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Abstract: In this paper we show that conservation laws for extensive quantities and the second
law of thermodynamics lead to conditions for stability and optimality of a process network.
Interconnections among nodes are represented through connectivity matrices and network
graphs. A generalized version of Tellegen’s theorem from electrical circuit theory plays a central
role in deriving the objective function of the regarded dynamic process networks. The application
of irreversible thermodynamics lead to stability and optimality results based on the co-content
and content of the regarded process networks. The principle is illustrated in a pipeflow example.
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1. INTRODUCTION

The complexity of process systems arises from the vari-
ety of how simple subunits are connected (Hangos et al.
(1999)). A crucial component in modeling process systems
is therefore to understand how connections between the
subunits lead to complex system behavior. Ydstie and
Alonso (1997) developed a theoretical framework provid-
ing a link between passivity theory and physics using
the second law of thermodynamics. They discussed the
need to develop passivity based control techniques which
focus on input-output properties of the systems. An un-
derstanding for complex behavior can then be derived
from macroscopic thermodynamic constraints instead of
microscopic equations and the complexity that results
from using very detailed models can be reduced. Jillson
and Ydstie (2007) developed a topological result similar
to Tellegen’s theorem of electrical circuit theory and pas-
sivity theory to derive sufficient conditions under which
a network is stabilized using decentralized feedback. The
theory shows that it is possible to control very complex
networks of process systems without actually modeling
the thermodynamics and kinetics explicitly. This is due to
inherent passivity properties that follow from the second
law of thermodynamics. The conditions for passivity can
be checked in a distributed manner. In this work, we will
explore if similar ideas can be applied for optimization.

We extend the approaches in Ydstie and Alonso (1997);
Jillson and Ydstie (2007) to provide an organizational
framework for treating complex process systems concern-
ing optimality using ideas from network theory. The for-
malism of network theory has been particularly successful
for modeling and control of dynamic systems in electri-
cal engineering applications. Classically, electrical circuit
theory is not considered an application of non-equilibrium
thermodynamics. Nevertheless, electrical circuits are typ-
ical irreversible thermodynamic systems. The formalism
developed in electrical circuit theory was extended to
? This work was supported by the Center for Integrated Operations
in the Petroleum Industry, Trondheim, Norway.

general thermodynamic systems by Oster et al. (1971);
Peusner (1986). In particular the application to complex
biological systems has been carried out successfully by
Oster and Desoer (1971); Mickulecky (2001). In this paper,
we apply the formalism of network theory to describe
connected process systems. Network theory brings ther-
modynamics a degree of mathematical rigor and allows
to unify ideas from non-equilibrium thermodynamics, dy-
namic system theory and control. In the context of dissi-
pativity of process systems, network theory facilitates the
extension of irreversible thermodynamics by the system’s
topological description which is an important part of the
dynamic behavior. Looking at mathematical models of
many dynamic physical systems, we can identify a certain
inherent structure. We can separate the network model
into a kinematic structure which addresses the topology of
the system and a dynamical structure (Oster and Desoer
(1971)). The connectivity properties of the system describe
the physical processes where the dynamical structure de-
fines the relationships between the state variables. The
paper is organized as follows: In Section 2, we define the
type of process systems and describe the connection to
network theory, in Section 3, we describe fundamental
topological properties of the regarded process networks. In
Section 4 and 5, we elaborate the concepts of stability and
optimality for the regarded systems and present a pipeflow
example to illustrate our findings in Section 6.

2. PROCESS NETWORKS

Process networks are written as a collection of intercon-
nected sub-systems

ẋi = F (xi) +
n∑

j=0,j 6=i

G(ui, xi, xj), i = 0, ..., n (1)

yi =H(xi) (2)

xi is the state of subsystem i and xi(0) is the initial
condition. The function F describes the unforced motion
of the system, the function G describes how the system is



connected with other sub-systems, and the output function
H relates the state of the system to the measurement
functions yi. The functions ui represent the manipulated
variables. The functions F,G,H are all differentiable at
least once. The state of the entire network is given by the
vector x = (xT0 , x

T
1 , ..., x

T
n )T .

