the 



 
 

     

 

confident limits rise up to 1 which creates a great deal of 
uncertainty in the estimation of this performance index. 
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Fig.7. Performance index (in red) computing with expression 
(7) for the example of Fig.3. Blue line gives the upper 
confidence limit based on Eqs. (9) and (10). 

Data from a second case study are given in Fig. 8. This time 
data correspond to a flow control loop that is the slave in a 
cascade configuration. 16,000 data poins are collected and, as 
can be seen, the loop behaviour is quite good, with fine set 
point tracking and moderate control signal changes, except in 
the range for data poins from 12,000 to 13,000, where 
extreme values of the set point from the master loop lead to 
saturation of the manipulated variable.  

 
Fig.8. Data from a slave flow control loop. Upper graph: Set 
point (in red) and flow readins. Middle graph: control valve 
signal. Bottom graph: error between set point and actual flow. 

As can be seen in the close-up displayed in Fig.9, there is a 
good following of the set point and the predictions of the 
errors computed with the expression (3) differ from the actual 
errors, so that the residuals (2), displayed in Fig.10, approach 
to a random walk, as expected in a loop with good behaviour. 

The performance index (15) has been computed using the 
values ������and b���&'��at regular time intervals that include 
120 data points. The numerical values displayed on the 
bottom of Fig.10 give regular values around 0.82 that is a 
reasonable value for this entropy-like index when all patterns 
are almost equiprobable.  

 
Fig.9. Upper graph: A close-up of data of the time evolution 
of flow and its set point (in red) for the example of Fig.8. 
Lower graph: A detailed view of the errors and its predictions 
(in red) for this range of data using prediction formula (3). 

 
Fig.10. Upper graph: Residuals of the predictions computed 
with expression (2) for the example of Fig.8. Lower graph: 
Performance index computed from (16). 

Nevertheless, in a set of intervals from data 12,000 on, where 
the manipulated variable is saturated, the predictions of the 
errors can be made very well, as can be observed in Fig.11, 
where the errors and its predictions computed with formula 
(3) are given. 

 
Fig.11. A detailed view of the errors and its predictions (in 
red) for a range of data above sample 12,000 of the example 
of Fig.8, using prediction formula (3). 

In this case, the residuals are small and do not follow a 
random walk stochastic process, as can be seen in the 
corresponding range of variation shown in Fig.10. 
Accordingly, the PI decreases, indicating performance 
degradation of the loop in this portion of the data set.  

For comparison, the PI computed with expression (7) and 
blocks of about 1000 data is given in Fig.12. As we can see, 
the index is between 0.75 and 0.9 giving consistent 
indications about the goodness of the loop behaviour, but at 



 
 

     

 

the time intervals where the saturation occurs it drops to 0.1, 
0.3 as expected. Nevertheless, the confidence bands increases 
at this precise times, decreasing the certitude of the diagnosis. 

A final test was made to compare previous results with the 
ones provided by the Harris index for this case study, which 
are displayed in Fig.13.  The values for the Harris index 
range from 0.3 to 0.5 for most samples, indicating that a 
margin for improvement exists in relation to the best possible 
linear controller -the minimum variance one- but it is worth 
noting that this index does not provide a direct measurement 
of the loop performance. Notice also that the index drops to 0 
and 0.1 in the critical range when the saturation of the 
manipulated variable occurs. 

 

 
Fig. 12. Performance index (in red) computed with 
expression (7) for the example of Fig.8. Blue line gives the 
upper confidence limit. 

 
Fig. 13. Sample estimation of the Harris index for the 
example in Fig. 8 computed from batches of 1,000 data 
points. 

 

4. CONCLUSIONS 

A new index for performance assessment of control loops 
using normal operating plant data has been proposed. It 
combines the idea of predictability of the controller error at a 
point in time beyond the desired settling time of the loop, 
with an analysis of the corresponding sequence of prediction 
residuals based on ordinal methods along with the concept of 
local permutation entropy. The main advantage of the 
Performance Index defined in this way is the fact that no 
statistical assumptions are made on the residuals, which 
allows for a crisp interpretation of sample estimation of the 
performance index. Moreover, the entropy-like index is easy 
to compute and can be applied to single isolated loops as well 
as to cascades or other control configurations including 

model predictive controllers. For industrial data sets, the 
proposed PI  has provides consistent results.  

To highlight several advantages some comparisons were 
made with other indices such the Harris index and a previous 
PI based on the error predictability idea. The proposed 
method based on the permutation entropy can be applied in 
real time with minimum computational costs which opens  
the possibility of automatic supervision of hundreds of 
control loops of a typical process plant. Also, linking 
information content with predictability of error residuals is a 
novel idea for loop monitoring using dynamic complexity.  
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