Subscript zero refers to the reference (exo-) system. Often
we are not interested in the dynamics of the exo-system,
or more likely, it is too complex to model. The process
system is modeled as the reduced system without the
reference sub-system. Its state is given by the vector
x = (xT1 , ..., x

T
n )T . The interactions with the exo-system

are then established through the boundary conditions.

The network form, as illustrated in Figure 1 is convenient
when we model systems with a graph structure. In such
systems the interactions between the sub-systems depend
on the state of the sub-system itself and the state of its
immediate neighbors. Not all dynamical systems can be
decomposed in this fashion. However, many large scale
systems have sparse interconnections and they can be
modeled compactly as networks of sub-systems with in-
terconnections. It is also easy to see that many physical
systems, especially those that satisfy the principle of local
action, can be decomposed in the manner shown in (1).

Fig. 1. Graphical network representation: Topological
structure of a network consisting of nodes, terminals,
and flows. Nodes can contain subgraphs and give rise
to a hierarchical, multiscale structure.

We define the inventory Z of a sub-system or a group
of systems to be a non-negative, additive function of the
state of the corresponding sub-system(s). By additivity we
mean that if Z1 is the inventory of sub-system 1 and Z2

is the inventory of sub-system 2, then Z1 +Z2 is the total
inventory. Hence for any i, j

Z

(
xi
xj

)
= Z(xi) + Z(xj)

By non-negativity we mean that the inventory cannot be
less than zero. Examples of physical inventories include
mass, energy and charge. More generally, an inventory is
any property which is related to an amount.

By referring to (1) and using continuity we derive the
conservation law

dZi
dt

= pi(xi) +
n∑

j=1,j 6=i

fij(u) (3)

The drift pi(xi) = ∂Z(xi)
∂xi

F (xi) measures the rate of

production and the function fij(u) = ∂Z(xi)
∂xi

G(u, xi, xj)
measures the supply of Z between sub-systems j and i.
We have the symmetry condition

fij(u) = fji(u)

The term

φ(u, z, d) =
n∑

j=1,j 6=i

−fij(u)

therefore measures the net rate of supply to sub-system i
from all other sub-systems. It is called the action on sub-
system i.
Definition: Let X0 be a subset of state-space. An inven-
tory defined by (3) is said to have the

(1) Clausius-Planck property if p(x) > 0 for x not in X0

(2) Conservation property if p(x) = 0 for all x not in X0

(3) Dissipation inequality if p(x) < 0 for x not in X0

The set X0 associated with the dissipative action φ is
called the set of passive states.

By a graph G we mean a finite set υ(G) = (υ1, .., υnP
),

whose elements are called nodes, together with the set
ε(G) ⊂ υ × υ, whose elements are called branches. A
branch is therefore an ordered pair of distinct nodes.

• If, for all (υi, υj) ∈ ε(G), the branch (υj , υi) ∈ ε(G)
then the graph is said to be undirected. Otherwise,
it is called a directed graph.
• A branch (υi, υj) is said to be incoming with

respect to υj and outgoing with respect to υi
and can be represented as an arrow with node υi as
its tail and node υj as its head.

Definition 1. A network of nodes Pi, i = 1, ..., np, np +
1, ..., nv consisting of nodes and terminals interconnected
through branches Ei, i = 1, ..., nf with topology defined
by the graph

G = (E,P)
is called a process network if its interconnection structure
is described by a directed graph and we have

(1) First law: There exists an inventory E (the energy)
which satisfies the conservation property

(2) Second law: There exists an inventory S (the en-
tropy) which satisfies the Clausius-Planck property

We now develop a compact description of the topology of
the network by introducing the incidence matrix.
Definition 2. The nt × nf matrix Aa is called incidence
matrix for the matrix elements aij being

aij =

{ 1, if flow j leaves node i
−1, if flow j enters node i

0, if flow j is not incident with node i
One node of the network is set as reference or datum node
P0 representing the exo-system. The (nt − 1)× nf matrix
A, where the row that contains the elements a0j of the
reference node P0 is eliminated, is called reduced incidence
matrix.

The connections between nodes through branches can
be uniquely defined using the incident matrix A. The
conservation laws (3) can now be written

AF = 0 (4)
for the node-to-branch incident matrix A, where FT =
[dZ1
dt ,

dZ2
dt , ..,

dZt

dt , f12, f13..fnt−1,nt , p1, .., pt]. The flows fij
represent connections between two nodes i.e. fij connects
node i to node j, pi denotes sources or sinks. The direction
of the flows are defined according to the directionality



established in the graph. We now define a vector W so
that

W = ATw (5)
where W are the potential differences across flow connec-
tions. The variables w are conjugate to Z if they are related
via the Legendre transform of a convex potential like the
entropy.

A dual structural representation can be derived using mesh
analysis (the analysis developed above, which is based
on the conservation laws, is called node analysis). Mesh
analysis is counter-intuitive in process control applications
but frequently used for electrical circuit analysis. When
introducing stability and optimality concepts in this work,
we will focus on describing the primal problem and its
implications but refer to the dual mesh-based problem as
proving the equivalent dual case.

2.1 Constitutive Relations

Constitutive equations relate efforts and flows (resistive),
flows and displacements (capacitive), and efforts and fluxes
(inductive). The constitutive equations describe energy
dissipating, irreversible processes (resistive) or energy stor-
ing, reversible processes. The constitutive equations define
the type of energetic transaction inside the process system
or between the process system and the environment. The
three main types can be described as

• Capacitive constitutive equation: storage of potential
energy, W = fC(Z)
• Inductive constitutive equation: storage of kinetic

energy, p = fL(W )
• Resistive constitutive equation: dissipation of energy,
F = fR(W )

In the context of process networks, storage of energy
usually occurs through capacitive elements. In this work,
inductive constitutive equations are neglected due to the
fact that we focus on chemical processes or chemical
process plants in which inertial effects in mass flow and
thus accumulation of kinetic energy are not a significant
contributor to the energy balance.

3. TOPOLOGICAL RESULTS, CONTENT AND
CO-CONTENT

Consider two networks (a) and (b) with the same topol-
ogy (identical incidence matrix) but not necessarily the
same state. Denote the variables in network (a) with the
superscript a and denote variables in the other network
with superscript b. Using the conservation laws (4) we can
then write WaTFb = (ATwa)TFb = waTAFb = 0. The
equality

WaTFb = 0
is often called Tellegen’s theorem.

Without the reference system Tellegen’s theorem is written

wbT dZ
a

dt
= −Wb

R

T
Fa

R −wb
T

T
Fa

T −wbTpa (6)

The term of the left hand side is called the storage. The
three terms on the right refer to power dissipation due to
transportation, supply from the exo-system through the
terminals, and dissipation by production respectively.

If we consider a single network (a = b), then we can drop
the superscript and we get the common form WTF =
0 which represents a powerbalance. If Z represents the
energy then we get the classical energy balance for the
network. The ”balance of entropy dissipation” results if
we let one inventory correspond to the thermodynamic
entropy defined so that

S = kB ln Ω(x)
It is important to note that the fundamental equation gives
a definition of the classical entropy in terms of extensive
and intensive variables through the Pfaffian

TdS = dU + PdV −
nc∑
i=1

µidNi

Tellegen’s theorem applied to the primal (extensive vari-
able) vector Z = (U, V,N1, .., Nn) and its Legendre dual
(intensive variable) vector w = (1, P, µ1, .., µn)/T then
gives

Ṡ = WR
TFR + wT

TFT + wTp
where we used the fundamental equation and (6). The
term pS = FR

TWR + wTp is called the rate of entropy
generation.

We define the content of the network as the integral

GR =
∫ FR

0

WR
T dFR +

∫ p

0

wT dp (7)

The co-content is given as

G∗R =
∫ WR

0

FR
T dW +

∫ w

0

pT dw (8)

By integration by parts and proper choice of the constant
p∗ (the constant of integration) we see that

GR +G∗R = pS ≥ 0
The second law dictates that the inequality holds (positive
entropy production).

4. STABILITY OF PROCESS NETWORKS

In this section we derive a stability result using a com-
bination of Tellegen’s theorem and the co-content as a
line integral. First, we note that Tellegen’s theorem shows
that for each time t the vectors W and F lie in fixed and
orthogonal spaces. The identity ẆTF = 0 is therefore
valid for all t and by taking out the sub-system which
represent the exo-system we can write as before

ŻT ẇ = −FT
RẆR − FT

TẇT − pT
Tẇ (9)

Due to the concavity of the entropy function we know that
there exists a matrix M ≥ 0 so that dw = MdZ, hence

ŻT ẇ = ŻTM Ż ≥ 0
We can also write the co-content as a line integral

G∗R =
∫ t

(FR
TẆR + pT ẇ)dt ≥ 0

Hence, by integrating (9) we get∫ t

0

ŻTM Żdt = −G∗R − FT
TẇT

The contribution due the terminal potentials vanish if
ẇT = 0 and it follows that G∗ is integrable and subject
the condition of uniform continuity we conclude that G∗
converges which implies that ẇ converges to zero.



5. OPTIMALITY OF PROCESS NETWORKS

Maxwell (1892) formulated the minimum heat theorem
which states that for linear resistive electrical circuits
driven by constant power sources, the flows distribute
themselves in a way as to minimize the heat that is
dissipated through the resistive elements. Prigogine (1947)
observed that the theorem can be generalized to thermo-
dynamic systems with the entropy production σS being
minimized at steady state. Based on Tellegen’s theorem
and the content and co-content, we can propose an opti-
mization problem that allows us to find the steady state
and dynamic trajectory of a dynamic process network.

For a process network with a graph G, we can define the
extended content

G =
b∑
i=1

∫ Fi

WidFi =
∫ F

WT dF (10)

and the extended co-content:

G∗ =
b∑
i=1

∫ Wi

FidWi =
∫ W

FT dW (11)

The extended content G and co-content G∗ represent
the sum of contents and co-contents for all branches
i.e. reversible, irreversible, production and terminal flow
connections of the network.
Lemma 3. For the network content G and the co-content
G∗

G∗(W) = WTF−G(F) (12)

Equation (12) is a special form of Tellegen’s theorem and
can be used to do a variable change corresponding to a
Legendre transformation.

Proof. The relation follows directly from integration by
parts.

Lemma 4. For the sum of extended contentG =
∫ F WT dF

and extended co-content G∗ =
∫W FT dW, the following

relation holds:
G+G∗ = 0

Proof. Using Tellegen’s theorem and Lemma 3, the result
follows immediately.
Definition 5. The following set of equations defines the
process system:

AF = 0 (13)

W = ATw (14)

FR = Λ(WR) (15)

Z = CwC (16)

FR = F− FS (17)

WR = W −WS (18)

FS = FT (19)

WS = WT (20)

Z(0) = Z0 (21)

The first two equations (13) and (14) are the Kirchhoff
relations for process networks. Equations (15) are the

resistive constitutive equations with Λ being a matrix
function and (16) are the capacitive constitutive equations.

We introduced the variables FR and WR which facilitate
writing the resistive constitutive equations in a compact
way. The variables FR and WR allow us to include the
terminals as sources or sinks through (19) and (20) for
both, terminals where we have the function of the flows
FT or the potentials WT given. For simplicity, we assume
the terminal conditions as constant over time. The last
equation (21) constitutes the initial conditions for the
inventories Z.

The set of equations can be transformed into a system
of nonlinear differential algebraic equations (DAE) of the
form

dZ
dt

= A(Z) + BZ
F(Finput

T ) + BZ
W(Winput

T ) (22)

Woutput
T = CW(Z) + DW

F (Finput
T ) + DW

W(Winput
T )(23)

Foutput
T = CF(Z) + DF

W(Winput
T ) + DF

F(Finput
T ) (24)

where nonlinearities are introduced through the constitu-
tive equations. In this dynamic system, each terminal has
an input and an output variable. The set of differential
equations (22) determines the trajectories of Z and repre-
sent a state space system. The algebraic constraints (23)
and (24) compute the output variables at the terminals
from the input variables and the state Z.

To find the stationary solutions of the system, we need to
solve the set of equations

AF = 0 (25)

W = ATw (26)

F− FT = Λ(W −WT) (27)
with the three main sets of constraints: Conservations
laws, uniqueness conditions, and the constitutive equa-
tions. The inventories and capacitive constitutive equa-
tions are only relevant for the dynamic case.

In the following theorem, we introduce the connection
between content, co-content and the Kirchhoff laws, and
present how duality of the free variables plays a crucial
role for the optimization problem that is solved when a
process network converges to a steady state solution. The
constitutive equations are not directly involved as they are
not relevant for the topological properties of the process
network.
Theorem 6. For the optimization problem

min
w

G∗ =
∫ W

0

FT dW (28)

s.t. W = ATw (29)

F = Λ(W) (30)
with the cocontent G∗ as objective function, the unique-
ness conditions, and resistive constitutive equations as
constraints, the solution exhibits a set of equations con-
sisting of the uniqueness condition, the conservation laws,
and the constitutive equations. The Langrange multipliers
of the optimization problem are the network flow variables
F.



Proof. Starting with equations (28) - (30), we first sub-
stitute the constitutive equations (30) into the objective
function (28) to eliminate the flow variables F. The La-
grange function of the resulting optimization problem is

minL(W,w, λ) =
∫ W

0

Λ(W)T dW+λT (ATw−W) (31)

First order conditions:

∂L

∂W
= Λ(W)− λ = 0 (32)

∂L

∂w
= Aλ = 0 (33)

∂L

∂λ
= ATw −W = 0 (34)

comparing (32) and the constitutive equations (30), it
follows that λ = F. Using λ = F in (32) and (33), the
result follows.

In principle, an optimization problem is solved where one
set of Kirchhoff equations is omitted. Through the first
order conditions, the missing set of equations is derived.
The optimization problem with the Kirchhoff voltage law
as constraints can be converted to an optimization problem
with the Kirchhoff current law and vice versa.

We can now propose the main theorem which allows us
to connect the steady state of a process network to the
objective function that is simultaneously optimized i.e. we
can find the natural optimization problem that a process
network solves, when converging to a steady state. We
explored the structure of the problem in the previous
theorem, however, we need to be able to define boundary
conditions and a solution for process networks connected
to an exo-system.
Theorem 7. Consider a process network G with given re-
sistive constitutive equations FR = Λ(WR) and boundary
conditions for each terminal as well as one set of either
the conservation laws or the uniqueness conditions. The
stationary solution (dZi

dt = 0) for the network with conser-
vation laws (13) and the uniqueness conditions (14)

AF = 0 (35)

W = ATw (36)

F− FT = Λ(W −WT) (37)

can be found by solving the following optimization prob-
lem

min
w

G∗ =
∫ W

0

FT dW (38)

s.t. W = ATw (39)

FR = Λ(WR) (40)

FT = const and/or WT = const (41)

or its equivalent dual optimization problem where (36) is
replaced by (35).

Proof. Starting with (38) - (41), we substitute the bound-
ary conditions (41) into the constitutive equations (40) and
the constitutive equation into the objective function (38).

We then form the Lagrange function using the flows F as
Lagrange multipliers

L(W,w,F) =
∫ W

0

(Λ(W −WT)T dW + WTFT (42)

+ FT (ATw −W) (43)
First order conditions:

∂L

∂W
= Λ(W −WT) + FT − F = 0 (44)

∂L

∂w
= AF = 0 (45)

∂L

∂F
= ATw −W = 0 (46)

Comparing (25) - (27) to (44) - (46) shows the result.
Concerning the second order conditions, we observe that
convexity of the constraints is trivial for the linear Kirch-
hoff laws. Non-convexities of the optimization problem are
due to non-linearities of the constitutive equations i.e. the
constitutive equations are non-positive. For the second
order conditions, it is apparent that the first derivative of
the constitutive equations has to be analyzed and found
positive definite for a global minimum, which corresponds
exactly to the findings for passivity in Jillson and Ydstie
(2007) for a unique network solution and convergence.

Generally, the objective function is a measure for dis-
sipation of the storage variable over time. We conclude
that the steady state of a passive network minimizes the
dissipated power subject to the constraints imposed by the
constitutive equations, topology, and boundary conditions,
i.e. terminal connections.

6. PIPEFLOW NETWORK

A pipeline network example shows how optimization and
dynamic simulation are connected. The network consists of
two connected pipelines where each pipeline flows through
a cylindrical storage tank with volume Vj open to the
atmosphere, as shown in Fig. 2. A reference node is
introduced representing the environment and connected
to the terminals and dynamic nodes.

Fig. 2. Graphical network representations: Problem spe-
cific representation on the left, a generalized repre-
sentation on the right including P0 representing the
exo-system.

Each pipeline’s cross section is cylindrical with area Ai.
The pipeline flow is given as a lumped parameter represen-
tation introducing pressure potentials pj at the nodes and
assuming laminar flow (Re < 2300). It is assumed that
the fluid shows Newtonian behavior as well as being in-
compressible (ρ = const.). Therefore, the relation between



volumetric flow V̇i and pressure drop ∆pi = pj − pj+1 can
be modeled using Hagen-Poiseuille’s law V̇i = πr4i

8ηLi
∆pi,

where ri is the radius of the pipeline’s cross-section and
Li is the length of pipeline i. The potential at the bottom
of the tank is given as pj = ρghj + patm by hydrostatics.
The fluid volume Vj in the tank is connected to the level
hj through Vj = Ajhj where Aj is the cross-section of
the tank. We complete the model with the conservation
laws for mass or, for constant density, the conservation of
volume:

dV1/dt= V̇ IN1 − V̇ OUT1 (47)

dV2/dt= V̇ IN2 − V̇ OUT2 (48)

V̇T1 = V̇ IN2 + V̇ IN2 (49)

V̇T2 = V̇ OUT2 + V̇ OUT2 (50)
Initial conditions for the tank volumes V0,i have to be
specified as well as boundary conditions at the terminals.
The steady state of (47) - (50) can be found by integrating
the differential equations.

The dynamic system given by the previous equations
converges to the solution of the following optimization
problem (dV1

dt = dV2
dt = 0):

min
4∑
i=1

∫ ∆pi

0

V̇id(∆pi) (51)

s.t. (47)− (50) (52)

V̇i =
πr4
i

8ηLi
∆pi , i = 1, .., 4 (53)

V̇T1 = const., pT2 = const. (54)
Solving the optimization problem therefore corresponds to
minimizing the power dissipated through viscous friction
in the pipes subject to the conservation laws and boundary
conditions. For each terminal, one boundary condition has
to be specified which can be chosen freely (V̇T1 = 0.3 m3/s,
pT2 = 1.013 bar). The parameters are given as d = 0.5 m
and L1 = 2500 m for the upper pipeline segments and
L2 = 5000 m for the lower segments. The tanks’ cross-
sectional diameter is chosen as d1 = d1 = 2 m. Fig. 3 shows
the simulation results. We chose the initial conditions for
V0,1 = V0,2 = 25 m 3.

It is apparent that the value of the objective function as
well as the flows of the dynamic simulation converge to the
optimum determined through the optimization problem
for arbitrary initial conditions. The constant inflow V̇T1

into the network divides itself into flows through the upper
segments and lower segments choosing the path of least
resistance.

7. CONCLUSIONS AND DISCUSSION

We introduced a new framework for analysis of optimality
and stability of networked process systems in this work.
We provide a systematic approach to define stability and
optimality conditions for these systems. The objective
function minimized by a process systems in its steady
state is derived. Although for simplicity, we regard only
the steady state in this example, the optimization problem

Fig. 3. Flows between tanks and outgoing terminal T2

and the power dissipation (objective function) as a
function of time on the left. Convergence of V̇ OUT1 =
to 0.2 m3/s and V̇ OUT2 = to 0.1 m3/s. Objective
function values of V̇ OUT1 on the right.

is also valid for transient conditions. The findings can
explored to design decentralized control structures and
hence shape the natural objective function of a process
systems towards an economic objective.
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